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Abstract

A term operation implication is introduced in a given basic algebra
A and properties of the implication reduct of A are treated. We char-
acterize such implication basic algebras and get congruence properties of
the variety of these algebras. A term operation equivalence is introduced
later and properties of this operation are described. It is shown how this
operation is related with the induced partial order of A and, if this par-
tial order is linear, the algebra A can be reconstructed by means of its
equivalential reduct.
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1 Preliminaries

The concept of basic algebra was introduced by the first author, see e.g. [3] for
details. Recall that by a basic algebra we mean an algebra A = (A;⊕,¬, 0) of
type 〈2, 1, 0〉 satisfying the following identities

(BA1) x⊕ 0 = x,

(BA2) ¬¬x = x,
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(BA3) ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x,

(BA4) ¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = 1,

where 1 = ¬0. Let us note that this axiom system is from [4], the original
one from [3] contains two more identities which can be derived by means of
(BA1)–(BA4).

A basic algebra A = (A;⊕,¬, 0) is called commutative if it satisfies the
identity x⊕ y = y ⊕ x.

The following lemma is known (see [4, 3]).

Lemma 1 Every basic algebra satisfies the identities

(a) 0⊕ x = x,

(b) x⊕ 1 = 1⊕ x = 1,

(c) x⊕ ¬x = 1 = ¬x⊕ x.
As shown e.g. in [3], every basic algebra A = (A;⊕,¬, 0) can be considered

as an ordered set with the least element 0 and the greatest element 1, where

x ≤ y if and only if ¬x⊕ y = 1. (∗)
Moreover, it is a lattice, where

x ∨ y = ¬(¬x ⊕ y)⊕ y and x ∧ y = ¬(¬(x ⊕ ¬y)⊕ ¬y).
If x ≤ y or y ≤ x for each two elements x, y of A then A will be called a chain
basic algebra.

Since basic algebras are of the same type as MV-algebras and differ from
them only in the fact that associativity and commutativity of the operation ⊕
is not asked, we can define the connectives implication “→” and equivalence
“↔” in the same way, i.e. they are term operations

x→ y := ¬x⊕ y and x↔ y := (x→ y) ∧ (y → x).

To reveal the properties of→ and↔ we will study these connectives without re-
lations to other operations, i.e. we are focused on the implication or equivalential
reducts of basic algebras.

2 Implication basic algebras

Basic algebras form an important class of algebras used in several non-classical
logics due to the fact that this class contains e.g. orthomodular lattices L =
(L;∨,∧, ⊥, 0, 1), where x ⊕ y = (x ∧ y⊥) ∨ y and ¬x = x⊥, which form an
axiomatization of the logic of quantum mechanics as well as MV-algebras (see
e.g. [5]), which get an axiomatization of many-valued �Lukasiewicz logics. Let
us note that similar analysis of axioms of implication quantum algebras were
studied also by J. C. Abbott [1] and by N. D. Megill and M. Pavičić [7].

Since the connective implication plays a crucial role in the all above men-
tioned logics, we would like to characterize this operation also in basic algebras.
Therefore, we introduce the following concept:
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Definition 1 An algebra (A; ◦) of type 〈2〉 is called an implication basic algebra
if it satisfies the following identities

(I1) (x ◦ x) ◦ x = x,

(I2) (x ◦ y) ◦ y = (y ◦ x) ◦ x,

(I3) (((x ◦ y) ◦ y) ◦ z) ◦ (x ◦ z) = x ◦ x.

Lemma 2 Let (A; ◦) be an implication basic algebra. Then there exists an
element 1 ∈ A which is an algebraic constant and (A; ◦) satisfies the identities
(i) x ◦ x = 1,

(ii) x ◦ 1 = 1,

(iii) 1 ◦ x = x,

(iv) ((x ◦ y) ◦ y) ◦ y = x ◦ y,
(v) y ◦ (x ◦ y) = 1.

Proof Substituting z by y and y by x in (I3) and applying (I1) we get

x ◦ x = (((x ◦ x) ◦ x) ◦ y) ◦ (x ◦ y) = (x ◦ y) ◦ (x ◦ y).

When x is now substituted by x ◦ y, we derive

((x ◦ y) ◦ y) ◦ ((x ◦ y) ◦ y) = (x ◦ y) ◦ (x ◦ y)
and hence ((x ◦ y) ◦ y) ◦ ((x ◦ y) ◦ y) = x ◦ x. Applying (I2) we infer

y ◦ y = ((y ◦ x) ◦ x) ◦ ((y ◦ x) ◦ x) = ((x ◦ y) ◦ y) ◦ ((x ◦ y) ◦ y) = x ◦ x,

thus (A; ◦) satisfies the identity

x ◦ x = y ◦ y.

