Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica **49**, 2 (2010) 21–36

Implication and Equivalential Reducts of Basic Algebras^{*}

Ivan CHAJDA¹, Miroslav KOLAŘÍK², Filip ŠVRČEK¹

¹ Department of Algebra and Geometry, Faculty of Science, Palacký University 17. listopadu 12, 771 46 Olomouc, Czech Republic

e-mail: {chajda,svrcekf}@inf.upol.cz
² Department of Computer Science
Faculty of Science, Palacký University

17. listopadu 12, 771 46 Olomouc, Czech Republic e-mail: kolarik@inf.upol.cz

(Received November 24, 2009)

Abstract

A term operation implication is introduced in a given basic algebra \mathcal{A} and properties of the implication reduct of \mathcal{A} are treated. We characterize such implication basic algebras and get congruence properties of the variety of these algebras. A term operation equivalence is introduced later and properties of this operation are described. It is shown how this operation is related with the induced partial order of \mathcal{A} and, if this partial order is linear, the algebra \mathcal{A} can be reconstructed by means of its equivalential reduct.

Key words: Basic algebra, implication algebra, implication reduct, equivalential algebra, equivalential reduct.

2000 Mathematics Subject Classification: 06C15, 06D35, 03G25, 08A62

1 Preliminaries

The concept of basic algebra was introduced by the first author, see e.g. [3] for details. Recall that by a *basic algebra* we mean an algebra $\mathcal{A} = (A; \oplus, \neg, 0)$ of type $\langle 2, 1, 0 \rangle$ satisfying the following identities

(BA1) $x \oplus 0 = x$,

 $(BA2) \neg \neg x = x,$

^{*}Supported by the Council of the Czech Government MSM 6 198 959 214.

$$(\text{BA3}) \neg (\neg x \oplus y) \oplus y = \neg (\neg y \oplus x) \oplus x, \\ (\text{BA4}) \neg (\neg (\neg (x \oplus y) \oplus y) \oplus z) \oplus (x \oplus z) =$$

where $1 = \neg 0$. Let us note that this axiom system is from [4], the original one from [3] contains two more identities which can be derived by means of (BA1)–(BA4).

1,

A basic algebra $\mathcal{A} = (A; \oplus, \neg, 0)$ is called *commutative* if it satisfies the identity $x \oplus y = y \oplus x$.

The following lemma is known (see [4, 3]).

Lemma 1 Every basic algebra satisfies the identities

(a) $0 \oplus x = x$, (b) $x \oplus 1 = 1 \oplus x = 1$, (c) $x \oplus \neg x = 1 = \neg x \oplus x$.

As shown e.g. in [3], every basic algebra $\mathcal{A} = (A; \oplus, \neg, 0)$ can be considered as an ordered set with the least element 0 and the greatest element 1, where

$$x \le y$$
 if and only if $\neg x \oplus y = 1.$ (*)

Moreover, it is a lattice, where

$$x \lor y = \neg(\neg x \oplus y) \oplus y$$
 and $x \land y = \neg(\neg(x \oplus \neg y) \oplus \neg y).$

If $x \leq y$ or $y \leq x$ for each two elements x, y of A then A will be called a *chain* basic algebra.

Since basic algebras are of the same type as MV-algebras and differ from them only in the fact that associativity and commutativity of the operation \oplus is not asked, we can define the connectives implication " \rightarrow " and equivalence " \leftrightarrow " in the same way, i.e. they are term operations

$$x \to y := \neg x \oplus y$$
 and $x \leftrightarrow y := (x \to y) \land (y \to x)$.

To reveal the properties of \rightarrow and \leftrightarrow we will study these connectives without relations to other operations, i.e. we are focused on the implication or equivalential reducts of basic algebras.

2 Implication basic algebras

Basic algebras form an important class of algebras used in several non-classical logics due to the fact that this class contains e.g. orthomodular lattices $\mathcal{L} = (L; \lor, \land, \bot, 0, 1)$, where $x \oplus y = (x \land y^{\perp}) \lor y$ and $\neg x = x^{\perp}$, which form an axiomatization of the logic of quantum mechanics as well as MV-algebras (see e.g. [5]), which get an axiomatization of many-valued Lukasiewicz logics. Let us note that similar analysis of axioms of implication quantum algebras were studied also by J. C. Abbott [1] and by N. D. Megill and M. Pavičić [7].

Since the connective implication plays a crucial role in the all above mentioned logics, we would like to characterize this operation also in basic algebras. Therefore, we introduce the following concept: **Definition 1** An algebra $(A; \circ)$ of type $\langle 2 \rangle$ is called an *implication basic algebra* if it satisfies the following identities

- (I1) $(x \circ x) \circ x = x$,
- (I2) $(x \circ y) \circ y = (y \circ x) \circ x$,
- (I3) $(((x \circ y) \circ y) \circ z) \circ (x \circ z) = x \circ x.$

Lemma 2 Let $(A; \circ)$ be an implication basic algebra. Then there exists an element $1 \in A$ which is an algebraic constant and $(A; \circ)$ satisfies the identities

(i) $x \circ x = 1$, (ii) $x \circ 1 = 1$, (iii) $1 \circ x = x$, (iv) $((x \circ y) \circ y) \circ y = x \circ y$, (v) $y \circ (x \circ y) = 1$.

