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Abstract

Relational systems containing one binary relation are investigated.
Quotient relational systems are introduced and some of their properties
are characterized. Moreover, homomorphisms, strong mappings and cone
preserving mappings are introduced and the interplay between these no-
tions is considered. Finally, the connection between directed relational
systems and corresponding groupoids is investigated.
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1 Introduction

The theory of relational systems and of binary relations was settled in the
pioneering work by J. Riguet ([6]) and the classical algebraic approach by
A. I. Mal’cev ([5]). Several properties of equivalences and homomorphisms were
treated by the first author in [2] for equivalence systems, in [4] for quasiordered
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sets and in [3] for posets. It turns out that these results can be extended to
arbitrary relational systems. This is the aim of the present paper. In partic-
ular, we set up several properties of quotient relational systems and relate the
concept of strong homomorphism to that of cone preserving mapping.

We start with the definition of a relational system.

Definition 1.1 By a relational system we mean an ordered pair A = (A,R)
consisting of a set A and a binary relation R on A. A is called connex if for
all a, b ∈ A either (a, b) ∈ R or (b, a) ∈ R (or both). A is called directed if
UR(a, b) �= ∅ for all a, b ∈ A where

UR(a, b) := {c ∈ A | (a, c), (b, c) ∈ R}
is called the (upper) cone of {a, b} with respect to R. If a = b then UR(a, b) is
simply denoted by UR(a).

2 Quotient relational systems

In this section we investigate quotients of relational systems by equivalence
relations. The aim is to show what properties of a given relation are preserved
under factorization by means of an equivalence.

First we define a quotient relational system as follows:

Definition 2.1 Let A = (A,R) be a relational system and Θ an equivalence
relation on A. Then A/Θ := (A/Θ, R/Θ) where

R/Θ := {([a]Θ, [b]Θ)
∣∣ (a, b) ∈ R}

is called the quotient relational system of A by Θ.

The following lemma will be useful in the proof of the next theorem.

Lemma 2.2 Let A = (A,R) be a relational system, a, b ∈ A and Θ an equiva-
lence relation on A. Then the following are equivalent:

(i) ([a]Θ, [b]Θ) ∈ R/Θ
(ii) (a, b) ∈ Θ ◦R ◦Θ
Proof Both (i) and (ii) are equivalent to the fact that there exists (c, d) ∈ R
with ([c]Θ, [d]Θ) = ([a]Θ, [b]Θ). �

Now we characterize some properties of the relation R/Θ.

Theorem 2.3 Let A = (A,R) be a relational system and Θ an equivalence
relation on A. Then (i)–(v) hold:

(i) R/Θ is reflexive if and only if ([a]Θ)2 ∩R �= ∅ for all a ∈ A.
(ii) R/Θ is symmetric if and only if R ⊆ Θ ◦R−1 ◦Θ.



Quotients and homomorphisms of relational systems 39

(iii) R/Θ is antisymmetric if and only if (Θ ◦R ◦Θ) ∩ (Θ ◦R−1 ◦Θ) ⊆ Θ.

(iv) R/Θ is transitive if and only if R ◦Θ ◦R ⊆ Θ ◦R ◦Θ.
(v) R/Θ is connex if and only if so is Θ ◦R ◦Θ.
Proof Let a, b ∈ A. We use Lemma 2.2.

(i) R/Θ is reflexive if and only if (a, a) ∈ Θ ◦R ◦Θ for all a ∈ A.

(ii) R/Θ is symmetric if and only if Θ ◦R ◦Θ has this property.

(iii) R/Θ is antisymmetric if and only if (a, b) ∈ Θ◦R◦Θ and (b, a) ∈ Θ◦R◦Θ
together imply (a, b) ∈ Θ.

(iv) The following are equivalent:
R/Θ is transitive.
Θ ◦R ◦Θ is transitive.
Θ ◦R ◦Θ ◦Θ ◦R ◦Θ ⊆ Θ ◦R ◦Θ.
Θ ◦R ◦Θ ◦R ◦Θ ⊆ Θ ◦R ◦Θ.
R ◦Θ ◦R ⊆ Θ ◦R ◦Θ.