This means that (A; ◦) contains an algebraic constant which will be denoted by
1 and hence it satisfies the identity x ◦ x = 1, which is (i). Using this, (I1) can
be reformulated as

1 ◦ x = x,

which is (iii). By (i) and (I3) we get

(((x ◦ y) ◦ y) ◦ z) ◦ (x ◦ z) = 1

and due to (I2), we derive easily also

(((x ◦ y) ◦ y) ◦ z) ◦ (y ◦ z) = 1.

Substituting x ◦ y instead of x and z we get

((((x ◦ y) ◦ y) ◦ y) ◦ (x ◦ y)) ◦ (y ◦ (x ◦ y)) = 1.
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By (I3) and (iii) we conclude

y ◦ (x ◦ y) = 1,

which is (v). For y = x we obtain (ii) immediately.
It remains to prove (iv). Using (iii) and (v), we have

(y ◦ (x ◦ y)) ◦ (x ◦ y) = 1 ◦ (x ◦ y) = x ◦ y.
Due to (I2), (y ◦ (x ◦ y)) ◦ (x ◦ y) = ((x ◦ y) ◦ y) ◦ y whence (iv) is evident. �

Theorem 1 The identities (I1), (I2), (I3) are independent.

Proof Consider a two element groupoid A = ({0, 1}, ◦), where ◦ is defined by
the table

◦ 0 1
0 0 0
1 1 1

.

Then A satisfies (I1), (I3), but not (I2) since

(0 ◦ 1) ◦ 1 = 0 �= 1 = (1 ◦ 0) ◦ 0.
If ◦ is defined by the table

◦ 0 1
0 0 1
1 1 1

,

then A satisfies (I1), (I2), but not (I3) since

(((0 ◦ 1) ◦ 1) ◦ 1) ◦ (0 ◦ 1) = 1 �= 0 = 0 ◦ 0.
If ◦ is defined as the constant operation x ◦ y = 1 for every x, y ∈ {0, 1} then A
satisfies (I2), (I3), but not (I1) since

(0 ◦ 0) ◦ 0 = 1 �= 0.
�

The connection between basic algebras and implication basic algebras is
established by the following:

Theorem 2 Let A = (A;⊕,¬, 0) be a basic algebra. Define x ◦ y = ¬x ⊕ y.
Then (A; ◦) is an implication basic algebra.
Proof Applying (BA1)–(BA4) and Lemma 1, we can easily check the identities
(I1)–(I3) as follows
(I1): (x ◦ x) ◦ x = ¬(¬x ⊕ x)⊕ x = ¬1 ⊕ x = 0⊕ x = x;
(I2): (x ◦ y) ◦ y = ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x) ⊕ x = (y ◦ x) ◦ x;
(I3): (((x ◦ y) ◦ y) ◦ z) ◦ (x ◦ z) = ¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ z) ⊕ (¬x ⊕ z) = 1 =
¬x⊕ x = x ◦ x. �
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Remark 1 Since basic algebras serve as an algebraic axiomatization of certain
many-valued logic, where ⊕ is considered as a disjunction and ¬ as a negation,
the term function ¬x⊕y can be recognized as an implication (formally the same
construction as in the classical propositional calculus). This motivated us to call
(A; ◦) an implication basic algebras due to the relation given by Theorem 2.

To reveal the structure of implication basic algebras we introduce a partial
order relation.

Lemma 3 Let (A; ◦) be an implication basic algebra. Define a binary relation
≤ on A as follows

x ≤ y if and only if x ◦ y = 1.

Then ≤ is a partial order on A such that x ≤ 1 for each x ∈ A. Moreover,

z ≤ x ◦ z and x ≤ y implies y ◦ z ≤ x ◦ z

for all x, y, z ∈ A.

Proof By (i) of Lemma 2 we have that ≤ is reflexive. Assume x ≤ y and
y ≤ x. Then x ◦ y = 1, y ◦ x = 1 and by (I2) and (I1)

x = 1 ◦ x = (y ◦ x) ◦ x = (x ◦ y) ◦ y = 1 ◦ y = y,

which is proving antisymmetry of ≤.
If x ≤ y and y ≤ z then x ◦ y = 1, y ◦ z = 1 and, due to (I3) and Lemma 2

we get
1 = (((x ◦ y) ◦ y) ◦ z) ◦ (x ◦ z) = ((1 ◦ y) ◦ z) ◦ (x ◦ z)

= (y ◦ z) ◦ (x ◦ z) = 1 ◦ (x ◦ z) = x ◦ z
thus also x ≤ z proving transitivity of ≤. Hence ≤ is a partial order on A and
due to (ii) of Lemma 2, x ≤ 1 for each x ∈ A.