Proof Substituting z by y and y by x in (I3) and applying (I1) we get

$$x \circ x = (((x \circ x) \circ x) \circ y) \circ (x \circ y) = (x \circ y) \circ (x \circ y).$$

When x is now substituted by $x \circ y$, we derive

$$((x \circ y) \circ y) \circ ((x \circ y) \circ y) = (x \circ y) \circ (x \circ y)$$

and hence $((x \circ y) \circ y) \circ ((x \circ y) \circ y) = x \circ x$. Applying (I2) we infer

$$y \circ y = ((y \circ x) \circ x) \circ ((y \circ x) \circ x) = ((x \circ y) \circ y) \circ ((x \circ y) \circ y) = x \circ x,$$

thus $(A; \circ)$ satisfies the identity

$$x \circ x = y \circ y.$$

This means that $(A; \circ)$ contains an algebraic constant which will be denoted by 1 and hence it satisfies the identity $x \circ x = 1$, which is (i). Using this, (I1) can be reformulated as

$$1 \circ x = x,$$

which is (iii). By (i) and (I3) we get

$$(((x \circ y) \circ y) \circ z) \circ (x \circ z) = 1$$

and due to (I2), we derive easily also

$$(((x \circ y) \circ y) \circ z) \circ (y \circ z) = 1.$$

Substituting $x \circ y$ instead of x and z we get

$$((((x \circ y) \circ y) \circ y) \circ (x \circ y)) \circ (y \circ (x \circ y)) = 1.$$

By (I3) and (iii) we conclude

$$y \circ (x \circ y) = 1,$$

which is (v). For y = x we obtain (ii) immediately.

It remains to prove (iv). Using (iii) and (v), we have

 $(y \circ (x \circ y)) \circ (x \circ y) = 1 \circ (x \circ y) = x \circ y.$

Due to (I2), $(y \circ (x \circ y)) \circ (x \circ y) = ((x \circ y) \circ y) \circ y$ whence (iv) is evident. \Box

Theorem 1 The identities (I1), (I2), (I3) are independent.

Proof Consider a two element groupoid $\mathcal{A} = (\{0, 1\}, \circ)$, where \circ is defined by the table

$$\begin{array}{c|cc} \circ & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 1 & 1 \end{array}$$

Then \mathcal{A} satisfies (I1), (I3), but not (I2) since

$$(0 \circ 1) \circ 1 = 0 \neq 1 = (1 \circ 0) \circ 0.$$

If \circ is defined by the table

$$\begin{array}{c|ccc} \circ & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 1 \end{array},$$

then \mathcal{A} satisfies (I1), (I2), but not (I3) since

$$(((0 \circ 1) \circ 1) \circ 1) \circ (0 \circ 1) = 1 \neq 0 = 0 \circ 0.$$

If \circ is defined as the constant operation $x \circ y = 1$ for every $x, y \in \{0, 1\}$ then \mathcal{A} satisfies (I2), (I3), but not (I1) since

$$(0 \circ 0) \circ 0 = 1 \neq 0.$$

The connection between basic algebras and implication basic algebras is established by the following:

Theorem 2 Let $\mathcal{A} = (A; \oplus, \neg, 0)$ be a basic algebra. Define $x \circ y = \neg x \oplus y$. Then $(A; \circ)$ is an implication basic algebra.

Proof Applying (BA1)–(BA4) and Lemma 1, we can easily check the identities (I1)–(I3) as follows

 $\begin{array}{ll} (\mathrm{I1}): \ (x \circ x) \circ x = \neg (\neg x \oplus x) \oplus x = \neg 1 \oplus x = 0 \oplus x = x; \\ (\mathrm{I2}): \ (x \circ y) \circ y = \neg (\neg x \oplus y) \oplus y = \neg (\neg y \oplus x) \oplus x = (y \circ x) \circ x; \\ (\mathrm{I3}): \ (((x \circ y) \circ y) \circ z) \circ (x \circ z) = \neg (\neg (\neg (\neg x \oplus y) \oplus y) \oplus z) \oplus (\neg x \oplus z) = 1 = \\ \neg x \oplus x = x \circ x. \end{array}$

Remark 1 Since basic algebras serve as an algebraic axiomatization of certain many-valued logic, where \oplus is considered as a disjunction and \neg as a negation, the term function $\neg x \oplus y$ can be recognized as an implication (formally the same construction as in the classical propositional calculus). This motivated us to call $(A; \circ)$ an implication basic algebras due to the relation given by Theorem 2.

To reveal the structure of implication basic algebras we introduce a partial order relation.

Lemma 3 Let $(A; \circ)$ be an implication basic algebra. Define a binary relation \leq on A as follows

$$x \leq y$$
 if and only if $x \circ y = 1$

Then \leq is a partial order on A such that $x \leq 1$ for each $x \in A$. Moreover,

 $z \leq x \circ z$ and $x \leq y$ implies $y \circ z \leq x \circ z$

for all $x, y, z \in A$.

Proof By (i) of Lemma 2 we have that \leq is reflexive. Assume $x \leq y$ and $y \leq x$. Then $x \circ y = 1$, $y \circ x = 1$ and by (I2) and (I1)

$$x = 1 \circ x = (y \circ x) \circ x = (x \circ y) \circ y = 1 \circ y = y,$$

which is proving antisymmetry of \leq .

If $x \leq y$ and $y \leq z$ then $x \circ y = 1$, $y \circ z = 1$ and, due to (I3) and Lemma 2 we get

$$1 = (((x \circ y) \circ y) \circ z) \circ (x \circ z) = ((1 \circ y) \circ z) \circ (x \circ z)$$
$$= (y \circ z) \circ (x \circ z) = 1 \circ (x \circ z) = x \circ z$$

thus also $x \leq z$ proving transitivity of \leq . Hence \leq is a partial order on A and due to (ii) of Lemma 2, $x \leq 1$ for each $x \in A$.

