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Abstract

In this paper we study the existence of solutions for impulsive differ-
ential equations with state dependent delay. Our results are based on
the Leray–Schauder nonlinear alternative and Burton–Kirk fixed point
theorem for the sum of two operators.
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1 Introduction

This paper deals with the existence of solutions to the initial value problems
(IVP for short) for the impulsive differential equations of the form,

y′(t) = f(t, yρ(t,yt)), a.e. t ∈ J = [0, b], t �= tk, k = 1, . . . ,m, (1)

Δy|t=tk = Ik(y(t
−
k )), k = 1, . . . ,m, (2)

y(t) = φ(t), t ∈ (−∞, 0], (3)

1Corresponding author.
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where f : J × B → R, ρ : J × B → R, φ ∈ B are given functions, Ik : R → R,
k = 1, . . . ,m are continuous functions, 0 = t0 < t1 < . . . < tm < tm+1 = b,
Δy|t=tk = y(t+k )− y(t−k ),

y(t+k ) = lim
h→0+

y(tk + h) and y(t−k ) = lim
h→0−

y(tk + h)

represent the right and left hand limits of y(t) at t = tk, k = 1, . . . ,m, and B
is an abstract phase space, to be specified later. For any function y and any
t ∈ [0, b], we denote by yt the element of B defined by yt(θ) = y(t + θ) for
θ ∈ (−∞, 0]. We assume that the histories yt belong to B.

Impulsive differential equations appear frequently in applications because
many evolutionary process from fields as physics, aeronautic, economics, engi-
neering, populations dynamics, etc. In this way they makes changes of states
at certain moments of time. Such changes can be reasonably well approximated
as being instantaneous changes of this state which we will represented by im-
pulses in our work and then these processes are modeled by impulsive differential
equations and for this reason the study of this type of equations has received
great attention in the last years. There has a significant development in impul-
sive theory especially in the area of impulsive differential equations with fixed
moments; see for instance the monographs by Bainov and Simeonov [7], Ben-
chohra et al. [8], Lakshmikantham et al. [23], and Samoilenko and Perestyuk
[27]. Other works for impulsive differential equations with state dependent de-
lay are [1, 6, 20]. On other hand, there exists a extensive literature devoted
to the case where the impulses are absent (i.e. Ik = 0, k = 1, . . . ,m), see for
instance [2, 3, 4, 5, 10, 11, 12, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 28, 29].

The study of partial differential equations with state dependent delay have
been initiated recently, and concerning this matter we cite the pioneer works
Rezounenko et al. [26].

This paper is organized as follows: in Section 2, we will recall briefly some
basic definitions and preliminary facts which will be used throughout the fol-
lowing sections. In Section 3 we give two results, the first one is based on
Leray–Schauder’s alternative and the second one is based on a fixed point theo-
rem of Burton and Kirk [9] for the sum of a contraction map and a completely
continuous map. Finally in Section 4 we give an example to illustrate the theory
presented in the previous sections.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper. By C(J,R) we denote the Banach space of all
continuous functions from J into R with the norm

‖y‖∞ := sup{|y(t)| : t ∈ J}.
For ψ ∈ B the norm of ψ is defined by

‖ψ‖B = sup{|ψ(θ)| : θ ∈ (−∞, 0]}.
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L1(J,R) denotes the Banach space of measurable functions y : J −→ R which
are Lebesgue integrable normed by

‖y‖L1 =

∫ b

0

|y(t)|dt.

AC([a, b],R) denotes the space of absolutely continuous functions y : [a, b]→ R.

(A1) If y : (−∞, b)→ R, b > 0, y0 ∈ B, and y(t−k ) and y(t+k ), k = 1, . . . ,m exist
with y(t−k ) = y(tk), k = 1, . . . ,m then for every t ∈ [0, b) the following
conditions hold:

(i) yt ∈ B;

(ii) There exists a positive constant H such that |y(t)| ≤ H‖yt‖B ;

(iii) There exist two functions K(·),M(·) : R+ → R+, independent of y,
with K continuous and M locally bounded such that:

‖yt‖B ≤ K(t) sup{ |y(s)| : 0 ≤ s ≤ t}+M(t)‖y0‖B.