Further, if x ≤ y and z ∈ A then x ◦ y = 1 and, by (I3),

1 = (((x ◦ y) ◦ y) ◦ z) ◦ (x ◦ z) = ((1 ◦ y) ◦ z) ◦ (x ◦ z) = (y ◦ z) ◦ (x ◦ z)

getting y ◦ z ≤ x ◦ z. Putting here y = 1 we obtain z = 1 ◦ z ≤ x ◦ z. �

The partial order ≤ introduced in Lemma 3 will be called the induced partial
order of the implication basic algebra (A; ◦).

Remark 2 Let A = (A;⊕,¬, 0) be a basic algebra and x ◦ y = ¬x ⊕ y. Then
the induced partial order of the implication basic algebra (A; ◦) coincides with
the partial order of A defined by (∗) in Preliminaries.

Theorem 3 Let (A; ◦) be an implication basic algebra and ≤ its induced partial
order. Then (A;≤) is a join-semilattice with the greatest element 1 where x∨y =
(x ◦ y) ◦ y.
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Proof By Lemma 3 and (I2) we infer y ≤ (x◦y)◦y and x ≤ (y◦x)◦x = (x◦y)◦y
thus (x ◦ y) ◦ y is a common upper bound of x, y. Assume x, y ≤ z. Then by
double using of the Lemma 3 we have

(x ◦ y) ◦ y ≤ (z ◦ y) ◦ y = (y ◦ z) ◦ z = 1 ◦ z = z,

thus (x ◦ y) ◦ y is the least upper bound of x, y, i.e.

x ∨ y = (x ◦ y) ◦ y

is the supremum of x, y. �

Let (A; ◦) be an implication basic algebra. The semilattice (A;∨) derived in
Theorem 3 will be called the induced semilattice of (A; ◦).

Theorem 4 Let (A; ◦) be an implication basic algebra and (A;∨) its induced
semilattice. For each p ∈ A, the interval [p, 1] is a lattice ([p, 1];∨,∧p, p) with
an antitone involution x �→ xp where

xp = x ◦ p and x ∧p y = ((x ◦ p) ∨ (y ◦ p)) ◦ p

for all x, y ∈ [p, 1].

Proof Assume x ∈ [p, 1]. By Lemma 3, x �→ xp is a partial order reversing
mapping and moreover we have xp = x ◦ p ≥ p, thus x �→ xp is a mapping of
[p, 1] into itself. By Theorem 3, xpp = (x ◦ p) ◦ p = x ∨ p = x and hence it is an
involution of [p, 1]. This yields that we can apply De Morgan laws to show that

(xp ∨ yp)p = ((x ◦ p) ∨ (y ◦ p)) ◦ p = x ∧p y

is the infimum of x, y ∈ [p, 1] and hence ([p, 1];∨,∧p, p) is a lattice with an
antitone involution. �

Corollary 1 Let (A; ◦) be an implication basic algebra and ≤ its induced partial
order. Then (A;≤) is a join-semilattice with the greatest element 1 such that for
each p ∈ A the interval [p, 1] is a basic algebra ([p, 1];⊕p,¬p, p) where x⊕p y =
(x ◦ p) ◦ y and ¬px = x ◦ p for all x, y ∈ [p, 1].

In what follows, ([p, 1];⊕p,¬p, p) will be called an interval basic algebra.
Theorem 4 describes the semilattice structure of an implication basic algebra.
We are going to show that this description is complete, i.e. that the converse of
Theorem 4 holds.

Theorem 5 Let (A;∨, 1) be a join-semilattice with the greatest element 1 such
that for each p ∈ A the interval [p, 1] is a lattice with an antitone involution
x �→ xp. Define x ◦ y = (x ∨ y)y. Then (A; ◦) is an implication basic algebra.
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Proof Since x ∨ y ∈ [y, 1] for every x, y ∈ A, the operation ◦ is well-defined.
We are going to check the identities (I1), (I2), (I3).
(I1): (x ◦ x) ◦ x = ((x ∨ x)x ∨ x)x = xxx = x;

(I2): (x ◦ y) ◦ y = ((x ∨ y)y ∨ y)y = (x ∨ y)yy = x ∨ y = y ∨ x = (y ∨ x)xx =
((y ∨ x)x ∨ x)x = (y ◦ x) ◦ x;