Further, if $x \leq y$ and $z \in A$ then $x \circ y = 1$ and, by (I3),

$$1 = (((x \circ y) \circ y) \circ z) \circ (x \circ z) = ((1 \circ y) \circ z) \circ (x \circ z) = (y \circ z) \circ (x \circ z)$$

getting $y \circ z \leq x \circ z$. Putting here y = 1 we obtain $z = 1 \circ z \leq x \circ z$.

The partial order \leq introduced in Lemma 3 will be called the *induced partial* order of the implication basic algebra $(A; \circ)$.

Remark 2 Let $\mathcal{A} = (A; \oplus, \neg, 0)$ be a basic algebra and $x \circ y = \neg x \oplus y$. Then the induced partial order of the implication basic algebra $(A; \circ)$ coincides with the partial order of \mathcal{A} defined by (*) in Preliminaries.

Theorem 3 Let $(A; \circ)$ be an implication basic algebra and \leq its induced partial order. Then $(A; \leq)$ is a join-semilattice with the greatest element 1 where $x \lor y = (x \circ y) \circ y$.

Proof By Lemma 3 and (I2) we infer $y \leq (x \circ y) \circ y$ and $x \leq (y \circ x) \circ x = (x \circ y) \circ y$ thus $(x \circ y) \circ y$ is a common upper bound of x, y. Assume $x, y \leq z$. Then by double using of the Lemma 3 we have

$$(x \circ y) \circ y \le (z \circ y) \circ y = (y \circ z) \circ z = 1 \circ z = z,$$

thus $(x \circ y) \circ y$ is the least upper bound of x, y, i.e.

$$x \lor y = (x \circ y) \circ y$$

is the supremum of x, y.

Let $(A; \circ)$ be an implication basic algebra. The semilattice $(A; \vee)$ derived in Theorem 3 will be called the *induced semilattice* of $(A; \circ)$.

Theorem 4 Let $(A; \circ)$ be an implication basic algebra and $(A; \vee)$ its induced semilattice. For each $p \in A$, the interval [p, 1] is a lattice $([p, 1]; \vee, \wedge_p, {}^p)$ with an antitone involution $x \mapsto x^p$ where

$$x^p = x \circ p \quad and \quad x \wedge_p y = ((x \circ p) \lor (y \circ p)) \circ p$$

for all $x, y \in [p, 1]$.

Proof Assume $x \in [p, 1]$. By Lemma 3, $x \mapsto x^p$ is a partial order reversing mapping and moreover we have $x^p = x \circ p \ge p$, thus $x \mapsto x^p$ is a mapping of [p, 1] into itself. By Theorem 3, $x^{pp} = (x \circ p) \circ p = x \lor p = x$ and hence it is an involution of [p, 1]. This yields that we can apply De Morgan laws to show that

$$(x^p \lor y^p)^p = ((x \circ p) \lor (y \circ p)) \circ p = x \land_p y$$

is the infimum of $x, y \in [p, 1]$ and hence $([p, 1]; \lor, \land_p, p)$ is a lattice with an antitone involution. \Box

Corollary 1 Let $(A; \circ)$ be an implication basic algebra and \leq its induced partial order. Then $(A; \leq)$ is a join-semilattice with the greatest element 1 such that for each $p \in A$ the interval [p, 1] is a basic algebra $([p, 1]; \oplus_p, \neg_p, p)$ where $x \oplus_p y = (x \circ p) \circ y$ and $\neg_p x = x \circ p$ for all $x, y \in [p, 1]$.

In what follows, $([p, 1]; \bigoplus_p, \neg_p, p)$ will be called an *interval basic algebra*. Theorem 4 describes the semilattice structure of an implication basic algebra. We are going to show that this description is complete, i.e. that the converse of Theorem 4 holds.

Theorem 5 Let $(A; \lor, 1)$ be a join-semilattice with the greatest element 1 such that for each $p \in A$ the interval [p, 1] is a lattice with an antitone involution $x \mapsto x^p$. Define $x \circ y = (x \lor y)^y$. Then $(A; \circ)$ is an implication basic algebra.

Proof Since $x \lor y \in [y, 1]$ for every $x, y \in A$, the operation \circ is well-defined. We are going to check the identities (I1), (I2), (I3). (I1): $(x \circ x) \circ x = ((x \lor x)^x \lor x)^x = x^{xx} = x;$

 $\begin{array}{l} \text{(I2):} & (x \circ y) \circ y = ((x \lor y)^y \lor y)^y = (x \lor y)^{yy} = x \lor y = y \lor x = (y \lor x)^{xx} = \\ & ((y \lor x)^x \lor x)^x = (y \circ x) \circ x; \\ \text{(I3):} & (((x \circ y) \circ y) \circ z) \circ (x \circ z) = ((x \lor y) \lor z)^z \circ (x \lor z)^z = 1 = (x \lor x)^x = x \circ x \\ & \text{since} & ((x \lor y) \lor z)^z \le (x \lor z)^z. \end{array}$

We say that $(A; \circ)$ is an *implication basic algebra with the least element* if there exists an element $0 \in A$ such that $0 \leq a$ for each $a \in A$ (where \leq is the induced partial order). By Lemma 3 the identity

 $0 \circ x = 1$

holds in any implication basic algebra with the least element 0.

The following result shows that our implication basic algebra really catches all the properties of implication $x \to y := \neg x \oplus y$ in any basic algebra.

