Fixed Point Analysis for Non-oscillatory Solutions of Quasi Linear Ordinary Differential Equations

LUISA MALAGUTI¹, VALENTINA TADDEI²

¹Department of Engineering Sciences and Methods University of Modena and Reggio Emilia Via Fogliani 1, I-42100 Reggio Emilia, Italy e-mail: malaguti.luisa@unimore.it

²Department of Engineering of Information University of Siena, Via Roma 56, I-53100 Siena, Italy e-mail: taddei@dii.unisi.it

(Received November 10, 2004)

Abstract

The paper deals with the quasi-linear ordinary differential equation $(r(t)\varphi(u'))' + g(t,u) = 0$ with $t \in [0,\infty)$. We treat the case when g is not necessarily monotone in its second argument and assume usual conditions on r(t) and $\varphi(u)$. We find necessary and sufficient conditions for the existence of unbounded non-oscillatory solutions. By means of a fixed point technique we investigate their growth, proving the coexistence of solutions with different asymptotic behaviors. The results generalize previous ones due to *Elbert–Kusano*, [Acta Math. Hung. 1990]. In some special cases we are able to show the exact asymptotic growth of these solutions. We apply previous analysis for studying the non-oscillatory problem associated to the equation when $\varphi(u) = u$. Several examples are included.

Key words: Quasi-linear second order equations; unbounded, oscillatory and non-oscillatory solutions; fixed-point techniques.

2000 Mathematics Subject Classification: 34C10