(A2) The space B is complete.

Denote
Kb = sup{K(t) : t ∈ [0, b]}

and
Mb = sup{M(t) : t ∈ [0, b]}.

3 Existence of solutions

Consider the following space

PC(J,R) =
{
y : [0, b]→ R : y is continuous at t �= tk, y(t

−
k ) = y(tk)

and y(t+k ) exists, for all k = 1, . . . ,m
}

PC(J,R) is a Banach space with norm

‖y‖PC = sup
t∈J
|y(t)|.

Set
Bb = {y : (−∞, b]→ R : y|(−∞,0] ∈ B, y|J ∈ PC(J,R)},

and let ‖.‖b the seminorm in Bb defined by

‖y‖b = ‖y0‖B + sup{|y(t)| : 0 ≤ t ≤ b}, y ∈ Bb.
Set

J ′ := J\{t1, t2, . . . , tm}.
We define a solution to the problem (1)–(3) as follows:
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Definition 3.1 A function y ∈ Bb is called a solution for (1)–(3) if y satisfies
(1)–(3).

We have the following result which is useful in what follows.

Lemma 3.1 Let h : J → R be continuous. A function y is a solution of the
integral equation

y(t) =

⎧⎨⎩ φ(t) if t ∈ (−∞, 0],

φ(0) +
∫ t
0 h(s)ds+

∑
0<tk<t

Ik(y(t
−
k )), if t ∈ (0, b],

(4)

if and only if y is a solution of the fractional IVP

y′(t) = h(t), for each, t ∈ J ′, (5)

Δy|t=tk = Ik(y(t
−
k )), k = 1, . . . ,m, (6)

y(0) = y0. (7)

We will need to introduce the following hypotheses

(Hφ) The function t→ φt is continuous from

R(ρ−) = {ρ(s, ϕ) : (s, ϕ) ∈ J × B, ρ(s, ϕ) ≤ 0}

into B and there exists a continuous and bounded function Lφ : R(ρ−)→
(0,∞) such that ‖φt‖B ≤ Lφ(t)‖φ‖B for every t ∈ R(ρ−).

(H1) The function f : J × B → R is of Carathéodory’s type;

(H2) There exist p ∈ L1(J,R+) and ψ : [0,∞)→ (0,∞) continuous and nonde-
creasing such that

|f(t, u)| ≤ p(t)ψ(‖u‖B) for each t ∈ J and all u ∈ B.

(H3) The functions Ik, k = 1, . . . ,m are continuous and there exists ψ1 : [0,∞)→
(0,∞) continuous and nondecreasing such that

|Ik(u)| ≤ ψ1(|u|) for each u ∈ R.

(H4) There is a constant M > 0 such that

M

Kbψ(M)
∫ b
0
p(s)ds+mψ1(M) +Mb‖φ‖B +Kb|φ(0)|

> 1.

The next result is a consequence of the phase space axioms.
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Lemma 3.2 ([19, Lemma 2.1]) If y : (−∞, b]→ R is a function such that y0 = φ
and y|J ∈ PC(J,R), then
‖ys‖B ≤ (Mb + Lφ)‖φ‖B +Kb sup{‖y(θ)‖; θ ∈ [0, max{0, s}]}, s ∈ R(ρ−) ∪ J,
where

Lφ = sup
t∈R(ρ−)

Lφ(t).

Remark 3.1 We remark that condition (Hφ) is satisfied by functions which are
continuous and bounded. In fact, if the space B satisfies axiom C2 in [21] then
there exists a constant L > 0 such that ‖φ‖B ≤ L sup{‖φ(θ)‖ : θ ∈ [−∞, 0]}
for every φ ∈ B that is continuous and bounded (see [21] Proposition 7.1.1) for
details. Consequently,

‖φt‖B ≤ L
supθ≤0 ‖φ(θ)‖

‖φ‖B ‖φ‖B, for every φ ∈ B\{0}.

Theorem 3.1 Assume that the hypotheses (H1)–(H3) and (Hφ) hold. Then
the problem (1)–(3) has at least one solution on (−∞, b].
Proof The proof will be given in several steps.