Theorem 6 Let $(A; \circ)$ be an implication basic algebra with the least element 0. Define the term operations $\neg x = x \circ 0$ and $x \oplus y = (x \circ 0) \circ y$. Then $(A; \oplus, \neg, 0)$ is a basic algebra and $x \circ y = \neg x \oplus y$.

Proof We need to check the axioms (BA1)–(BA4) of basic algebras. (BA1) and (BA2): $x \oplus 0 = (x \circ 0) \circ 0 = x \lor 0 = x$; $\neg \neg x = (x \circ 0) \circ 0 = x$. For (BA3) and (BA4) we use the fact that

$$\neg x \oplus y = ((x \circ 0) \circ 0) \circ y = (x \lor 0) \circ y = x \circ y.$$

(BA3): $\neg(\neg x \oplus y) \oplus y = (x \circ y) \circ y = (y \circ x) \circ x = \neg(\neg y \oplus x) \oplus x$ by (I2). (BA4): $\neg(\neg(\neg(x \oplus y) \oplus y) \oplus z) \oplus (x \oplus z) = ((((x \circ 0) \circ y) \circ y) \circ z) \circ ((x \circ 0) \circ z) = 1$ by (I3). Provem 2. $(x \circ 0) \circ 0 = x \lor (0 = x \circ y) = ((x \circ 0) \circ y) \circ y = ((x \circ 0) \circ y) = 0$.

By Theorem 3, $(x \circ 0) \circ 0 = x \lor 0 = x$ and hence $x \circ y = ((x \circ 0) \circ 0) \circ y = (x \circ 0) \oplus y = \neg x \oplus y$.

Let us note that the induced partial order of an implication algebra $(A; \circ)$ coincides with that of $(A; \oplus, \neg, 0)$ defined by (*).

An implication basic algebra $(A; \circ)$ is called *commutative* if $(x \circ p) \circ y = (y \circ p) \circ x$ for all $x, y \in [p, 1]$. By Corollary 1, if $(A; \circ)$ is commutative then for each $p \in A$, $x \oplus_p y = y \oplus_p x$ for all $x, y \in [p, 1]$ in the interval basic algebra $([p, 1]; \oplus_p, \neg_p, p)$. Applying Theorem 8.5.9 from [3], we can infer the following:

Corollary 2 Let $(A; \circ)$ be a commutative implication basic algebra and $(A; \lor)$ its induced semilattice. Then

- (a) for each $p \in A$ the interval basic algebra $([p, 1]; \oplus_p, \neg_p, p)$ is a commutative basic algebra;
- (b) for each $p \in A$ the interval lattice $([p, 1], \lor, \land_p)$ is distributive.

In what follows, we can check several important congruence conditions of implication basic algebras. Denote by \mathcal{IB} the variety of implication basic algebras.

Recall that an algebra \mathcal{A} with a constant 1 is *weakly regular* (see e.g. [2]) if every congruence Θ on \mathcal{A} is determined by its 1-class $[1]_{\Theta}$, in other words, if for each $\Theta, \Phi \in \text{Con}\mathcal{A}$

 $[1]_{\Theta} = [1]_{\Phi}$ implies $\Theta = \Phi$.

An algebra \mathcal{A} is *congruence 3-permutable* if

$$\Theta\circ\Phi\circ\Theta=\Phi\circ\Theta\circ\Phi$$

for each $\Theta, \Phi \in \text{Con}\mathcal{A}$. An algebra \mathcal{A} is *congruence distributive* if

$$\Theta \land (\Phi \lor \Psi) = (\Theta \land \Phi) \lor (\Theta \land \Psi)$$

for all $\Theta, \Phi, \Psi \in \text{Con}\mathcal{A}$. An algebra \mathcal{A} with a constant 1 is *distributive at 1* if

$$[1]_{\Theta \land (\Phi \lor \Psi)} = [1]_{(\Theta \land \Phi) \lor (\Theta \land \Psi)}$$

for all $\Theta, \Phi, \Psi \in \text{Con}\mathcal{A}$.

It is evident that if an algebra \mathcal{A} with a constant 1 is weakly regular and distributive at 1 then it is congruence distributive.

Theorem 7 The variety \mathcal{IB} is weakly regular, congruence 3-permutable and congruence distributive.

Proof By the theorem of Csákány (see e.g. Theorem 6.4.3 in [2]), a variety is weakly regular if and only if there exist binary terms $t_1(x, y), \ldots, t_n(x, y)$ $(n \ge 1)$ such that $t_1(x, y) = \cdots = t_n(x, y) = 1$ if and only if x = y. In \mathcal{IB} we can take n = 2 and $t_1(x, y) = x \circ y$, $t_2(x, y) = y \circ x$. Then clearly $t_1(x, x) = t_2(x, x) = x \circ x = 1$ and, if $t_1(x, y) = 1$ and $t_2(x, y) = 1$ then $x \le y$ and $y \le x$ whence x = y.

To prove distributivity at 1, by Theorem 8.3.2 in [2] we need only to find a binary term t(x, y) in \mathcal{IB} satisfying the identities

$$t(x, x) = t(1, x) = 1$$
 and $t(x, 1) = x$.

By Definition 1 and Lemma 2, we can take $t(x, y) = y \circ x$. Using the fact that \mathcal{IB} is weakly regular and distributive at 1, we conclude that \mathcal{IB} is congruence distributive.

