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Abstract

A term operation implication is introduced in a given basic algebra
A and properties of the implication reduct of A are treated. We char-
acterize such implication basic algebras and get congruence properties of
the variety of these algebras. A term operation equivalence is introduced
later and properties of this operation are described. It is shown how this
operation is related with the induced partial order of A and, if this par-
tial order is linear, the algebra A can be reconstructed by means of its
equivalential reduct.
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1 Preliminaries

The concept of basic algebra was introduced by the first author, see e.g. [3] for
details. Recall that by a basic algebra we mean an algebra A = (A; P, —,0) of
type (2, 1,0) satisfying the following identities

(BAl) 2@ 0 =z,
(BA2) -~z =z,
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22 1. CHAJDA, M. KOLARIK, F. SVRCEK

(BA3) ~(z@y)dy=~(y@z) D,
(BA4) ~(m(—(zdy)®y)@2)d (e z) =1,

where 1 = —0. Let us note that this axiom system is from [4], the original
one from [3] contains two more identities which can be derived by means of
(BA1)-(BA4).

A Dbasic algebra A = (A;®,-,0) is called commutative if it satisfies the
identity t by =y P x.

The following lemma is known (see [4, 3]).

Lemma 1 FEvery basic algebra satisfies the identities
(a) 0B x =z,
) zpl=1qz=1,
(c) x®-ax=1=—-xPx.

As shown e.g. in [3], every basic algebra A = (A; &, -, 0) can be considered
as an ordered set with the least element 0 and the greatest element 1, where

r<y ifandonlyif -zdy=1. (%)
Moreover, it is a lattice, where
tVy=-(z@y)®y and zAy=-(-(zd-y) ®y).

If x <y ory <z for each two elements x,y of A then A will be called a chain
basic algebra.

Since basic algebras are of the same type as MV-algebras and differ from
them only in the fact that associativity and commutativity of the operation &
is not asked, we can define the connectives implication “—” and equivalence
“+»” in the same way, i.e. they are term operations

To reveal the properties of — and <> we will study these connectives without re-
lations to other operations, i.e. we are focused on the implication or equivalential
reducts of basic algebras.

2 Implication basic algebras

Basic algebras form an important class of algebras used in several non-classical
logics due to the fact that this class contains e.g. orthomodular lattices £ =
(L;V,A, +,0,1), where x @y = (z Ay*) Vy and -z = 2+, which form an
axiomatization of the logic of quantum mechanics as well as MV-algebras (see
e.g. [5]), which get an axiomatization of many-valued Lukasiewicz logics. Let
us note that similar analysis of axioms of implication quantum algebras were
studied also by J. C. Abbott [1] and by N. D. Megill and M. Pavi¢i¢ [7].

Since the connective implication plays a crucial role in the all above men-
tioned logics, we would like to characterize this operation also in basic algebras.
Therefore, we introduce the following concept:
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Definition 1 An algebra (A;0) of type (2) is called an implication basic algebra
if it satisfies the following identities

(1) (woa)or =,
(I2) (xroy)oy= (yox)oum,
(I3) ((zoy)oy)oz)o(roz)=wouwx.

Lemma 2 Let (A;0) be an implication basic algebra. Then there exists an
element 1 € A which is an algebraic constant and (A; o) satisfies the identities

(i) xox =1,
(i) ol =1,
(i) lox =,

(iv) ((xoy)oy)oy=xoy,
(v) yo(zoy)=1.

Proof Substituting z by y and y by  in (I3) and applying (I1) we get
rzox= (((rox)ox)oy)o(zoy)= (zoy)o(xoy).
When z is now substituted by x o y, we derive
(zoy)oy)o((zoy)oy) = (zoy)o(zoy)
and hence ((zoy)oy)o ((roy)oy) =zox. Applying (12) we infer
yoy=((yox)ox)o((yor)or)=((xoy)oy)o((zoy)oy)=zouw,

thus (A4;0) satisfies the identity

Toxr=yoy.

This means that (A; o) contains an algebraic constant which will be denoted by
1 and hence it satisfies the identity x o 2 = 1, which is (i). Using this, (I1) can
be reformulated as

lox ==,

which is (iii). By (i) and (I3) we get
(zoy)oy)oz)o(zoz)=1

and due to (I2), we derive easily also
((xoy)oy)oz)o(yoz)=1.

