Some Stability and Boundedness Results for the Solutions of Certain Fourth Order Differential Equations

Cemil TUNÇ
Department of Mathematics, Faculty of Arts and Sciences, Yüzüncü Yıl University, 65080, Van, Turkey
e-mail: cemtunc@yahoo.com

(Received March 9, 2005)

Abstract

Sufficient conditions are established for the asymptotic stability of the zero solution of the equation (1.1) with $p \equiv 0$ and the boundedness of all solutions of the equation (1.1) with $p \neq 0$. Our result includes and improves several results in the literature ([4], [5], [8]).

Key words: Differential equations of fourth order, boundedness, stability, Lyapunov functions.
2000 Mathematics Subject Classification: 34D20, 34D99

1 Introduction

In the current paper, we consider the nonlinear differential equation of the form

$$
\begin{equation*}
x^{(4)}+a(\ddot{x}, \dddot{x}) \dddot{x}+b(x, \dot{x}) \ddot{x}+c(\dot{x})+d(x)=p(t, x, \dot{x}, \ddot{x}, \dddot{x}) \tag{1.1}
\end{equation*}
$$

It can be written in the phase variables form

$$
\begin{align*}
& \dot{x}=y, \quad \dot{y}=z, \quad \dot{z}=u \tag{1.2}\\
& \dot{u}=-a(z, u) u-b(x, y) z-c(y)-d(x)+p(t, x, y, z, u)
\end{align*}
$$