To prove 3-permutability of \mathcal{IB} , we need to find ternary terms $p_1(x, y, z)$, $p_2(x, y, z)$ such that

$$x = p_1(x, z, z), \quad p_1(x, x, z) = p_2(x, z, z), \quad p_2(x, x, z) = z$$

(see e.g. Theorem 3.1.18 in [2]). For this, we can take $p_1(x, y, z) = (z \circ y) \circ x$ and $p_2(x, y, z) = (x \circ y) \circ z$. Then $p_1(x, z, z) = (z \circ z) \circ x = 1 \circ x = x$, $p_1(x, x, z) = (z \circ x) \circ x = (x \circ z) \circ z = p_2(x, z, z)$ and $p_2(x, x, z) = (x \circ x) \circ z = 1 \circ z = z$. \Box

Remark 3 Congruence distributivity of the variety \mathcal{IB} can be shown also directly by using Jónsson terms. We can pick up n = 3 and $t_0(x, y, z) = x$, $t_1(x, y, z) = ((z \circ y) \circ (z \circ x)) \circ x$, $t_2(x, y, z) = ((y \circ z) \circ (x \circ z)) \circ z$ and $t_3(x, y, z) = z$. It is an easy exercise to verify the corresponding Maltsev condition.

3 Derived equivalential algebras

Let $\mathcal{A} = (A; \oplus, \neg, 0)$ be a basic algebra and $1 = \neg 0$. For $x, y \in A$ we define

$$x \square y = (x \circ y) \land (y \circ x) = (\neg x \oplus y) \land (\neg y \oplus x).$$

The algebra $(A; \Box, 0)$ will be called the *derived equivalential algebra* of A.

The concept of equivalential algebra was introduced formerly for the equivalential reducts of Heyting algebras in [9], see e.g. [8] for the complex setting. It was shown in [6] that this algebra can be described by three axioms:

(E1) $(x \cdot x) \cdot y = y$,

(E2)
$$((x \cdot y) \cdot z) \cdot z = (x \cdot z) \cdot (y \cdot z),$$

(E3) $((x \cdot y) \cdot ((x \cdot z) \cdot z)) \cdot ((x \cdot z) \cdot z) = x \cdot y.$

Unfortunately, if we consider our derived equivalential algebra defined above, the axioms (E2), (E3) are violated as it can be shown in the following example.

Example 1 Let us consider the four element chain basic algebra $(A; \oplus, \neg, 0)$, where $A = \{0, a, b, 1\}$ with 0 < b < a < 1 and the operations \oplus and \neg are given by the tables

\oplus	0	1	a	b					
0	0	1	a	b	_	0	1	a	h
1	1	1	1	1		1	1	$\frac{u}{h}$	0
a	a	1	1	1		1	0	0	u
b	b	1	1	a					

Then for the operation \square we have

and hence

$$(0 \square a) \square (a \square a) = b \square 1 = b \neq 1 = a \square a = (b \square a) \square a = ((0 \square a) \square a) \square a.$$

Thus (E2) does not hold in A. Similarly,

$$0 \Box 1 = 0 \neq a = b \Box a = (0 \Box a) \Box a = (0 \Box (b \Box a)) \Box (b \Box a)$$

= ((0 \cap 1) \cap ((0 \cap a) \cap a)) \cap ((0 \cap a) \cap a),

thus (E3) is also violated.

Lemma 4 Let $(A; \oplus, \neg, 0)$ be a basic algebra and $(A; \Box, 0)$ its derived equivalential algebra. If $x, y \in A$ such that $x \leq y$ then $(x \Box y) \Box x = y$.

Proof Let $x, y \in A$ such that $x \leq y$. Then by Lemma 3 $x \circ y = 1$ and hence

 $x \Box y = (x \circ y) \land (y \circ x) = y \circ x.$

Since $x \leq y \circ x$ by Lemma 3, we have $x \circ (y \circ x) = 1$. By Theorem 3

$$(x \Box y) \Box x = ((y \circ x) \circ x) \land (x \circ (y \circ x)) = (y \lor x) \land 1 = y \land 1 = y.$$

Let us note that the converse of Lemma 4 does not hold in general as it is shown in Example 2 below.

Now we are going to describe basic properties of the operation \Box .

Lemma 5 Let $(A; \oplus, \neg, 0)$ be a basic algebra, $(A; \square, 0)$ its derived equivalential algebra and $x, y, z \in A$. Then

(a) $x \Box y = y \Box x$, (b) $x \Box 0 = \neg x$, (c) $(0 \Box x) \Box 0 = x$, (d) $x \Box 1 = x$, (e) $x \Box x = 1$, (f) if $z \le x \le y$ then $y \Box z \le x \Box z$,

where $1 = \neg 0$.

Proof (a): Obviously by the definition of \Box and commutativity of \land . (b): $x \Box 0 = (\neg x \oplus 0) \land (\neg 0 \oplus x) = \neg x \land (1 \oplus x) = \neg x \land 1 = \neg x$. (c): $(0 \Box x) \Box 0 = \neg x \Box 0 = \neg \neg x = x$. (d): $x \Box 1 = (\neg x \oplus 1) \land (\neg 1 \oplus x) = 1 \land x = x$. (e): By Lemma 1, $x \Box x = \neg x \oplus x = 1$. (f): If $z \le x \le y$ then $z \circ x = 1$ and $z \circ y = 1$ and therefore $x \Box z = x \circ z$, $y \Box z = y \circ z$. Using Lemma 3 we obtain $y \Box z = y \circ z \le x \circ z = x \Box z$.