Substituting x o y instead of z and z we get

((roy)oy)oy)o(zoy))o(yo(roy))=1.
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By (I3) and (iii) we conclude

yo(roy)=1,

which is (v). For y = 2 we obtain (ii) immediately.
It remains to prove (iv). Using (iii) and (v), we have

(yo(zoy))o(zoy)=1o(zoy)=zoy.
Due to (I2), (yo (zoy))o(zoy) = ((zoy)oy) oy whence (iv) is evident. O
Theorem 1 The identities (11), (12), (I3) are independent.

Proof Consider a two element groupoid A = ({0,1}, o), where o is defined by
the table

o|0 1
0[0 O
1|1 1

Then A satisfies (I1), (I3), but not (I2) since
(001)o1=0#1=(100)00.
If o is defined by the table

o0 1

0[{0 1},

111 1
then A satisfies (I1), (I2), but not (I3) since

((001)o1)o1)o(001)=1#£0=000.

If o is defined as the constant operation z oy = 1 for every x,y € {0,1} then A
satisfies (12), (I3), but not (I1) since

000)o0=1+#0.

05000 =1 _

The connection between basic algebras and implication basic algebras is
established by the following:

Theorem 2 Let A = (A;®,-,0) be a basic algebra. Define xoy = ~x @ y.
Then (A;0) is an implication basic algebra.

Proof Applying (BA1)-(BA4) and Lemma 1, we can easily check the identities
(I1)—(13) as follows

(I1): (zozx)oxz=-(2@zr)Pr=-1Px=0Px = z;

(I2): (zoy)oy=—(zdy)oy=-(ydz)or=(yor)oux;

B): (woy)oy)oz)o(zoz) =(=(~(rzdy) @y ®2)&(rd2)=1=
r@r=1x0X O
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Remark 1 Since basic algebras serve as an algebraic axiomatization of certain
many-valued logic, where & is considered as a disjunction and — as a negation,
the term function -z @y can be recognized as an implication (formally the same
construction as in the classical propositional calculus). This motivated us to call
(4;0) an implication basic algebras due to the relation given by Theorem 2.

To reveal the structure of implication basic algebras we introduce a partial
order relation.

Lemma 3 Let (A;0) be an implication basic algebra. Define a binary relation
< on A as follows
<y ifandonlyif zoy=1.

Then < is a partial order on A such that x < 1 for each x € A. Moreover,
z<zoz and x <y implies yoz<zoz
forall x,y,z € A.

Proof By (i) of Lemma 2 we have that < is reflexive. Assume z < y and
y<z. Thenzoy=1,yox =1 and by (I2) and (I1)

z=lox=(yorjor=(roy)oy=1loy=y,

which is proving antisymmetry of <.
Ifx <yandy<zthenxoy=1,yo0z=1and, due to (I3) and Lemma 2
we get
l=(((xoy)oy)oz)o(xoz)=((loy)oz)o(roz)
=(yoz)o(zoz)=1lo(xroz)=x02

thus also x < z proving transitivity of <. Hence < is a partial order on A and
due to (ii) of Lemma 2, z < 1 for each z € A.
Further, if x <y and z € A then z oy = 1 and, by (I13),

IL=(((zoy)oy)oz)o(zoz)=((loy)oz)o(roz)=(yoz)o(zoz)

getting y o z < x o z. Putting here y =1 we obtain z =102z < xoz. O

The partial order < introduced in Lemma 3 will be called the induced partial
order of the implication basic algebra (4; o).

Remark 2 Let A = (A;®,—,0) be a basic algebra and x oy = -z @ y. Then
the induced partial order of the implication basic algebra (A;o) coincides with
the partial order of A defined by (x) in Preliminaries.

Theorem 3 Let (A;0) be an implication basic algebra and < its induced partial
order. Then (A; <) is a join-semilattice with the greatest element 1 where xVy =

(xoy)oy.
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Proof By Lemma 3 and (I2) we infer y < (zoy)oy and x < (yox)ox = (xoy)oy
thus (z oy) oy is a common upper bound of z,y. Assume z,y < z. Then by
double using of the Lemma 3 we have

(zoy)oy<(z0y)oy=(yoz)oz=1o02z= 2,
thus (z o y) oy is the least upper bound of x, y, i.e.

zVy=(xoy)oy
is the supremum of x, y. O

Let (4;0) be an implication basic algebra. The semilattice (A; V) derived in
Theorem 3 will be called the induced semilattice of (4;0).