(I3): (((x ◦ y) ◦ y) ◦ z) ◦ (x ◦ z) = ((x ∨ y)∨ z)z ◦ (x ∨ z)z = 1 = (x ∨ x)x = x ◦ x
since ((x ∨ y) ∨ z)z ≤ (x ∨ z)z. �

We say that (A; ◦) is an implication basic algebra with the least element if
there exists an element 0 ∈ A such that 0 ≤ a for each a ∈ A (where ≤ is the
induced partial order). By Lemma 3 the identity

0 ◦ x = 1

holds in any implication basic algebra with the least element 0.
The following result shows that our implication basic algebra really catches

all the properties of implication x→ y := ¬x⊕ y in any basic algebra.

Theorem 6 Let (A; ◦) be an implication basic algebra with the least element 0.
Define the term operations ¬x = x ◦ 0 and x⊕ y = (x ◦ 0) ◦ y. Then (A;⊕,¬, 0)
is a basic algebra and x ◦ y = ¬x ⊕ y.

Proof We need to check the axioms (BA1)–(BA4) of basic algebras.
(BA1) and (BA2): x⊕ 0 = (x ◦ 0) ◦ 0 = x ∨ 0 = x; ¬¬x = (x ◦ 0) ◦ 0 = x.
For (BA3) and (BA4) we use the fact that

¬x⊕ y = ((x ◦ 0) ◦ 0) ◦ y = (x ∨ 0) ◦ y = x ◦ y.

(BA3): ¬(¬x ⊕ y)⊕ y = (x ◦ y) ◦ y = (y ◦ x) ◦ x = ¬(¬y ⊕ x)⊕ x by (I2).

(BA4): ¬(¬(¬(x⊕y)⊕y)⊕z)⊕ (x⊕z) = ((((x◦0)◦y)◦y)◦z)◦ ((x◦0)◦z) = 1
by (I3).
By Theorem 3, (x ◦ 0) ◦ 0 = x ∨ 0 = x and hence x ◦ y = ((x ◦ 0) ◦ 0) ◦ y =
(x ◦ 0)⊕ y = ¬x ⊕ y. �

Let us note that the induced partial order of an implication algebra (A; ◦)
coincides with that of (A;⊕,¬, 0) defined by (∗).

An implication basic algebra (A; ◦) is called commutative if (x ◦ p) ◦ y =
(y ◦ p) ◦ x for all x, y ∈ [p, 1]. By Corollary 1, if (A; ◦) is commutative then for
each p ∈ A, x ⊕p y = y ⊕p x for all x, y ∈ [p, 1] in the interval basic algebra
([p, 1];⊕p,¬p, p). Applying Theorem 8.5.9 from [3], we can infer the following:

Corollary 2 Let (A; ◦) be a commutative implication basic algebra and (A;∨)
its induced semilattice. Then

(a) for each p ∈ A the interval basic algebra ([p, 1];⊕p,¬p, p) is a commutative
basic algebra;

(b) for each p ∈ A the interval lattice ([p, 1],∨,∧p) is distributive.
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In what follows, we can check several important congruence conditions of
implication basic algebras. Denote by IB the variety of implication basic alge-
bras.

Recall that an algebra A with a constant 1 is weakly regular (see e.g. [2]) if
every congruence Θ on A is determined by its 1-class [1]Θ, in other words, if for
each Θ,Φ ∈ ConA

[1]Θ = [1]Φ implies Θ = Φ.

An algebra A is congruence 3-permutable if

Θ ◦ Φ ◦Θ = Φ ◦Θ ◦ Φ
for each Θ,Φ ∈ ConA. An algebra A is congruence distributive if

Θ ∧ (Φ ∨Ψ) = (Θ ∧ Φ) ∨ (Θ ∧Ψ)

for all Θ,Φ,Ψ ∈ ConA. An algebra A with a constant 1 is distributive at 1 if

[1]Θ∧(Φ∨Ψ) = [1](Θ∧Φ)∨(Θ∧Ψ)

for all Θ,Φ,Ψ ∈ ConA.
It is evident that if an algebra A with a constant 1 is weakly regular and

distributive at 1 then it is congruence distributive.

Theorem 7 The variety IB is weakly regular, congruence 3-permutable and
congruence distributive.