(v) This is clear. �

Corollary 2.4 Let A = (A,R) be a relational system and Θ an equivalence
relation on A. Then (i)–(iii) hold:

(i) If R is reflexive then so is R/Θ.

(ii) If R is symmetric then so is R/Θ.

(iii) If R is transitive and either Θ ◦ R ⊆ R ◦ Θ or R ◦ Θ ⊆ Θ ◦ R (or both)
then R/Θ is transitive, too.

Remark 2.5 It was proved in Theorem 2 of [1] that if R is transitive then R/Θ
need not have this property.

3 Homomorphisms of relational systems

In this section we investigate the interplay between different properties of map-
pings between relational systems. The aim is to characterize strong and cone
preserving mappings and homomorphisms by means of the relational products
with the induced equivalence.

In the following, if A = (A,F ) and B = (B,S) are relational systems and
f : A→ B a map from A to B then

f−1(S) := {(a, b) ∈ A2
∣∣ (f(a), f(b)) ∈ S}.

Moreover, if Θ is an equivalence relation on A then fΘ denotes the canonical
mapping x �→ [x]Θ from A to A/Θ.
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Definition 3.1 (cf. [4] and [5]) Let A = (A,R) and B = (B,S) be relational
systems and f : A→ B.

(i) f is called a homomorphism from A to B if (f(a), f(b)) ∈ S for all (a, b) ∈
R.

(ii) f is called strong if for all (c, d) ∈ S there exists (a, b) ∈ R with f(a) = c
and f(b) = d.

(iii) f is called cone preserving if f(UR(a)) = US(f(a)) for all a ∈ A.

Remark 3.2 (iii) extends the concept defined in [4] for quasiordered sets. Ob-
viously, f is a homomorphism from A to B if and only if f(UR(a)) ⊆ US(f(a))
for all a ∈ A. Hence, if f is cone preserving then it is a homomorphism from A
to B.

Lemma 3.3 Let A = (A,F ) be a relational system and Θ an equivalence rela-
tion on A. Then fΘ is a strong homomorphism from A onto A/Θ and R/Θ is
the smallest binary relation T on A/Θ such that fΘ is a homomorphism from
A to (A/Θ, T ).

Proof The proof is straightforward. �

For all sets A,B and every map f : A→ B let ker f denote the equivalence
relation on A induced by f .

Now we state some characterizations of the notion of homomorphism which
will be used later.

Lemma 3.4 Let A = (A,R) and B = (B,S) be relational systems and f : A→
B. Then the following are equivalent:

(i) f is a homomorphism from A to B.
(ii) f−1(S) ⊇ R

(iii) f−1(S) ⊇ (ker f) ◦R
(iv) f−1(S) ⊇ R ◦ (ker f)
(v) f−1(S) ⊇ (ker f) ◦R ◦ (ker f)

Proof (i) ⇒ (v) ⇒ (iv) ⇒ (ii) ⇒ (i) ⇒ (iii) ⇒ (i) �

Lemma 3.5 Let A = (A,R) and B = (B,S) be relational systems and f a
mapping from A onto B. Then the following are equivalent:

(i) f is strong.

(ii) f−1(S) ⊆ (ker f) ◦R ◦ (ker f)
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Proof Both are equivalent to the fact that for all a, b ∈ A with (f(a), f(b)) ∈ S
there exists a (c, d) ∈ R with f(c) = f(a) and f(d) = f(b). �

Theorem 3.6 Let A = (A,R) and B = (B,S) be relational systems and f a
homomorphism from A onto B. Then the following are equivalent:

(i) f is strong.

(ii) f−1(S) = (ker f) ◦R ◦ (ker f)
Proof This follows from Lemmata 3.4 and 3.5. �

Lemma 3.7 Let A = (A,R) and B = (B,S) be relational systems and f a
mapping from A onto B. Then the following are equivalent:

(i) f is cone preserving.