Theorem 4 Let (A4;0) be an implication basic algebra and (A;V) its induced
semilattice. For each p € A, the interval [p,1] is a lattice ([p,1];V, Ap,P) with
an antitone involution x — P where

a? =zop and xNpy=((xop)V(yop))op
for all x,y € [p, 1].

Proof Assume z € [p,1]. By Lemma 3, z — 2P is a partial order reversing
mapping and moreover we have 2P = z o p > p, thus x — 2P is a mapping of
[p, 1] into itself. By Theorem 3, 2P? = (x op)op = x V p = x and hence it is an
involution of [p, 1]. This yields that we can apply De Morgan laws to show that

(@’ VyP)P =((zop)V(yop))op=x/py

is the infimum of z,y € [p,1] and hence ([p,1];V,A;,?) is a lattice with an
antitone involution. O

Corollary 1 Let (A;0) be an implication basic algebra and < its induced partial
order. Then (A; <) is a join-semilattice with the greatest element 1 such that for
each p € A the interval [p, 1] is a basic algebra ([p, 1]; &p, —p, p) where x Spy =
(xop)oy and —~px =x 0p for all z,y € [p,1].

In what follows, ([p,1];®p, p,p) will be called an interval basic algebra.
Theorem 4 describes the semilattice structure of an implication basic algebra.
We are going to show that this description is complete, i.e. that the converse of
Theorem 4 holds.

Theorem 5 Let (A;V,1) be a join-semilattice with the greatest element 1 such
that for each p € A the interval [p,1] is a lattice with an antitone involution
x> 2P, Define x oy = (xVy)Y. Then (A;o) is an implication basic algebra.
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Proof Since x Vy € [y, 1] for every z,y € A, the operation o is well-defined.
We are going to check the identities (I1), (I12), (I3).

(I1): (zox)ox = ((zVa)”Va) =z =uq;

(I2): (oy)oy=((Vy)Vy) =(xzVy" =zVy=yVe=(yVa)™" =
(yva) va)* = (yox)ouw

(I3): ((woy)oy)oz)o(zoz)=((xVy)Ve)o(xVz)*=1=(zVa) =xzox
since ((x Vy) V 2)* < (zV 2)~. O

We say that (A;o0) is an implication basic algebra with the least element if
there exists an element 0 € A such that 0 < a for each a € A (where < is the
induced partial order). By Lemma 3 the identity

Qozx=1

holds in any implication basic algebra with the least element 0.
The following result shows that our implication basic algebra really catches
all the properties of implication * — y := —x & y in any basic algebra.

Theorem 6 Let (A;0) be an implication basic algebra with the least element 0.
Define the term operations ~x = x00 and x ®y = (x00)oy. Then (4;®,—,0)
is a basic algebra and oy =—-x B y.

Proof We need to check the axioms (BA1)-(BA4) of basic algebras.
(BA1l) and (BA2): 2@ 0= (z00)o0=2V0=z; "z =(x00)o0=ux.
For (BA3) and (BA4) we use the fact that

~z@y=((xo0)o0)oy=(xV0)oy=zoy.

(BA3): ~(-z@y)@y=(zoy)oy=(yow)or=—(-ydz)dw by (12).
(BA4): =(=(m(zoy)@y)©2)@ (2@ 2) = ((zo0)oy)oy)oz)o((zo0)oz) =1
by (I3).

By Theorem 3, (x00)o0 =2V 0 =2z and hence zoy = ((r00)o0)oy =
(x00)Dy=—xdy. O

Let us note that the induced partial order of an implication algebra (A;o)
coincides with that of (A4; @, —,0) defined by (x).