Define the operator N : Bb → Bb by:

N(y)(t) =

{
φ(t), if t ∈ (−∞, 0],
φ(0) +

∫ t
0 f(s, yρ(s,ys)) ds+

∑
0<tk<t

Ik(y(t
−
k )), if t ∈ (0, b].

(8)
Let x(.) : (−∞, b]→ R be the function defined by

x(t) =

{
φ(t), if t ∈ (−∞, 0],
φ(0), if t ∈ (0, b].

Then x0 = φ. For each z ∈ Bb with z0 = 0, we denote by z the function defined
by

z(t) =

{
0, if t ∈ (−∞, 0],
z(t), if t ∈ (0, b].

If y(·) satisfies the integral equation

y(t) = φ(0) +

∫ t

0

f(s, yρ(s,ys)) ds+
∑

0<tk<t

Ii(y(t
−
k )),

we can decompose y(.) into y(t) = z(t) + x(t), 0 ≤ t ≤ b, which implies yt =
zt + xt, for every t ∈ [0, b], and the function z(·) satisfies

z(t) =

∫ t

0

f(s, zρ(s,zs+xs) + xρ(s,zs+xs)) ds+
∑

0<tk<t

Ik(z(t
−
k ) + x(t−k )).
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Set
C = {z ∈ Bb : z0 = 0}.

Let ‖.‖0 be the norm in C defined by

‖z‖0 = ‖z0‖B + sup{|z(s)| : 0 ≤ s ≤ b} = sup{|z(s)| : 0 ≤ s ≤ b}.
We define the operator P : C → C by

P (z)(t) =

∫ t

0

f(s, zρ(s,zs+xs) + xρ(s,zs+xs)) ds+
∑

0<tk<t

Ik(z(t
−
k ) + x(t−k )).

Obviously the operator N has a fixed point is equivalent to P has one, so we
need to prove that P has a fixed point. We shall use the nonlinear alternative
of Leray–Schauder type [13].

Step 1: P is continuous
Let {zn} be a sequence such that zn → z in C. Then

|P (zn)(t)− P (z)(t)| ≤
∫ t

0

|f(s, znρ(s,zns+xs) + xρ(s,zns+xs))

− f(s, zρ(s,zs+xs) + xρ(s,zs+xs))| ds

+
∑

0<tk<t

|Ik(zn(t−k ) + x(t−k ))− Ik(z(t−k ) + φ(0))|.

Since Ik, k = 1, . . . ,m are continous and f is a Carathéodory function, we have
by the Lebesgue dominated convergence theorem

‖P (zn)− P (z)‖0 → 0 as n→∞.

Step 2: P maps bounded sets into bounded sets in C.
Indeed, it is enough to show that for any η > 0, there exists a positive

constant � such that for each z ∈ Bη = {z ∈ C : ‖z‖0 ≤ η}, by (H2) we have for
each t ∈ [0, b],

‖P (z)(t)‖ ≤

≤
∫ t

0

‖f(s, zρ(s,zs+xs) + xρ(s,zs+xs))‖ ds+
∑

0<tk<t

|Ik(z(t−k ) + φ(0))|

≤
∫ t

0

p(s)ψ(‖zρ(s,zs+xs) + xρ(s,zs+xs)‖) ds+mψ1(η + φ(0))

≤ ψ(Kbη +Kb|φ(0)| +Mb‖φ‖B))
∫ t

0

p(s)ds+mψ1(η + φ(0))

≤ ψ(Kbη +Kb|φ(0)| +Mb‖φ‖B))
∫ b

0

p(s)ds+mψ1(η + φ(0))

= l.
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Step 3: N maps bounded sets into equicontinuous sets of C0.
Let l1, l2 ∈ [0, b], l1 < l2, let Bη a bounded set of C as in Claim 2, and let

z ∈ Bη. Then,

|P (z)(l2)− P (z)(l1)| ≤

≤
∫ l2

l1

|f(s, zρ(s,zs+xs) + xρ(s,zs+xs))| ds+
∑

0<tk<l2−l1
|Ik(z(t−k ) + φ(0))|

≤
∫ l2

l1

|f(s, zρ(s,zs+xs) + xρ(s,zs+xs))| ds+
∑

0<tk<l2−l1
ψ1(|z(t−k ) + φ(0))|

≤ ψ(Kbη +Kb|φ(0)| +Mb‖φ‖B))
∫ l2

l1

p(s) ds+
∑

0<tk<l2−l1
ψ1(|z(t−k ) + φ(0))|.