(ii) f−1(S) = R ◦ (ker f)
Proof The following are equivalent:

f(UR(a)) = US(f(a)) for all a ∈ A
For all a, b ∈ A, f(b) ∈ US(f(a)) if and only if f(b) ∈ f(UR(a)).
For all a, b ∈ A, f(b) ∈ US(f(a)) if and only if there exists a c ∈ UR(a) with

f(c) = f(b). �

Theorem 3.8 Let A = (A,R) and B = (B,S) be relational systems and f a
homomorphism from A onto B. Then the following are equivalent:

(i) f is cone preserving.

(ii) f−1(S) ⊆ R ◦ (ker f)
Proof This follows from Lemmata 3.4 and 3.7. �

Theorem 3.9 Let A = (A,R) and B = (B,S) be relational systems and f a
strong homomorphism from A onto B. Then the following are equivalent:

(i) f is cone preserving.

(ii) (ker f) ◦R ⊆ R ◦ (ker f)

Proof (i) ⇒ (ii): This follows from Lemmata 3.7 and 3.4.
(ii) ⇒ (i):

f−1(S) ⊆ (ker f) ◦R ◦ (ker f) ⊆ R ◦ (ker f) ◦ (ker f) = R ◦ (ker f)

and hence f is cone preserving according to Theorem 3.8. �
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Corollary 3.10 Let A = (A,R) and B = (B,S) be relational systems, assume
R to be symmetric and let f be a strong homomorphism from A onto B. Then
the following are equivalent:

(i) f is cone preserving.

(ii) (ker f) ◦R = R ◦ (ker f)

Proof (i) ⇒ (ii): According to Theorem 3.9, (ker f) ◦ R ⊆ R ◦ (ker f). Since
R is symmetric, we have

R ◦ (ker f) = R−1 ◦ (ker f)−1 = ((ker f) ◦R)−1 ⊆ (R ◦ (ker f))−1

= (ker f)−1 ◦R−1 = (ker f) ◦R

(ii) ⇒ (i): This follows from Theorem 3.9. �

Corollary 3.11 Let A = (A,R) be a relational system and Θ an equivalence
relation on A. Then the following are equivalent:

(i) fΘ is cone preserving.

(ii) Θ ◦R ⊆ R ◦Θ

Proof This follows from Lemma 3.3 and Theorem 3.9. �

Corollary 3.12 Let A = (A,R) and B = (B,S) be relational systems and f a
cone preserving mapping from A onto B. Then f is strong.

Proof This follows from Lemmata 3.7 and 3.5. �

4 Groupoids corresponding to relational systems

In this section we associate to certain relational systems certain groupoids and
investigate relationships between homomorhisms and congruence relations of
certain relational systems on the one hand and of the corresponding groupoids
on the other hand.

Definition 4.1 Let A = (A,R) be a relational system. We say that a groupoid
G(A) = (A, ·) corresponds to A if ab = b in case (a, b) ∈ R and ab ∈ UR(a, b)
otherwise.

Remark 4.2 Every relational system A = (A,R) can be extended to a directed
one by adjoining one element: If 1 /∈ A then put Ad := A ∪ {1} and Rd :=
R ∪ (Ad × {1}). Then Ad := (Ad, Rd) is directed and A is the restriction of Ad
to A.
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Remark 4.3 Every relational system A = (A,R) can be considered as a di-
rected graph with vertex-set A and edge-set R. For 1 /∈ A the groupoid (A, ·)
defined by ab := b if (a, b) ∈ R and ab := 1 otherwise is called the corresponding
graph algebra. It is in fact a groupoid corresponding to Ad. Hence the groupoids
corresponding to relational systems are generalizations of graph algebras.

Remark 4.4 Although a groupoid G(A) = (A, ·) corresponding to a relational
system A = (A,R) need not be uniquely determined by A, for a, b ∈ A, ab = b
if and only if (a, b) ∈ R.