An implication basic algebra (A;o) is called commutative if (x op) oy =
(yop)ox for all z,y € [p,1]. By Corollary 1, if (4;0) is commutative then for
eachp € A, x @,y = y @,z for all z,y € [p,1] in the interval basic algebra
(Ip,1}; ®p, 7p»p)- Applying Theorem 8.5.9 from [3], we can infer the following:

Corollary 2 Let (A4;0) be a commutative implication basic algebra and (A;V)
1ts induced semilattice. Then

(a) for eachp € A the interval basic algebra ([p, 1]; ®p, —p, p) is a commutative
basic algebra;

(b) for each p € A the interval lattice ([p,1],V,A,) is distributive.
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In what follows, we can check several important congruence conditions of
implication basic algebras. Denote by ZB the variety of implication basic alge-
bras.

Recall that an algebra A with a constant 1 is weakly regular (see e.g. [2]) if
every congruence O on A is determined by its 1-class [1]g, in other words, if for
each ©,® € ConA

[lloe =[1]¢ implies © = .

An algebra A is congruence 3-permutable if
OodPoBO=0000d
for each ©,® € ConA. An algebra A is congruence distributive if
OAN(PVT)=(OAD)V(OAD)
for all ©,®, ¥ € ConA. An algebra A with a constant 1 is distributive at 1 if

ea@ve) = [@ra)v(©rw)

for all ©,®, ¥ € ConA.
It is evident that if an algebra A with a constant 1 is weakly regular and
distributive at 1 then it is congruence distributive.

Theorem 7 The variety IB is weakly regular, congruence 3-permutable and
congruence distributive.

Proof By the theorem of Csdkdny (see e.g. Theorem 6.4.3 in [2]), a variety
is weakly regular if and only if there exist binary terms ti(x,y),...,tn(2, )
(n > 1) such that t;(x,y) = -+ = tp(z,y) = 1 if and only if x = y. In
IB we can take n = 2 and t1(z,y) = x oy, ta(z,y) = y ox. Then clearly
t1(z,z) = to(x,2) = xox =1 and, if t1(z,y) = 1 and ta(z,y) = 1 then x < y
and y < x whence x = y.

To prove distributivity at 1, by Theorem 8.3.2 in [2] we need only to find a
binary term t(z,y) in ZB satisfying the identities

t(z,x) =t(l,z) =1 and t(x,1)==x.

By Definition 1 and Lemma 2, we can take ¢(x,y) = y o x. Using the fact that
IB is weakly regular and distributive at 1, we conclude that ZB is congruence
distributive.

To prove 3-permutability of 7, we need to find ternary terms p;(z,y, 2),
p2(x,y, z) such that

x:pl(x,z,z), pl(l',I',Z)ZPQ(I',Z,Z), pQ(xvxvz):Z

(see e.g. Theorem 3.1.18 in [2]). For this, we can take py(z,y, z) = (zoy)ox and
P24, 2) = (2 09) 0 2. Then pa(t,5,2) = (202) 07 = 168 = 2, pa(2,2,.2) =
(zox)ox =(xoz)oz=pa(z,2,2) and pa(z,z,2) = (xox)oz=1loz=2 O
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Remark 3 Congruence distributivity of the variety ZB can be shown also di-
rectly by using Jénsson terms. We can pick up n = 3 and to(z,y,2) = =,
ti(x,y,z) = ((zoy)o(zox))ox, ta(x,y, 2) = ((yoz)o(xoz))oz and t3(x,y, z) = 2.
It is an easy exercise to verify the corresponding Maltsev condition.

3 Derived equivalential algebras

Let A = (A;®,—,0) be a basic algebra and 1 = —0. For z,y € A we define
zoy=(zoy)A(yox)=(~x@y)N(-ydz)

The algebra (A;o,0) will be called the derived equivalential algebra of A.

The concept of equivalential algebra was introduced formerly for the equiv-
alential reducts of Heyting algebras in [9], see e.g. [8] for the complex setting.
It was shown in [6] that this algebra can be described by three axioms:

(E1) (z-2)-y=y,

(E2) ((z-y)-2)-z2=(x-2) (y-2),

(E3) (z-y) - ((x-2)-2) - ((x-2)-2) =y

Unfortunately, if we consider our derived equivalential algebra defined above,

the axioms (E2), (E3) are violated as it can be shown in the following example.