As l1 → l2, the right-hand side of the above inequality tends to zero. As a
consequence of Claims 1 to 3 together with the Arzelá–Ascoli theorem, we can
conclude that P is continuous and completely continuous.

Step 4: A priori bounds.
Let z be a possible solution of the equation z = λP (z) for some λ ∈ (0, 1).

Then for each t ∈ [0, b], we have

|z(t)| ≤
∫ t

0

p(s)ψ(‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B)ds+
∑

0<tk<t

ψ1(|z(t−k ) + φ(0))|.

But

‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B ≤ ‖zρ(s,zs+xs)‖B + ‖xρ(s,zs+xs)‖B
≤ K(t) sup{|z(s)| : 0 ≤ s ≤ t}+M(t)‖z0‖B
+K(t) sup{|x(s)| : 0 ≤ s ≤ t}+M(t)‖x0‖B

≤ Kb sup{|z(s)| : 0 ≤ s ≤ t}+Mb‖φ‖B +Kb|φ(0)|.

|z(t)| ≤
∫ t

0

P (s)ψ(‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B) ds+
∑

0<tk<t

ψ1(|z(t−k ) + φ(0))|

≤
∫ t

0

P (s)ψ(Kb sup{|z(s)| : 0 ≤ s ≤ t}+Mb‖φ‖B +Kb|φ(0)|) ds +mψ1(μ(t)).

thus

Kb|z(s)|+Mb‖φ‖B +Kb|φ(0)|

≤ Kb

∫ t

0

P (s)ψ(Kb sup
0�s�t

{|z(s)|) +Mb‖φ‖B +Kb|φ(0)|) ds

+mψ1(μ(t)) +Mb‖φ‖B +Kb|φ(0)|.
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We consider the function μ defined by

μ(t) = sup{Kb|z(s)|+Mb‖φ‖B +Kb|φ(0)| : 0 ≤ s ≤ t}, 0 ≤ t ≤ b.

t∗ ∈ [0, t] be such that

μ(t) = Kb|z(t∗)|+Mb‖φ‖B +Kb|φ(0)|.
By the previous inequality we have for t ∈ [0, b]

μ(t) ≤ Kb

∫ t

0

p(s)ψ(μ(s))ds +mψ1(μ(t)) +Mb‖φ‖B +Kb|φ(0)|.

Thus

‖μ‖0
Kbψ(‖μ‖0)

∫ b
0
p(s)ds+mψ1(‖μ‖0) +Mb‖φ‖B +Kb|φ(0)|

≤ 1. (9)

From (9) and (H4) we have
‖μ‖0 �=M.

Set
U = {y ∈ C : ‖y‖0 < M + 1}.

From the choice of U , there is no y ∈ ∂U such that y = λP (y) for some
λ ∈ [0, 1]. The nonlinear alternative of Leray–Schauder type implies that P has
a fixed point, hence N has a fixed point which is a solution of problem (1)–(3).

�

Our main result in this section is based upon the following fixed point the-
orem due to Burton and Kirk [9].

Theorem 3.2 Let X be a Banach space, and A, D : X → X two operators
satisfying:

(i) A is a contraction, and
(ii) D is completely continuous.
Then either

(a) the operator equation y = A(y) +D(y) has a solution, or
(b) the set

E =
{
u ∈ X : λA

(u
λ

)
+ λD(u) = u

}
is unbounded for λ ∈ (0, 1).

Set
R(ρ−) = {ρ(s, ϕ) : (s, ϕ) ∈ J × B, ρ(s, ϕ) ≤ 0}.