Remark 4 Consider a chain basic algebra $(A; \oplus, \neg, 0)$ and elements $x, y \in A$. We have either $x \leq y$ or $y \leq x$, thus either $x \circ y = 1$ or $y \circ x = 1$ and hence $x \Box y = y \circ x$ in the first case and $x \Box y = x \circ y$ in the second one.

Theorem 8 Let $(A; \oplus, \neg, 0)$ be a chain basic algebra and $(A; \square, 0)$ its derived equivalential algebra and $x, y \in A$. Then

- (i) x = 1 if and only if $x \square x = x$.
- (ii) if $x \neq 1$ then $x \leq y$ if and only if $(x \Box y) \Box x = y$.

Proof By (e) of Lemma 5 we infer (i). At first, let $x \neq 1$ and assume $x \circ y = y$. Then $x \lor y = (x \circ y) \circ y = y \circ y = 1$ and, due to the fact that $(A; \leq)$ is a chain, we conclude y = 1. For (ii), by Lemma 4 it is sufficient to prove that for $x \neq 1$, the implication $(x \Box y) \Box x = y \Rightarrow x \leq y$ holds.

Assume that $x \neq 1$ and $x \nleq y$, i.e. y < x. If $x \circ y = y$, then y = 1 as shown above, a contradiction with y < x. Hence $x \circ y \neq y$. According to Remark 4, $x \Box y = x \circ y$. Hence

$$(x \Box y) \Box x = (x \circ y) \Box x = ((x \circ y) \circ x) \land (x \circ (x \circ y)).$$

Then either $x \leq x \circ y$ or $x \circ y \leq x$. In the first case, $x \circ (x \circ y) = 1$ and by Lemma 3

$$(x \Box y) \Box x = (x \circ y) \circ x \ge x > y,$$

so $(x \Box y) \Box x \neq y$. In the second case, $(x \circ y) \circ x = 1$. Since $x \neq 1$, thus by Lemma 3 $(x \Box y) \Box x = x \circ (x \circ y) \ge x \circ y > y$. \Box

Remark 5 (a) Let us note that if x = 1 then by Lemma 5 $(1 \Box y) \Box 1 = y$ for any $y \in A$. Hence, the assumption $x \neq 1$ cannot be avoided in (ii) of Theorem 8. (b) Theorem 8 shows that for a chain basic algebra $\mathcal{A} = (A; \oplus, \neg, 0)$ we are able to reconstruct the induced partial partial order of \mathcal{A} from the derived equivalential algebra $(A; \Box, 0)$. The element 1 is then the greatest one in $(A; \leq)$ and the partial order of other elements is described by (ii) of Theorem 8. (c) The result of Theorem 8 cannot be reformulated for a basic algebra which is a direct (or a subdirect) product of chain basic algebras, see the following example.

Example 2 Consider a basic algebra $\mathcal{A} = (\{0, a, b, \neg a, \neg b, 1\}; \oplus, \neg, 0)$ as shown in Fig. 1 which is the direct product of chain basic algebras $\mathbf{3} \times \mathbf{2}$.

Fig. 1

The operation \square in the derived equivalential algebra $(A; \square, 0)$ is given by the table

	0	a	b	$\neg b$	$\neg a$	1
0	1	$\neg a$	$\neg b$	b	a	0
a	$\neg a$	1	b	$\neg b$	0	a
b	$\neg b$	b	1	$\neg a$	$\neg b$	b
$\neg b$	b	$\neg b$	$\neg a$	1	b	$\neg b$
$\neg a$	a	0	$\neg b$	b	1	$\neg a$
1	0	a	b	$\neg b$	$\neg a$	1

We can see that $a \neq 1$ and $(a \square b) \square a = b \square a = b$, but $a \nleq b$. It is a consequence of the fact that the representation of a in $\underline{\mathbf{3}} \times \underline{\mathbf{2}}$ is (0, 1), so in the second coordinate the assumption $x \neq 1$ is violated.

Lemma 6 Let $\mathcal{A} = (A; \oplus, \neg, 0)$ be a chain basic algebra, $(A; \square, 0)$ its derived equivalential algebra and $1 = \neg 0$. Then $(A; \square, 0)$ satisfies:

(g) if $x \neq 1$, $y \neq 1$, $(x \Box y) \Box x = y$ and $(y \Box z) \Box y = z$ then $(x \Box z) \Box x = z$; (h) if $x \neq 1$, $y \neq 1$, $(x \Box y) \Box x = y$ and $(y \Box x) \Box y = x$ then x = y.

Proof To prove (g) we use Theorem 8, so $(x \Box y) \Box x = y$ and $(y \Box z) \Box y = z$ means that $x \leq y$ and $y \leq z$ thus $x \leq z$, i.e. $(x \Box z) \Box x = z$. Analogously for (h), $(x \Box y) \Box x = y$ and $(y \Box x) \Box y = x$ means $x \leq y$ and $y \leq x$, so x = y. \Box

According to the properties of derived equivalential algebras as exhibited above we can introduce the following concept.

Definition 2 An algebra $\mathcal{E} = (E; \Box, 0)$ of type $\langle 2, 0 \rangle$ satisfying:

- (i) $(x \square x) \square y = y;$
- (ii) if $x \neq 0 \Box 0 \neq y$, $(x \Box y) \Box x = y$ and $(y \Box z) \Box y = z$ then $(x \Box z) \Box x = z$;
- (iii) if $x \neq 0 \square 0 \neq y$, $(x \square y) \square x = y$ and $(y \square x) \square y = x$ then x = y;
- (iv) $x \Box y = y \Box x;$
- (v) $(0 \square x) \square 0 = x;$
- (vi) $x \square x = y \square y;$
- (vii) if $z \leq x \leq y$ then $y \square z \leq x \square z$;

will be called a *b*-equivalential algebra.