Example 1 Let us consider the four element chain basic algebra (A4;®,—,0),
where A = {0,a,b,1} with 0 < b < a < 1 and the operations @ and — are given
by the tables

®l0 1 a b

00 1 a b 101 a b
111 1 1 1 T
ala 1 1 1 a
blb 1 1 a

Then for the operation o we have
(Ooa)o(aoa)=bol=b#1=ava=(boa)va=(0oa)oa)oa.

Thus (E2) does not hold in A.
Similarly,

0ol=0#a=boa=0oa)oa=(0o(boa))o(boa)
—((051)0 (00 a)0a) 0 (00 a)oa),
thus (E3) is also violated.

>~ Q = o0
Q ot OO
Q= O
Q = Q o
_ e oo

and hence
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Lemma 4 Let (A;®,—,0) be a basic algebra and (A; o, 0) its derived equivalen-
tial algebra. If x,y € A such that x <y then (zroy) oz =y.

Proof Let z,y € A such that x < y. Then by Lemma 3 x oy = 1 and hence
zoy=(xoy)A(yox)=you.
Since < y o x by Lemma 3, we have x o (y o ) = 1. By Theorem 3
(zoy)oz=(lyox)ox)A(zo(yox))=(yVa)Al=yAl=y.
O

Let us note that the converse of Lemma 4 does not hold in general as it is
shown in Example 2 below.
Now we are going to describe basic properties of the operation o.

Lemma 5 Let (A;®,,0) be a basic algebra, (A;0,0) its derived equivalential
algebra and x,y,z € A. Then

(a) roy=you,

(b) o0 =z,
(c) 0o x)00=1,
(d) xol=uz,
(e) rox=1,

(f) ifz<x<ythenyoz<zoz,
where 1 = —0.

Proof (a): Obviously by the definition of o and commutativity of A.
(b): zo00=(-2@0)A(00z)=-2A(1Bx)=—2A]l="z.

(¢): Ooz)on0=-200=—-2=uz.

d: zol=(zdl)A(-ldz)=1Az ==z

(e):
():
y o

By Lemma 1, zox=—-x @&z =1.
If 2z< 2z <ythen zox =1 and zoy = 1 and therefore z 0 z = x 0 2,
z=1yoz. Using Lemma 3 we obtain ynz =yoz<zoz=2x0Oz. O

Remark 4 Consider a chain basic algebra (A;®,—,0) and elements z,y € A.
We have either x < y or y < x, thus either x oy = 1 or y ox = 1 and hence
x o0y =yox in the first case and x o y = z oy in the second one.

Theorem 8 Let (A;®,—-,0) be a chain basic algebra and (A;n,0) its derived
equivalential algebra and x,y € A. Then

(i) x=1if and only if x 0 x = x.
(it) if € # 1 then x <y if and only if (xoy) oz =y.
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Proof By (e) of Lemma 5 we infer (i). At first, let = # 1 and assume zoy = y.
Then zVy=(xoy)oy =yoy =1 and, due to the fact that (A4; <) is a chain,
we conclude y = 1. For (ii), by Lemma 4 it is sufficient to prove that for x # 1,
the implication (x o y) o x =y = 2 <y holds.

Assume that  # 1 and z € y, i.e. y <. If x oy =y, then y = 1 as shown
above, a contradiction with y < x. Hence x oy # y. According to Remark 4,
roy=wxoy. Hence

(zoy)oz=(zoy)oz=((xoy)ox)A(zo(roy)).

Then either z < z oy or x oy < x. In the first case, z o (x oy) = 1 and by
Lemma 3
(zoy)pw=(zoy)oz =z >y,

so (x o y) o & # y. In the second case, (x oy) ox = 1. Since z # 1, thus by
Lemma 3 (zoy)oz=xzo(zoy) >xo0y>y. O

Remark 5 (a) Let us note that if 2 = 1 then by Lemma 5 (1 o y) o 1 = y for
any y € A. Hence, the assumption x # 1 cannot be avoided in (ii) of Theorem 8.
(b) Theorem 8 shows that for a chain basic algebra A = (A; @, -, 0) we are able
to reconstruct the induced partial partial order of A from the derived equiv-
alential algebra (A4;0,0). The element 1 is then the greatest one in (4;<)
and the partial order of other elements is described by (ii) of Theorem 8.
(c) The result of Theorem 8 cannot be reformulated for a basic algebra which
is a direct (or a subdirect) product of chain basic algebras, see the following
example.