In what follows, if we consider a groupoid G corresponding to a relational
system A = (A,R) we assume that G exists, it means that A is (partly) directed,
i.e. if a, b ∈ A and (a, b) /∈ R then the upper cone UR(a, b) of {a, b} with respect
to R is not empty.

Theorem 4.5 Let A = (A,R) be a relational system and G(A) = (A, ·) a
groupoid corresponding to A. Then (i)–(vi) hold:

(i) R is reflexive if and only if G is idempotent.
(ii) R is symmetric if and only if G(A) satisfies the identity (xy)x = x.

(iii) If G(A) is commutative then R is antisymmetric.
(iv) If G(A) satisfies the identity (xy)x = xy then R is antisymmetric.

(v) If G(A) is a semigroup then R is transitive.
(vi) R is transitive if and only if G(A) satisfies the identity x((xy)z) = (xy)z.

Proof (i), (iii) and (v) follow immediately from Remark 4.4.
Let a, b, c ∈ A.
(ii): First assume R to be symmetric. We have (a, ab) ∈ R and hence, by

symmetry of R, (ab, a) ∈ R whence (ab)a = a. If, conversely, G(A) satisfies the
identity (xy)x = x and if (a, b) ∈ R then ab = b and hence ba = (ab)a = a which
shows (b, a) ∈ R proving symmetry of R.

(iv): If (a, b), (b, a) ∈ R then ab = b and ba = a and hence a = ba = (ab)a =
ab = b.

(vi): First assume R to be transitive. Since (a, ab), (ab, (ab)c) ∈ R one has,
by transitivity of R, (a, (ab)c) ∈ R whence a((ab)c) = (ab)c. Conversely, assume
G(A) to satisfy the identity x((xy)z) = (xy)z and assume (a, b), (b, c) ∈ R. Then
ab = b and bc = c and hence ac = a(bc) = a((ab)c) = (ab)c = bc = c whence
(a, c) ∈ R. �

Now we define the notion of a g-homomorphism.

Definition 4.6 Let A = (A,R) and B = (B,S) be relational systems and f a
homomorphism from A to B. Then f is called a g-homomorphism from A to B if
there exists a groupoid G(A) = (A, ·) corresponding to A such that a, b, c, d ∈ A,
f(a) = f(c) and f(b) = f(d) together imply f(ab) = f(cd).
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The following theorem states that homomorphisms between groupoids cor-
responding to certain relational systems are g-homomorphisms between these
relational systems.

Theorem 4.7 Let A = (A,R) and B = (B,S) be relational systems, G(A) =
(A, ·) respectively G(B) = (B, ◦) corresponding groupoids and f a homomor-
phism from G(A) to G(B). Then f is a g-homomorphism from A to B.

Proof Let a, b, c, d ∈ A. If (a, b) ∈ R then ab = b and hence f(a) ◦ f(b) =
f(ab) = f(b) showing (f(a), f(b)) ∈ S. Moreover, if a, b, c, d ∈ A, f(a) = f(c)
and f(b) = f(d) then f(ab) = f(a) ◦ f(b) = f(c) ◦ f(d) = f(cd). �

In the next theorem we show that in some sense homomorphisms between
relational systems are homomorphisms between corresponding groupoids.

Theorem 4.8 Let A = (A,R) and B = (B,S) be relational systems and f a
strong g-homomorphism from A onto B with the groupoid G(A) = (A, ·) corre-
sponding to A. Then there exists a groupoid G(B) = (B, ◦) corresponding to B
such that f is a homomorphism from G(A) to G(B).

