Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica **45** (2006) 43–51

A Decomposition of Homomorphic Images of Nearlattices *

IVAN CHAJDA¹, MIROSLAV KOLAŘÍK²

Department of Algebra and Geometry, Faculty of Science, Palacký University, Tomkova 40, 779 00 Olomouc, Czech Republic e-mail: ¹chajda@inf.upol.cz ²kolarik@inf.upol.cz

(Received January 12, 2006)

Abstract

By a nearlattice is meant a join-semilattice where every principal filter is a lattice with respect to the induced order. The aim of our paper is to show for which nearlattice S and its element c the mapping $\varphi_c(x) = \langle x \lor c, x \land_p c \rangle$ is a (surjective, injective) homomorphism of S into $[c) \times (c]$.

Key words: Nearlattice; semilattice; distributive element; pseudocomplement; dual pseudocomplement.

2000 Mathematics Subject Classification: 06A12, 06B99, 06D99

It is well-known (see e.g. [4]) that if L is a bounded distributive lattice and $c \in L$ has a complement in L then L is isomorphic to the direct product $[c) \times (c]$. On the other hand, if c is not complemented then the mapping $\varphi_c(x) = \langle x \vee c, x \wedge c \rangle$ is still an injective homomorphism of L into the mentioned direct product and one can discuss whether the homomorphic image $\varphi_c(L)$ is a subdirect product of $[c) \times (c]$.

In what follows we generalize this setting for the so-called nearlattices (see [1-3, 5-8]) and we investigate which of these results remain true. It turns out that our task is reasonable only for a class of so-called nested nearlattices.

Definition 1 By a *nearlattice* we mean a semilattice $S = (S; \lor)$ where for each $a \in S$ the principal filter $[a] = \{x \in S; a \leq x\}$ is a lattice with respect to the induced order \leq of S.

^{*}Supported by the Research Project MSM 6198959214.