Proof By the theorem of Csákány (see e.g. Theorem 6.4.3 in [2]), a variety
is weakly regular if and only if there exist binary terms t1(x, y), . . . , tn(x, y)
(n ≥ 1) such that t1(x, y) = · · · = tn(x, y) = 1 if and only if x = y. In
IB we can take n = 2 and t1(x, y) = x ◦ y, t2(x, y) = y ◦ x. Then clearly
t1(x, x) = t2(x, x) = x ◦ x = 1 and, if t1(x, y) = 1 and t2(x, y) = 1 then x ≤ y
and y ≤ x whence x = y.

To prove distributivity at 1, by Theorem 8.3.2 in [2] we need only to find a
binary term t(x, y) in IB satisfying the identities

t(x, x) = t(1, x) = 1 and t(x, 1) = x.

By Definition 1 and Lemma 2, we can take t(x, y) = y ◦ x. Using the fact that
IB is weakly regular and distributive at 1, we conclude that IB is congruence
distributive.

To prove 3-permutability of IB, we need to find ternary terms p1(x, y, z),
p2(x, y, z) such that

x = p1(x, z, z), p1(x, x, z) = p2(x, z, z), p2(x, x, z) = z

(see e.g. Theorem 3.1.18 in [2]). For this, we can take p1(x, y, z) = (z◦y)◦x and
p2(x, y, z) = (x ◦ y) ◦ z. Then p1(x, z, z) = (z ◦ z) ◦ x = 1 ◦ x = x, p1(x, x, z) =
(z ◦ x) ◦ x = (x ◦ z) ◦ z = p2(x, z, z) and p2(x, x, z) = (x ◦ x) ◦ z = 1 ◦ z = z. �
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Remark 3 Congruence distributivity of the variety IB can be shown also di-
rectly by using Jónsson terms. We can pick up n = 3 and t0(x, y, z) = x,
t1(x, y, z) = ((z◦y)◦(z◦x))◦x, t2(x, y, z) = ((y◦z)◦(x◦z))◦z and t3(x, y, z) = z.
It is an easy exercise to verify the corresponding Maltsev condition.

3 Derived equivalential algebras

Let A = (A;⊕,¬, 0) be a basic algebra and 1 = ¬0. For x, y ∈ A we define

x � y = (x ◦ y) ∧ (y ◦ x) = (¬x ⊕ y) ∧ (¬y ⊕ x).
The algebra (A; �, 0) will be called the derived equivalential algebra of A.

The concept of equivalential algebra was introduced formerly for the equiv-
alential reducts of Heyting algebras in [9], see e.g. [8] for the complex setting.
It was shown in [6] that this algebra can be described by three axioms:

(E1) (x · x) · y = y,

(E2) ((x · y) · z) · z = (x · z) · (y · z),
(E3) ((x · y) · ((x · z) · z)) · ((x · z) · z) = x · y.

Unfortunately, if we consider our derived equivalential algebra defined above,
the axioms (E2), (E3) are violated as it can be shown in the following example.

Example 1 Let us consider the four element chain basic algebra (A;⊕,¬, 0),
where A = {0, a, b, 1} with 0 < b < a < 1 and the operations ⊕ and ¬ are given
by the tables

⊕ 0 1 a b
0 0 1 a b
1 1 1 1 1
a a 1 1 1
b b 1 1 a

¬ 0 1 a b
1 0 b a

.

Then for the operation � we have

� 0 1 a b
0 1 0 b a
1 0 1 a b
a b a 1 a
b a b a 1

and hence

(0 � a) � (a � a) = b � 1 = b �= 1 = a � a = (b � a) � a = ((0 � a) � a) � a.

Thus (E2) does not hold in A.
Similarly,

0 � 1 = 0 �= a = b � a = (0 � a) � a = (0 � (b � a)) � (b � a)

= ((0 � 1) � ((0 � a) � a)) � ((0 � a) � a),

thus (E3) is also violated.
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Lemma 4 Let (A;⊕,¬, 0) be a basic algebra and (A; �, 0) its derived equivalen-
tial algebra. If x, y ∈ A such that x ≤ y then (x � y) � x = y.

Proof Let x, y ∈ A such that x ≤ y. Then by Lemma 3 x ◦ y = 1 and hence

x � y = (x ◦ y) ∧ (y ◦ x) = y ◦ x.

Since x ≤ y ◦ x by Lemma 3, we have x ◦ (y ◦ x) = 1. By Theorem 3

(x � y) � x = ((y ◦ x) ◦ x) ∧ (x ◦ (y ◦ x)) = (y ∨ x) ∧ 1 = y ∧ 1 = y.

�

Let us note that the converse of Lemma 4 does not hold in general as it is
shown in Example 2 below.

Now we are going to describe basic properties of the operation �.