Proof According to Definition 4.6 there exists a groupoid G(A) = (A, ·) corre-
sponding to A such that for each a, b, c, d ∈ A, if f(a) = f(c) and f(b) = f(d)
then f(ab) = f(cd). Define f(x) ◦ f(y) := f(xy) for all x, y ∈ A. According
to Definition 4.6, ◦ is well-defined. Let a, b ∈ A. If (f(a), f(b)) ∈ S then,
since f is strong, there exists (c, d) ∈ R with f(c) = f(a) and f(d) = f(b).
Now f(a) ◦ f(b) = f(ab) = f(cd) = f(d) = f(b) according to Definition 4.6.
If (f(a), f(b)) /∈ S then (a, b) /∈ R according to Definition 4.6 and hence ab ∈
UR(a, b), i.e. (a, ab), (b, ab) ∈ R whence (f(a), f(a) ◦ f(b)) = (f(a), f(ab)) ∈ S
and (f(b), f(a)◦f(b)) = (f(b), f(ab)) ∈ S, i.e. f(a)◦f(b) ∈ US(f(a), f(b)). This
shows that G(B) corresponds to B. Finally, f is a homomorphism from G(A) to
G(B) since f(xy) = f(x) ◦ f(y) for all x, y ∈ A. �

Our next theorem contains some assertions concerning factor groupoids.

Theorem 4.9 Let A = (A,R) and B = (B,S) be relational systems. Then (i)
and (ii) hold:

(i) If f is a g-homomorphism from A to B then there exists a groupoid G(A) =
(A, ·) corresponding to A such that ker f ∈ ConG(A).

(ii) If G(A) = (A, ·) is a groupoid corresponding to A and Θ ∈ ConG(A) then
fΘ is a g-homomorphism from A to A/Θ.

Proof Let a, b, c, d ∈ A.
(i) Obviously, ker f ∈ EquA. According to Definition 4.6 there exists a

groupoid G(A) = (A, ·) corresponding to A such that for each a, b, c, d ∈ A, if
f(a) = f(c) and f(b) = f(d) then f(ab) = f(cd), i. e. (a, c), (b, d) ∈ ker f implies
(ab, cd) ∈ ker f .
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(ii) If (a, b) ∈ R then (fΘ(a), fΘ(b)) = ([a]Θ, [b]Θ) ∈ R/Θ. Moreover, if
fΘ(a) = fΘ(c) and fΘ(b) = fΘ(d) then [a]Θ = fΘ(a) = fΘ(c) = [c]Θ and
[b]Θ = fΘ(b) = fΘ(d) = [d]Θ and hence

fΘ(ab) = [ab]Θ = [a]Θ · [b]Θ = [c]Θ · [d]Θ = [cd]Θ = fΘ(cd).
�

Finally, we assign to each groupoid two relational systems.

Definition 4.10 For every groupoid G = (G, ·) we define two corresponding
relational systems A(G) and A∗(G) by

A(G) := (G,R(G)) respectively A∗(G) := (G,R∗(G))

where
R(G) := {(x, y) ∈ G2

∣∣ xy = y}
respectively

R∗(G) :=
⋃

x,y∈G
{(x, xy), (y, xy)}.

Lemma 4.11 Let G = (G, ·) be a groupoid. Then A∗(G) is directed.

Proof UR∗(G)(x, y) ⊇ {xy} �= ∅ for every x, y ∈ G. �

Lemma 4.12 Let A = (A,R) be a relational system and G(A) = (A, ·) a cor-
responding groupoid. Then A(G(A)) = A and R ⊆ R∗(G(A)).

Proof Let a, b ∈ A. If (a, b) ∈ R(G(A)) then ab = b. Since G(A) corresponds
to A we have (a, b) ∈ R. If, conversely, (a, b) ∈ R then ab = b in G(A) and
hence (a, b) ∈ R(G(A)) and (a, b) = (a, ab) ∈ R∗(G(A)). �

Remark 4.13 As mentioned above, a groupoid G(A) corresponding to the re-
lational system A = (A,R) need not be uniquely determined by A. However,
Lemma 4.12 shows this not to be essential since A can be reconstructed from
every groupoid G(A) corresponding to A due to the fact A(G(A)) = A. Hence
G(A) contains all the information on A. Therefore one can switch between A
and G(A) whenever it is suitable. Of course, it is more convenient to work with
groupoids instead of relational systems since the theory of groupoids is more
advanced.