Remark 6 Due to Lemma 5 and 6 for any chain basic algebra $\mathcal{A} = (A; \oplus, \neg, 0)$ the derived equivalential algebra of \mathcal{A} is a b-equivalential algebra.

Theorem 9 Let $\mathcal{E} = (E; \Box, 0)$ be a b-equivalential algebra. Define a binary relation \leq on E as follows:

- (A) $x \leq 0 \square 0$ for each $x \in E$;
- (B) if $0 \Box 0 \le x$ then $x = 0 \Box 0$;
- (C) if $x \neq 0 \Box 0$ then $x \leq y$ if and only if $(x \Box y) \Box x = y$.

Then \leq is a partial order on E.

Proof First, we check reflexivity of \leq . For $x \neq 0 = 0$ using (i) we obtain $(x \square x) \square x = x$, which by (C) means $x \le x$. For $x = 0 \square 0$ we have by (A) $0 \Box 0 \le 0 \Box 0.$

Now, to show antisymmetry of \leq consider two cases. For $x \neq 0 \square 0 \neq y$ such that $x \leq y$ and $y \leq x$ we have by (C) $(x \Box y) \Box x = y$ and $(y \Box x) \Box y = x$, thus by (iii) x = y. If $x = 0 \square 0$ and $x \le y$ and $y \le x$ (which by (A) holds for each $y \in E$) then $y = 0 \square 0$ by (B) thus also x = y.

To check transitivity of the relation we consider three cases. First, if $x \neq z$ $0 \Box 0 \neq y$ and $x \leq y$ and $y \leq z$ then by (C) $(x \Box y) \Box x = y$ and $(y \Box z) \Box y = z$. Using (ii) we get $(x \square z) \square x = z$, so by (C) $x \le z$. If $x = 0 \square 0$ and $x \le y$ and $y \leq z$, we obtain by double using of (B) that $y = z = 0 \square 0$, which by (A) means that $x \leq z$. And the last, if $x \neq 0 = 0 = y$ and $x \leq y$ and $y \leq z$ then analogously by (B) we get $z = 0 \square 0$ and by (A) $x \le z$.

Altogether, the binary relation \leq is a partial order on E.

In what follows, \leq will be called the *induced partial order* of a b-equivalential algebra $\mathcal{E} = (E; \square, 0)$. We show some properties of the induced partial order of \mathcal{E} .

Remark 7 Let us note that if part of (C) trivially holds even without the condition $x \neq 0 \square 0 = 1$ in a non-trivial b-equivalential algebra (i.e. if $0 \neq 0 \square 0$).

We can prove the following

Lemma 7 Let $\mathcal{E} = (E; \Box, 0)$ be a b-equivalential algebra. Then 0 is its least element, the element $0 \square 0$ is the greatest one and, moreover, the following holds:

if
$$x \leq y$$
 then $x \leq x \Box y$.

Proof By Theorem 9 (C) and Definition 2 (v), 0 is the least and by Theorem 9 (A), 1 is the greatest element of \mathcal{E} . If \mathcal{E} is a trivial algebra, i.e. $0 = 0 \Box 0$ then $x = 0 \square 0$ and hence $x \leq y$ implies $y = x = x \square y = 0 \square 0$. In the non-trivial case we use Remark 7 and for $x, y \in E$ such that $x \leq y$ we compute

$$(x \square (x \square y)) \square x = ((x \square y) \square x) \square x = y \square x = x \square y,$$

which means that $x \leq x \Box y$.

In the following we denote by 1 the greatest element $0 \square 0$ of a b-equivalential algebra $\mathcal{E} = (E; \Box, 0)$. Now we demonstrate how to reconstruct a chain basic algebra from a given b-equivalential algebra.

Theorem 10 Let $\mathcal{E} = (E; \Box, 0)$ be a b-equivalential algebra and \leq be its induced partial order. If this partial order is linear (i.e. $x \leq y$ or $y \leq x$ for every $x, y \in A$) then \mathcal{E} can be converted into a chain basic algebra $\mathcal{A}(E) = (E; \oplus, \neg, 0),$ where $\neg x = x \Box 0$ and \oplus is defined as follows

$$x \oplus y := \begin{cases} \neg x \Box y, & \text{if } x \leq \neg y, \\ 1, & \text{if } \neg y \leq x. \end{cases}$$

Moreover, \mathcal{E} is the derived equivalential algebra of $\mathcal{A}(E)$.

Proof Let $x \in E$. By (iv) and (v), we obtain

$$\neg \neg x = (x \Box 0) \Box 0 = (0 \Box x) \Box 0 = x,$$

which is (BA2). For (BA1) we compute $x \oplus 0 = \neg x \square 0 = \neg \neg x = x$. Putting z = 0 in (vii), we obtain:

$$x \le y \implies \neg y \le \neg x. \tag{(**)}$$

To check the axiom (BA3) let us consider two possible cases for $x, y \in E$.

