On the Existence of One-Signed Periodic Solutions of Some Differential Equations of Second Order

Jan LIGȨZA
Institut of Mathematics, Silesian University, Bankowa 14, 40007 Katowice, Poland e-mail: ligeza@ux2.math.us.edu.pl

(Received February 28, 2006)

Abstract

We study the existence of one-signed periodic solutions of the equations $$
\begin{aligned} & x^{\prime \prime}(t)-a^{2}(t) x(t)+\mu f\left(t, x(t), x^{\prime}(t)\right)=0, \\ & x^{\prime \prime}(t)+a^{2}(t) x(t)=\mu f\left(t, x(t), x^{\prime}(t)\right), \end{aligned}
$$

where $\mu>0, a:(-\infty,+\infty) \rightarrow(0, \infty)$ is continuous and 1-periodic, f is a continuous and 1-periodic in the first variable and may take values of different signs. The Krasnosielski fixed point theorem on cone is used.

Key words: Positive solutions; boundary value problems; cone; fixed point theorem.

2000 Mathematics Subject Classification: 34G20, 34K10, 34B10, 34B15

1 Introduction

Nonnegative solutions to varius boundary value problems for ordinary differential equations have been considered by several authors (see for instance in

