A Groupoid Characterization of Orthomodular Lattices *

IVAN CHAJDA

Department of Algebra and Geometry, Faculty of Science, Palacký University, Tomkova 40, 779 00 Olomouc, Czech Republic e-mail: chajda@inf.upol.cz

(Received May 10, 2005)

Abstract

We prove that an orthomodular lattice can be considered as a groupoid with a distinguished element satisfying simple identities.

Key words: Orthomodular lattice, ortholattice, orthocomplementation, OML-algebra.

2000 Mathematics Subject Classification: 06C15

A bounded lattice is called an *ortholattice* if there is a unary operation $x \mapsto x^{\perp}$ called *orthocomplementation* such that

 $x \lor x^{\perp} = 1$ and $x \land x^{\perp} = 0$ (i.e. x^{\perp} is a complement of x) $x^{\perp \perp} = x$ (it is an involution)

 $x \le y$ implies $y^{\perp} \le x^{\perp}$ (it is *antitone*).

An ortholattice is thus considered as an algebra $\mathcal{L} = (L; \lor, \land, ^{\perp}, 0, 1)$ of type (2, 2, 1, 0, 0). Due to the above mentioned properties of orthocomplementation, it satisfies the De Morgan laws, i.e.

 $(x \lor y)^{\perp} = x^{\perp} \land y^{\perp} \text{ and } (x \land y)^{\perp} = x^{\perp} \lor y^{\perp}.$

Hence, it can be considered also in the signature $(\lor, \bot, 0)$ of type (2, 1, 0) because \land can be expressed by De Morgan laws as a term function in \lor and \bot and $1 = 0^{\bot}$.

An ortholattice $\mathcal{L} = (L; \lor, \land, ^{\perp}, 0, 1)$ is called *orthomodular* if it satisfies the implication

 $\begin{aligned} x \leq y \Rightarrow x \lor (x^{\perp} \land y) = y \quad (\text{the orthomodular law}) \\ \text{which is equivalent to } x \leq y \Rightarrow y \land (y^{\perp} \lor x) = x. \end{aligned}$

^{*}Supported by the Research Project MSM 6198959214.