 $(3.1) \ y \le x$

Then $\neg x \leq \neg y$, and hence $\neg x \oplus y = \neg \neg x \Box y = x \Box y$, therefore

$$\neg(\neg x \oplus y) \oplus y = \neg(x \Box y) \oplus y.$$

We can use the fact that for $y \leq x$ we have $y \leq x \Box y$ by Lemma 7. Hence $\neg(x \Box y) \leq \neg y$, thus

$$\neg(\neg x \oplus y) \oplus y = \neg \neg(x \Box y) \Box y = (x \Box y) \Box y = (y \Box x) \Box y = x.$$

Since $\neg y \oplus x = 1$ and hence

$$\neg(\neg y \oplus x) \oplus x = \neg 1 \oplus x = (1 \Box 0) \oplus x = 0 \oplus x = \neg 0 \Box x = 1 \Box x = x.$$

Together we conclude

$$\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x.$$

(3.2) $x \le y$

By symmetry we compute analogously as in (3.1)

$$\neg(\neg x \oplus y) \oplus y = y = \neg(\neg y \oplus x) \oplus x,$$

which means that (BA3) holds in $\mathcal{A}(E)$.

It remains to check the identity (BA4). Let us consider two possibilities for elements $x, y, z \in E$.

(4.1) $x \leq \neg y$

The condition is equivalent to $y \leq \neg x$ by (**), from which (using Lemma 7 and (iv)) we get $y \leq \neg x \Box y$ and further, using (**), $\neg(\neg x \Box y) \leq \neg y$. Then

$$\neg(\neg(\neg(x\oplus y)\oplus y)\oplus z)\oplus(x\oplus z) = \neg(\neg(\neg(\neg x \Box y)\oplus y)\oplus z)\oplus(x\oplus z)$$
$$= \neg(\neg(\neg\neg(\neg x \Box y)\Box y)\oplus z)\oplus(x\oplus z) = \neg(\neg((\neg x \Box y)\Box y)\oplus z)\oplus(x\oplus z)$$
$$= \neg(\neg((y\Box \neg x)\Box y)\oplus z)\oplus(x\oplus z) = \neg(\neg\neg x\oplus z)\oplus(x\oplus z)$$
$$= \neg(x\oplus z)\oplus(x\oplus z) = 1$$

by the definition of \oplus .

 $(4.2) \neg y \le x$

Then $x \oplus y = 1$ and

$$\neg(\neg(\neg(x\oplus y)\oplus y)\oplus z)\oplus(x\oplus z) = \neg(\neg(\neg1\oplus y)\oplus z)\oplus(x\oplus z)$$
$$= \neg(\neg(0\oplus y)\oplus z)\oplus(x\oplus z) = \neg(\neg y\oplus z)\oplus(x\oplus z).$$

Now we need to discuss two subcases.

(4.2a) $x \le \neg z$

That means $\neg y \leq x \leq \neg z$, thus

$$\neg y \oplus z = \neg \neg y \square z = y \square z$$

 $\quad \text{and} \quad$

$$x \oplus z = \neg x \square z.$$

Using (**), we can rewrite the condition of (4.2a) as $z \leq \neg x \leq y$. By (vii) we obtain

 $y \square z \le \neg x \square z,$

thus

$$\neg(\neg x \square z) \le \neg(y \square z).$$

We conclude

$$\neg(\neg(\neg(x\oplus y)\oplus y)\oplus z)\oplus(x\oplus z)=\neg(\neg y\oplus z)\oplus(x\oplus z)$$
$$=\neg(y \Box z)\oplus(\neg x \Box z)=1.$$

(4.2b) $\neg z \leq x$

Then we get $x \oplus z = 1$ and

$$\neg(\neg(\neg(x\oplus y)\oplus y)\oplus z)\oplus(x\oplus z) = \neg(\neg y\oplus z)\oplus(x\oplus z)$$
$$= \neg(y \Box z)\oplus 1 = 1.$$

In both the cases we can see that (BA4) holds, thus $\mathcal{A}(E) = (A; \oplus, \neg, 0)$ is a basic algebra. Since the induced partial order of $(E; \square, 0)$ is linear, $\mathcal{A}(E)$ is a chain basic algebra. Moreover, if $x \leq y$ or equivalently $\neg y \leq \neg x$, we have

$$(\neg x \oplus y) \land (\neg y \oplus x) = 1 \land (\neg \neg y \Box x) = y \Box x = x \Box y.$$

If $y \leq x$ then analogously

$$(\neg x \oplus y) \land (\neg y \oplus x) = (\neg \neg x \Box y) \land 1 = x \Box y.$$

Thus \mathcal{E} is the derived equivalential algebra of $\mathcal{A}(E)$.

References

- [1] Abbott, J. C.: Orthoimplication algebras. Studia Logica 35 (1976), 173-177.
- [2] Chajda, I., Eigenthaler, G., Länger, H.: Congruence Classes in Universal Algebra. *Hel*dermann Verlag, Lemgo (Germany), 2003.
- [3] Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures. Heldermann Verlag, Lemgo (Germany), 2007.
- [4] Chajda, I., Kolařík, M.: Independence of axiom system of basic algebras. Soft Computing 13, 1 (2009), 41–43.
- [5] Cignoli, R. L. O., D'Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Manyvalued Reasoning. *Kluwer*, Dordrecht–Boston–London, 2000.
- [6] Kowalski, T.: Pretabular varieties of equivalential algebras. Reports on Mathematical Logic 33 (1999), 1001–1008.
- [7] Megill, N. D., Pavičić, M.: Quantum implication algebras. Int. J. Theor. Phys. 42, 12 (2003), 2807–2822.
- [8] Słomczynska, K.: Equivalential algebras. Part I: Representation. Algebra Universalis 35 (1996), 524–547.
- [9] Tax, R. E.: On the intuitionistic equivalential calculus. Notre Dame Journal of Formal Logic 14 (1973), 448–456.