Lemma 5 Let (A;⊕,¬, 0) be a basic algebra, (A; �, 0) its derived equivalential
algebra and x, y, z ∈ A. Then
(a) x � y = y � x,

(b) x � 0 = ¬x,
(c) (0 � x) � 0 = x,

(d) x � 1 = x,

(e) x � x = 1,

(f) if z ≤ x ≤ y then y � z ≤ x � z,

where 1 = ¬0.

Proof (a): Obviously by the definition of � and commutativity of ∧.
(b): x � 0 = (¬x⊕ 0) ∧ (¬0 ⊕ x) = ¬x ∧ (1 ⊕ x) = ¬x ∧ 1 = ¬x.
(c): (0 � x) � 0 = ¬x � 0 = ¬¬x = x.
(d): x � 1 = (¬x⊕ 1) ∧ (¬1 ⊕ x) = 1 ∧ x = x.
(e): By Lemma 1, x � x = ¬x ⊕ x = 1.
(f): If z ≤ x ≤ y then z ◦ x = 1 and z ◦ y = 1 and therefore x � z = x ◦ z,
y � z = y ◦ z. Using Lemma 3 we obtain y � z = y ◦ z ≤ x ◦ z = x � z. �

Remark 4 Consider a chain basic algebra (A;⊕,¬, 0) and elements x, y ∈ A.
We have either x ≤ y or y ≤ x, thus either x ◦ y = 1 or y ◦ x = 1 and hence
x � y = y ◦ x in the first case and x � y = x ◦ y in the second one.

Theorem 8 Let (A;⊕,¬, 0) be a chain basic algebra and (A; �, 0) its derived
equivalential algebra and x, y ∈ A. Then
(i) x = 1 if and only if x � x = x.

(ii) if x �= 1 then x ≤ y if and only if (x � y) � x = y.
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Proof By (e) of Lemma 5 we infer (i). At first, let x �= 1 and assume x◦y = y.
Then x ∨ y = (x ◦ y) ◦ y = y ◦ y = 1 and, due to the fact that (A;≤) is a chain,
we conclude y = 1. For (ii), by Lemma 4 it is sufficient to prove that for x �= 1,
the implication (x � y) � x = y ⇒ x ≤ y holds.

Assume that x �= 1 and x � y, i.e. y < x. If x ◦ y = y, then y = 1 as shown
above, a contradiction with y < x. Hence x ◦ y �= y. According to Remark 4,
x � y = x ◦ y. Hence

(x � y) � x = (x ◦ y) � x = ((x ◦ y) ◦ x) ∧ (x ◦ (x ◦ y)).
Then either x ≤ x ◦ y or x ◦ y ≤ x. In the first case, x ◦ (x ◦ y) = 1 and by
Lemma 3

(x � y) � x = (x ◦ y) ◦ x ≥ x > y,

so (x � y) � x �= y. In the second case, (x ◦ y) ◦ x = 1. Since x �= 1, thus by
Lemma 3 (x � y) � x = x ◦ (x ◦ y) ≥ x ◦ y > y. �

Remark 5 (a) Let us note that if x = 1 then by Lemma 5 (1 � y) � 1 = y for
any y ∈ A. Hence, the assumption x �= 1 cannot be avoided in (ii) of Theorem 8.
(b) Theorem 8 shows that for a chain basic algebra A = (A;⊕,¬, 0) we are able
to reconstruct the induced partial partial order of A from the derived equiv-
alential algebra (A; �, 0). The element 1 is then the greatest one in (A;≤)
and the partial order of other elements is described by (ii) of Theorem 8.
(c) The result of Theorem 8 cannot be reformulated for a basic algebra which
is a direct (or a subdirect) product of chain basic algebras, see the following
example.

Example 2 Consider a basic algebra A = ({0, a, b,¬a,¬b, 1};⊕,¬, 0) as shown
in Fig. 1 which is the direct product of chain basic algebras 3× 2.
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The operation � in the derived equivalential algebra (A; �, 0) is given by the
table
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� 0 a b ¬b ¬a 1
0 1 ¬a ¬b b a 0
a ¬a 1 b ¬b 0 a
b ¬b b 1 ¬a ¬b b
¬b b ¬b ¬a 1 b ¬b
¬a a 0 ¬b b 1 ¬a
1 0 a b ¬b ¬a 1

We can see that a �= 1 and (a � b) � a = b � a = b, but a � b. It is a
consequence of the fact that the representation of a in 3× 2 is (0, 1), so in the
second coordinate the assumption x �= 1 is violated.