Example 2 Consider a basic algebra A = ({0, a, b, ~a, —b, 1}; @, -, 0) as shown
in Fig. 1 which is the direct product of chain basic algebras 3 x 2.

1

—b

Fig. 1

The operation o in the derived equivalential algebra (A;o,0) is given by the
table
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o 0 a b —-b -a 1
0 1 -a b b a 0
a | -a 1 b b 0 a
b| —b b 1 —-a b b
—b b —-b -a 1 —b
-a a 0 - b 1 —a
1 0 a b b -a 1

We can see that @ # 1 and (a o b) o a =boa=>b buta £ b Itisa
consequence of the fact that the representation of ¢ in 3 x 2 is (0,1), so in the
second coordinate the assumption = # 1 is violated.

Lemma 6 Let A = (A;®,-,0) be a chain basic algebra, (A;0,0) its derived
equivalential algebra and 1 = —0. Then (A;0,0) satisfies:
(9) ife#£1,y#1, (zroy)ovz=yand (yoz)oy==zthen (xoz)oxz =z
(h) ife#1,y#1, (xoy)or=yand (yox)oy=ux thenx =y.

Proof To prove (g) we use Theorem 8, so (zoy)ox=yand (yoz)oy==z
means that ¢ < y and y < z thus < z, i.e. (z 0 z) o 2 = z. Analogously for
(h), (zoy)oz=yand (yozr)oy=zmeansz <yandy <z,sox=y. O

According to the properties of derived equivalential algebras as exhibited
above we can introduce the following concept.

Definition 2 An algebra £ = (F;0,0) of type (2,0) satisfying:

() @ow)oy=y

(i) fz #2000#vy, (roy)or=yand (yoz) oy =z then (zoz)oz =z
(iii) f 2 2000 # vy, (roy)ox=yand (yoz) oy =z then z = y;

(iv) zoy =y oz

)
(Vi) zoz=yoy;
(vii) if <z <ythenyoz<zoz;

will be called a b-equivalential algebra.

Remark 6 Due to Lemma 5 and 6 for any chain basic algebra A = (A4; @, —,0)
the derived equivalential algebra of A is a b-equivalential algebra.

Theorem 9 Let £ = (F;0,0) be a b-equivalential algebra. Define a binary
relation < on E as follows:

(A) x <000 for each x € E;
(B) if 000 <z thenx=000;
(C) if ©#000 thenz <y ifandonlyif (xoy)ox=y.

Then < is a partial order on E.
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Proof First, we check reflexivity of <. For z # 0 o 0 using (i) we obtain
(x o ) o & = x, which by (C) means x < . For x = 0 o 0 we have by (A)
0o00<L0oO.

Now, to show antisymmetry of < consider two cases. For x # 0 o 0 # y such
that z < y and y < 2 we have by (C) (zoy) oz =y and (y o x) oy = z, thus
by (iii) z =y. f2 =000 and « < y and y < = (which by (A) holds for each
y € E) then y =00 0 by (B) thus also z = y.

To check transitivity of the relation we consider three cases. First, if x #
0OoO0#yandz<yandy<zthenby (C) (roy)ozx=yand (yoz)oy==z.
Using (ii) we get (x o z) oz =2,80by (C)xz <z Ifax=0o0andz <y
and y < z, we obtain by double using of (B) that y = z = 0 o 0, which by (A)
means that z < z. And the last, if t 000 = y and z < y and y < z then
analogously by (B) we get z =000 and by (A) z < z.

Altogether, the binary relation < is a partial order on E. O

In what follows, < will be called the induced partial order of a b-equivalential
algebra & = (F;0,0). We show some properties of the induced partial order of £.

Remark 7 Let us note that if part of (C) trivially holds even without the
condition z # 0 o 0 = 1 in a non-trivial b-equivalential algebra (i.e. if 0 # 0 o 0).

We can prove the following

Lemma 7 Let £ = (E;0,0) be a b-equivalential algebra. Then 0 is its least
element, the element 0 o 0O is the greatest one and, moreover, the following
holds:

if <y then z<zoy.