We always assume that ρ : I × B → (−∞, b] is continuous. Additionally, we
introduce following hypotheses:
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(H5) There exist constants dk > 0, k = 1, . . . ,m with

Kb

m∑
k=1

dk < 1 and
m∑
k=1

dk < 1

such that

|Ik (y)− Ik (x) | ≤ dk‖y − x‖B, for each y, x ∈ B

∫ ∞

c1

du

ψ(u)
> c2

∫ b

0

p (s) ds, (10)

where

c1 =

Kb

m∑
k=1

|Ik(0)|+Mb‖φ‖B +Kb|φ(0)|

1−Kb

m∑
k=1

dk

(11)

and

c2 =
Kb

1−Kb

m∑
k=1

dk

. (12)

Theorem 3.3 Assume that (Hφ), (H1), (H2) and (H5) hold. Then the problem
(1)–(3) has at least one solution on (−∞, b].

Proof Transform the problem (1)–(3) into a fixed point problem. Consider
the operator N defined in the proof of Theorem 3.1. Let

B0
b = {x ∈ Bb : x0 = 0 ∈ B}.

For any x ∈ B0
b we have

‖x‖b = ‖x0‖B + sup{|x(s)| : 0 ≤ s ≤ b} = sup{|x(s)| : 0 ≤ s ≤ b}.

Thus (B0
b , ‖ · ‖b) is a Banach space. and define the operators A,D : B0

b → B0
b by:

D(z)(t) =
∫ t

0

f
(
s, zρ(s,zs+xs) + zρ(s,zs+xs)

)
ds, t ∈ J (13)

and
A(z)(t) =

∑
0<tk<t

Ik(z(tk) + x(tk)), t ∈ J. (14)

Obviously the operator N has a fixed point is equivalent to A+D has one, so it
turns to prove that A+D has a fixed point. We shall show that the operators
A and D satisfies all the conditions of Theorem 3.2. For better readability, we
break the proof into a sequence of steps.
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Step 1: D is continuous.
Let {zn} be a sequence such that zn → z in B0

b . At first, we study the
convergence of the sequences (znρ(s,zns )n∈N, s ∈ J . If s ∈ J is such that ρ(s, zs) >
0 for every n > N . In the case, for n > N we see that

‖znρ(s,zns ) − zρ(s,zs)‖B ≤ ‖znρ(s,zns ) − zρ(s,zns )‖B + ‖zρ(s,zns ) − zρ(s,zs)‖B
≤ Kb‖zn − z‖B + ‖zρ(s,zns ) − zρ(s,zs)‖B,

which prove that znρ(s,zns ) → xρ(s,zs) in B as n → ∞ for every s ∈ J such that
ρ(s, zs) > 0. Similarly, if ρ(s, zs) < 0 and n ∈ N is such that ρ(s, zns ) < 0 for
every n > N , we get

‖znρ(s,zns ) − zρ(s,zs)‖B = ‖φρ(s,zns ) − φρ(s,zs)‖B = 0

which also shows that znρ(s,zns ) → zρ(s,zs) in B as n→∞ for every s ∈ J such that
ρ(s, zs) < 0. Combining the previous arguments, we can prove that znρ(s,zns ) → φ

for every s ∈ J such that ρ(s, zs) = 0. Finally,

|D(zn)(t)−D(z)(t)|

=

∣∣∣∣∫ t

0

[f(s, znρ(s,zns +xs)
+ xρ(s,zns +xs))− f(s, zρ(s,zs+xs) + xρ(s,zs+zs))] ds

∣∣∣∣
≤

∫ t

0

∣∣∣f(s, znρ(s,zns +xs)
+ xρ(s,zns +xs))− f(s, zρ(s,zs+xs) + xρ(s,zs+zs))

∣∣∣ ds
≤

∫ t

0

∣∣∣f(s, znρ(s,zns +xs)
+ xρ(s,zns +xs))− f(s, zρ(s,zns +xs) + xρ(s,zns +xs))

∣∣∣ ds
+

∫ t

0

∣∣f(s, zρ(s,zns +xs) + xρ(s,zns +xs))− f(s, zρ(s,zs+xs) + xρ(s,zs+zs))
∣∣ ds.