Lemma 6 Let A = (A;⊕,¬, 0) be a chain basic algebra, (A; �, 0) its derived
equivalential algebra and 1 = ¬0. Then (A; �, 0) satisfies:

(g) if x �= 1, y �= 1, (x � y) � x = y and (y � z) � y = z then (x � z) � x = z;

(h) if x �= 1, y �= 1, (x � y) � x = y and (y � x) � y = x then x = y.

Proof To prove (g) we use Theorem 8, so (x � y) � x = y and (y � z) � y = z
means that x ≤ y and y ≤ z thus x ≤ z, i.e. (x � z) � x = z. Analogously for
(h), (x � y) � x = y and (y � x) � y = x means x ≤ y and y ≤ x, so x = y. �

According to the properties of derived equivalential algebras as exhibited
above we can introduce the following concept.

Definition 2 An algebra E = (E; �, 0) of type 〈2, 0〉 satisfying:

(i) (x � x) � y = y;

(ii) if x �= 0 � 0 �= y, (x � y) � x = y and (y � z) � y = z then (x � z) � x = z;

(iii) if x �= 0 � 0 �= y, (x � y) � x = y and (y � x) � y = x then x = y;

(iv) x � y = y � x;

(v) (0 � x) � 0 = x;

(vi) x � x = y � y;

(vii) if z ≤ x ≤ y then y � z ≤ x � z;

will be called a b-equivalential algebra.

Remark 6 Due to Lemma 5 and 6 for any chain basic algebra A = (A;⊕,¬, 0)
the derived equivalential algebra of A is a b-equivalential algebra.

Theorem 9 Let E = (E; �, 0) be a b-equivalential algebra. Define a binary
relation ≤ on E as follows:
(A) x ≤ 0 � 0 for each x ∈ E;
(B) if 0 � 0 ≤ x then x = 0 � 0;

(C) if x �= 0 � 0 then x ≤ y if and only if (x � y) � x = y.

Then ≤ is a partial order on E.
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Proof First, we check reflexivity of ≤. For x �= 0 � 0 using (i) we obtain
(x � x) � x = x, which by (C) means x ≤ x. For x = 0 � 0 we have by (A)
0 � 0 ≤ 0 � 0.

Now, to show antisymmetry of ≤ consider two cases. For x �= 0 � 0 �= y such
that x ≤ y and y ≤ x we have by (C) (x � y) � x = y and (y � x) � y = x, thus
by (iii) x = y. If x = 0 � 0 and x ≤ y and y ≤ x (which by (A) holds for each
y ∈ E) then y = 0 � 0 by (B) thus also x = y.

To check transitivity of the relation we consider three cases. First, if x �=
0 � 0 �= y and x ≤ y and y ≤ z then by (C) (x � y) � x = y and (y � z) � y = z.
Using (ii) we get (x � z) � x = z, so by (C) x ≤ z. If x = 0 � 0 and x ≤ y
and y ≤ z, we obtain by double using of (B) that y = z = 0 � 0, which by (A)
means that x ≤ z. And the last, if x �= 0 � 0 = y and x ≤ y and y ≤ z then
analogously by (B) we get z = 0 � 0 and by (A) x ≤ z.

Altogether, the binary relation ≤ is a partial order on E. �

In what follows, ≤ will be called the induced partial order of a b-equivalential
algebra E = (E; �, 0). We show some properties of the induced partial order of E .

Remark 7 Let us note that if part of (C) trivially holds even without the
condition x �= 0 � 0 = 1 in a non-trivial b-equivalential algebra (i.e. if 0 �= 0 � 0).

We can prove the following

Lemma 7 Let E = (E; �, 0) be a b-equivalential algebra. Then 0 is its least
element, the element 0 � 0 is the greatest one and, moreover, the following
holds:

if x ≤ y then x ≤ x � y.

Proof By Theorem 9 (C) and Definition 2 (v), 0 is the least and by Theorem
9 (A), 1 is the greatest element of E . If E is a trivial algebra, i.e. 0 = 0 � 0 then
x = 0 � 0 and hence x ≤ y implies y = x = x � y = 0 � 0. In the non-trivial
case we use Remark 7 and for x, y ∈ E such that x ≤ y we compute

(x � (x � y)) � x = ((x � y) � x) � x = y � x = x � y,

which means that x ≤ x � y. �

In the following we denote by 1 the greatest element 0 � 0 of a b-equivalential
algebra E = (E; �, 0). Now we demonstrate how to reconstruct a chain basic
algebra from a given b-equivalential algebra.