Theorem 4.14 Let G = (G, ·) and H = (H, ◦) be groupoids and f a homomor-
phism from G to H. Then f is a homomorphism from A(G) to A(H) and from
A∗(G) to A∗(H).

Proof Let a, b ∈ G. If (a, b) ∈ R(G) then ab = b and hence f(a) ◦ f(b) =
f(ab) = f(b), i.e. (f(a), f(b)) ∈ R(H). This shows that f is a homomorphism
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from A(G) to A(H). If, on the other hand, (a, b) ∈ R∗(G) then there exist
e, h ∈ G with (a, b) ∈ {(e, eh), (h, eh)}. Now f(e), f(h) ∈ H and

(f(a), f(b)) ∈ {(f(e), f(eh)), (f(h), f(eh))}
= {(f(e), f(e) ◦ f(h)), (f(h), f(e) ◦ f(h))}

and hence (f(a), f(b)) ∈ R∗(H) showing that f is a homomorphism from A∗(G)
to A∗(H). �

Lemma 4.15 Let G = (G, ·) be a groupoid satisfying the identities x(xy) =
y(xy) = xy. Then G corresponds to A(G).
Proof Let a, b ∈ G. If (a, b) ∈ R(G) then ab = b. If (a, b) /∈ R(G) then
a(ab) = b(ab) = ab and hence (a, ab), (b, ab) ∈ R(G). �

Theorem 4.16 Let G = (G, ·) be a groupoid. Then the following are equivalent:
(i) There exists a relational system A = (G,R) with reflexive R such that G
corresponds to A.

(ii) G is idempotent and satisfies the identities x(xy) = y(xy) = xy.

Proof Let a, b ∈ G.
(i) ⇒ (ii): Since (b, b) ∈ R, bb = b. If (a, b) ∈ R then ab = b and hence

a(ab) = ab and b(ab) = bb = b = ab. If (a, b) /∈ R then (a, ab), (b, ab) ∈ R and
hence a(ab) = b(ab) = ab.

(ii) ⇒ (i): Put R := {(x, y) ∈ G2 |xy = y} ∪ {(x, x) |x ∈ G}. Then R is
reflexive. Moreover, if (a, b) ∈ R then ab = b or a = b. In the second case
ab = bb = b. If (a, b) /∈ R then a(ab) = b(ab) = ab and hence (a, ab), (b, ab) ∈ R.

�

Remark 4.17 Let G = (G, ·) and H = (H, ◦) be groupoids and f a homomor-
phism from G to H. Then f need not be a g-homomorphism from A(G) to A(H)
as can be seen from the following example.

Example 4.18 Put G := ({−1, 0, 1}, ·) and H := ({0, 1}, ·) where · denotes
the multiplication of integers and let f denote the mapping x �→ |x| from
{−1, 0, 1} to {0, 1}. Then f is a homomorphism from G to H and R(G) =
{(−1, 0), (0, 0), (1,−1), (1, 0), (1, 1)}. Let ({−1, 0, 1}, ∗) be a groupoid corre-
sponding to A(G). Then for x, y ∈ {−1, 0, 1}, 1 ∗ x = x and x ∗ y = 0 otherwise.
Now f(−1) = f(1) but f((−1) ∗ (−1)) = f(0) = 0 �= 1 = f(1) = f(1 ∗ 1)
and hence f is not a g-homomorphism from A(G) to A(H). Observe e.g.
0 · (1 · 1) = 0 �= 1 = 1 · 1.

Theorem 4.19 Let G = (G, ·) and H = (H, ◦) be groupoids, assume G to
satisfy the identities x(xy) = y(xy) = xy and let f be a homomorphism from G
to H. Then f is a g-homomorphism from A(G) to A(H).
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Proof According to Lemma 4.15, G corresponds to A(G). If a, b, c, d ∈ G,
f(a) = f(c) and f(b) = f(d) then f(ab) = f(a) ◦ f(b) = f(c) ◦ f(d) = f(cd)
and hence f is a g-homomorphism from A(G) to A(H). The rest follows from
Theorem 4.14. �
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