We infer that f(s, znρ(s,zns )) → f(s, zρ(s,xs)) as n → ∞, for every s ∈ J . An
application of the Lebesgue dominated convergence theorem implies that

‖D(zn)−D(z)‖b → 0 as n→∞.
Thus D is continuous.

Step 2: D maps bounded sets into bounded sets in B0
b .

It is enough to show that for any η > 0 there exists a positive constant l such
that for each x ∈ Bη = {z ∈ B0

b : ‖z‖b ≤ η} we have ‖D (y)‖b ≤ l. So choose
z ∈ Bη, then from Lemma 3.2 it follows that

‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B ≤ Kbη +Mb‖φ‖B +Kb|φ(0)| = r∗.

Then we have for each t ∈ J

|D(z)(t)| =
∣∣∣∣∫ t

0

f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds

∣∣∣∣
≤

∫ b

0

p(s)ψ(‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B).
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Then we have

‖D(z)‖b ≤ ψ(r∗)
∫ b

0

p(s) ds := l.

Step 3: D maps bounded sets into equicontinuous sets of B0
b .

We consider Bη as in Step 2 and let l1, l2 ∈ J\ {t1, . . . , tm} , l1 < l2.

|D(z)(l2)−D(z)(l1)|

≤
∣∣∣∣ ∫ l2

l1

f(s, zρ(s,zs+xs) + xρ(s,zs+xs)) ds

∣∣∣∣ ≤ ψ(r∗)
∫ l2

l1

p(s) ds

As τ1 → τ2, the right-hand side of the above inequality tends to zero. As
a consequence of Steps 1 to 3 together with the Arzelá–Ascoli theorem, we can
conclude that D is continuous and completely continuous.

Step 4: A is a contraction.
Let z1, z2 ∈ B0

b . Then for t ∈ J

|A(z1)(t)−A(z2)(t)| =
∣∣∣∣∣ ∑
0<tk<t

(Ik(z1(tk) + x(tk))− Ik(z2(tk) + x(tk))

∣∣∣∣∣
≤

m∑
k=1

dk|z1(tk)− z2(tk)|.

Then

‖A(z1)−A(z2)‖b ≤
(

m∑
k=1

dk

)
‖z1 − z2‖b .

Hence A is a contraction.

Step 5: A priori bounds.
Now it remains to show that the set

E =
{
z ∈ B0

b : z = λD(z) + λA
( z
λ

)
for some 0 < λ < 1

}
is bounded.

Let z ∈ E , then z = λD(z) + λA
( z
λ

)
for some 0 < λ < 1. Thus, for each

t ∈ J ,

z(t) = λ

∫ t

0

f(s, zρ(s,zs+xs) + xρ(s,zs+xs)) ds+ λ
∑

0<tk<t

Ik

(
z(tk)

λ
+ x(tk)

)
.
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This implies by (H2), (H5) that, for each t ∈ J , we have

|z(t)| ≤ λ

∫ t

0

p(s)ψ(‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B) ds

+ λ

m∑
k=1

∣∣∣∣Ik (
z(tk)

λ
+ x(tk)

)∣∣∣∣
≤ λ

∫ t

0

p(s)ψ (Kb sup{|z(s)| : 0 ≤ s ≤ t}+Mb‖φ‖B +Kb|φ(0)|) ds

+ λ
m∑
k=1

∣∣∣∣Ik (
z(tk)

λ
+ φ(0)

)
− Ik(0)

∣∣∣∣+ λ
m∑
k=1

|Ik(0)|

≤
∫ t

0

p(s)ψ (Kb sup{|z(s)| : 0 ≤ s ≤ t}+Mb‖φ‖B +Kb|φ(0)|) ds

+ λ

m∑
k=1

|Ik(0)|+ λ

m∑
k=1

dk

(
z(tk)

λ
+ φ(0)

)
.

Thus

Kb|z(s)|+Mb‖φ‖B +Kb|φ(0)|

≤ Kb

t∫
0

p(s)ψ (Kb sup{|z(s)| : 0 ≤ s ≤ t}+Mb‖φ‖B +Kb|φ(0)|) ds

+ Kbλ

m∑
k=1

|Ik(0)|+Kbλ

m∑
k=1

dk

(
z(tk)

λ
+ φ(0)

)
+Mb‖φ‖B +Kb|φ(0)|.