Proof By Theorem 9 (C) and Definition 2 (v), 0 is the least and by Theorem
9 (A), 1 is the greatest element of £. If £ is a trivial algebra, i.e. 0 = 0o 0 then
z =000 and hence x < y implies y = x = x oy = 0 o 0. In the non-trivial
case we use Remark 7 and for z,y € F such that z <y we compute

(zo(zoy)ozx=((roy)or)oz=yozr=x0y,
which means that x <z oy. O

In the following we denote by 1 the greatest element 0 o 0 of a b-equivalential
algebra & = (E;0,0). Now we demonstrate how to reconstruct a chain basic
algebra from a given b-equivalential algebra.

Theorem 10 Let £ = (F;0,0) be a b-equivalential algebra and < be its induced
partial order. If this partial order is linear (i.e. x < y ory < x for every
x,y € A) then € can be converted into a chain basic algebra A(E) = (E;®,—,0),
where ~x = x 0 0 and @ is defined as follows

T 0 y? fo S _‘y7
TDy = )
L, if vy <z

Moreover, £ is the derived equivalential algebra of A(E).
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Proof Let x € E. By (iv) and (v), we obtain
-—x=(z00)o0=0oz)o0=ur,

which is (BA2). For (BA1l) we compute 2 ¢ 0 = -z 0 0 = -~z = z. Putting
z =0 in (vii), we obtain:

<y = -y<-o (%)
To check the axiom (BA3) let us consider two possible cases for x,y € E.
Bly<z
Then -z < -y, and hence ~x &y = -—x 0 y = = o y, therefore
“(rr@y)dy=-(zoy) Sy

We can use the fact that for y < z we have y < x o y by Lemma 7. Hence
—(z oy) < -y, thus

“(wdy)by=-(roy)oy=(roy)oy=(yor)oy=uz.
Since -y & z = 1 and hence
(y@x)Pr=-1®zx=(1o0)@z=0x=-0oz=1ocz ==z
Together we conclude
“(rdy)by=-(ydr) D
(32)x<y
By symmetry we compute analogously as in (3.1)
“(rrey)ey=y=-(yor) s,
which means that (BA3) holds in A(E).

It remains to check the identity (BA4). Let us consider two possibilities for
elements z,y,z € E.

(4.1) z <y
The condition is equivalent to y < —z by (xx*), from which (using Lemma 7 and
(iv)) we get y < -z o y and further, using (*x), (-2 o y) < —y. Then
ey dy)ez)e(@dz)=-(-(-(-zoy) ©Y) &2) S (xS 2)
=-(-((zoy)oy @)@ (@dz) =-(~((~xoy)oy) ®2) & (xS 2)
=-((yo-w)oy) @)@ (@@2)=-(-z02)® (¢ ®2)
=-(x®2)B(xdz)=1

by the definition of &.
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(4.2) ~y <z
Then x &y = 1 and

Sz dy) DY) B2) B (D 2)=(~(-1BY)D2) D (zD2)
=-(-00y)®2)®(xdz)=-(yd2)D(z& 2).

Now we need to discuss two subcases.

(4.2a) x < -z

That means —y < & < —z, thus
—\y@Z:ﬁﬁyDZ:yDZ

and
rPz=-xroz.

Using (#x), we can rewrite the condition of (4.2a) as z < - < y. By (vii) we
obtain
yoz< -zoz,

thus
—(-zoz) < (yoz).

We conclude

(@Y BY) B2)D (B 2)=-(-yD2)® (zD2)
=-(yoz)®(-xoz)=1.

(4.2b) ~z <z

Then we get t & 2z =1 and

(@Y DY) B2)D (B 2)=-(-yD2)® (zD2)
=-(yoz)®l=1.

In both the cases we can see that (BA4) holds, thus A(E) = (4;®,—,0) is a
basic algebra. Since the induced partial order of (F;n,0) is linear, A(FE) is a
chain basic algebra. Moreover, if z < y or equivalently —y < —x, we have

(rzdy) AN(~ydz)=1A(-~yoz)=yoz=zoy.
If y < x then analogously
(rzoy) AN(~ydz)=(-zoy)Al=20DY.

Thus £ is the derived equivalential algebra of A(E). O
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