Theorem 10 Let E = (E; �, 0) be a b-equivalential algebra and ≤ be its induced
partial order. If this partial order is linear (i.e. x ≤ y or y ≤ x for every
x, y ∈ A) then E can be converted into a chain basic algebra A(E) = (E;⊕,¬, 0),
where ¬x = x � 0 and ⊕ is defined as follows

x⊕ y :=

{
¬x � y, if x ≤ ¬y,
1, if ¬y ≤ x.

Moreover, E is the derived equivalential algebra of A(E).
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Proof Let x ∈ E. By (iv) and (v), we obtain

¬¬x = (x � 0) � 0 = (0 � x) � 0 = x,

which is (BA2). For (BA1) we compute x ⊕ 0 = ¬x � 0 = ¬¬x = x. Putting
z = 0 in (vii), we obtain:

x ≤ y =⇒ ¬y ≤ ¬x. (∗∗)
To check the axiom (BA3) let us consider two possible cases for x, y ∈ E.

(3.1) y ≤ x

Then ¬x ≤ ¬y, and hence ¬x⊕ y = ¬¬x � y = x � y, therefore

¬(¬x ⊕ y)⊕ y = ¬(x � y)⊕ y.
We can use the fact that for y ≤ x we have y ≤ x � y by Lemma 7. Hence
¬(x � y) ≤ ¬y, thus

¬(¬x ⊕ y)⊕ y = ¬¬(x � y) � y = (x � y) � y = (y � x) � y = x.

Since ¬y ⊕ x = 1 and hence

¬(¬y ⊕ x)⊕ x = ¬1 ⊕ x = (1 � 0)⊕ x = 0⊕ x = ¬0 � x = 1 � x = x.

Together we conclude

¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

(3.2) x ≤ y

By symmetry we compute analogously as in (3.1)

¬(¬x ⊕ y)⊕ y = y = ¬(¬y ⊕ x)⊕ x,
which means that (BA3) holds in A(E).

It remains to check the identity (BA4). Let us consider two possibilities for
elements x, y, z ∈ E.

(4.1) x ≤ ¬y
The condition is equivalent to y ≤ ¬x by (∗∗), from which (using Lemma 7 and
(iv)) we get y ≤ ¬x � y and further, using (∗∗), ¬(¬x � y) ≤ ¬y. Then

¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ (x ⊕ z) = ¬(¬(¬(¬x � y)⊕ y)⊕ z)⊕ (x⊕ z)
= ¬(¬(¬¬(¬x � y) � y)⊕ z)⊕ (x⊕ z) = ¬(¬((¬x � y) � y)⊕ z)⊕ (x⊕ z)

= ¬(¬((y � ¬x) � y)⊕ z)⊕ (x ⊕ z) = ¬(¬¬x ⊕ z)⊕ (x⊕ z)
= ¬(x ⊕ z)⊕ (x⊕ z) = 1

by the definition of ⊕.
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(4.2) ¬y ≤ x

Then x⊕ y = 1 and

¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ (x ⊕ z) = ¬(¬(¬1 ⊕ y)⊕ z)⊕ (x⊕ z)
= ¬(¬(0 ⊕ y)⊕ z)⊕ (x⊕ z) = ¬(¬y ⊕ z)⊕ (x⊕ z).

Now we need to discuss two subcases.

(4.2a) x ≤ ¬z
That means ¬y ≤ x ≤ ¬z, thus

¬y ⊕ z = ¬¬y � z = y � z

and
x⊕ z = ¬x � z.

Using (∗∗), we can rewrite the condition of (4.2a) as z ≤ ¬x ≤ y. By (vii) we
obtain

y � z ≤ ¬x � z,

thus
¬(¬x � z) ≤ ¬(y � z).

We conclude

¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = ¬(¬y ⊕ z)⊕ (x⊕ z)
= ¬(y � z)⊕ (¬x � z) = 1.

(4.2b) ¬z ≤ x

Then we get x⊕ z = 1 and

¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = ¬(¬y ⊕ z)⊕ (x⊕ z)
= ¬(y � z)⊕ 1 = 1.

In both the cases we can see that (BA4) holds, thus A(E) = (A;⊕,¬, 0) is a
basic algebra. Since the induced partial order of (E; �, 0) is linear, A(E) is a
chain basic algebra. Moreover, if x ≤ y or equivalently ¬y ≤ ¬x, we have

(¬x ⊕ y) ∧ (¬y ⊕ x) = 1 ∧ (¬¬y � x) = y � x = x � y.

If y ≤ x then analogously

(¬x ⊕ y) ∧ (¬y ⊕ x) = (¬¬x � y) ∧ 1 = x � y.

Thus E is the derived equivalential algebra of A(E). �
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