We consider the function μ defined by

μ(t) = sup{Kb|z(s)|+Mb‖φ‖B +Kb|φ(0)| : 0 ≤ s ≤ t}, 0 ≤ t ≤ b.

Let t∗ ∈ [0, t] be such that

μ(t) = Kb|z(t∗)|+Mb‖φ‖B +Kb|φ(0)|.
By the previous inequality we have for t ∈ [0, b]

μ(t) ≤ Kb

∫ t

0

p(s)ψ(μ(s)) ds

+Kb

m∑
k=1

|Ik(0)|+Kb

m∑
k=1

dk (μ(t)) +Mb‖φ‖B +Kb|φ(0)|. (15)

Therefore

(1 −Kb

m∑
k=1

dk)μ(t) ≤ Kb

∫ t

0

p(s)ψ(μ(s)) ds+Kb

m∑
k=1

|Ik(0)|

+ Mb‖φ‖B +Kb|φ(0)|.
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Thus

μ(t) ≤ c1 + c2

t∫
0

p(s)ψ(μ(s)) ds. (16)

Let us take the right hand-side of (16) as v(t). Then we have

μ(t) ≤ v(t) for all t ∈ J,
v(0) = c1,

and
v′(t) = c2p(t)ψ(μ(t)), a.e. t ∈ J.

Using the nondecreasing character of ψ we get

v′(t) ≤ c2p(t)ψ(v(t)), a.e. t ∈ J,
that is

v′(t)
ψ(v(t))

≤ c2p (t) , a.e. t ∈ J.

Integrating from 0 to t we get∫ t

0

v′(s)
ψ(v(s))

ds ≤ c2

∫ t

0

p (s) ds.

By a change of variable and (10) we get∫ v(t)

v(0)

du

ψ(u)
≤ c2

∫ b

0

p (s) ds <

∫ ∞

c1

du

ψ(u)
.

Hence there exists a constant N such that

μ(t) ≤ v(t) ≤ N for all t ∈ J.
Now from the definition of μ it follows that

‖z‖b ≤ N∗ for all x ∈ E .
This shows that the set E is bounded. As a consequence of Theorem 3.2 we
deduce that A+D has a fixed point which is a solution of (1)–(3). �

4 An Example

To apply our results, we consider the functional differential equation with state
dependent delay of the form

y′(t) = p(t)b(y(t− σ(y(t)))), t ∈ [0, b], (17)

y(t) = φ(t), t ∈ (−∞, 0], (18)
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Δy(ti) =

∫ ti

−∞
γi(ti − s)y(s) ds, (19)

where γi ∈ C([0,∞),R), σ ∈ C(R, [0,∞)), 0 < t1 < t2 < . . . < tn < b,
p : [0, b]→ R+, a : R→ R, and we assume the existence of positive constants b1,
b2 such that |b(t)| ≤ b1|t|+ b2 for every t ∈ R.

Set γ > 0. For the phase space, we choose B to be defined by

B = PCγ = {φ ∈ PC((−∞, 0],R) : lim
θ→−∞

eγθφ(θ) exists}

with the norm
‖φ‖γ = sup

θ∈(−∞,0]

eγθ|φ(θ)|, φ ∈ PCγ .

Set
ρ(t, ϕ) = t− σ(ϕ(0)), (t, ϕ) ∈ J × B,
f(t, ϕ) = p(t)b(ϕ(0)), (t, ϕ) ∈ J × B,

Ik(y(tk)) =

∫ ti

−∞
γi(ti − s)y(s) ds.

We can represent system (17)–(19) by the Cauchy problem (1)–(3). It is clear
that (H1) and (H2) are satisfied with

|f(t, ϕ)| ≤ p(t)[b1‖ϕ‖B + b2] for all (t, ϕ) ∈ I × B.
Theorem 4.1 Let ϕ ∈ B be such that Hϕ is valid and t→ ϕt is continuous on
R(ρ−). Then there exists a solution of (17)–(19).

Acknowledgements: The authors are grateful to the referees for their re-
marks.
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