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Abstract

In this paper we investigate the existence of solutions for the initial
value problems (IVP for short), for a class of implicit impulsive hyperbolic
differential equations by using the lower and upper solutions method com-
bined with Schauder’s fixed point theorem.
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1 Introduction

The subject of fractional calculus is as old as the differential calculus since, start-
ing from some speculations of G. W. Leibniz (1697) and L. Euler (1730), it has
been developed up to nowadays. We can find numerous applications in rheology,
control, porous media, viscoelasticity, electrochemistry, electromagnetism, etc.
[17, 19, 24, 25, 27]. There has been a significant development in ordinary and
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partial fractional differential equations in recent years; see the monographs of
Abbas et al. [7], Kilbas et al. [20], Miller and Ross [26], Samko et al. [30], the
papers of Abbas et al. [1, 2, 3, 4, 6, 8, 9], Agarwal et al. [10], Belarbi et al. [11],
Benchohra et al. [12, 13, 15], Diethelm [16], Kilbas and Marzan [21], Mainardi
[24], [29], Podlubny et al. [29], Staněk [31], Vityuk [32], Vityuk and Golushkov
[33], Vityuk and Mykhailenko [34, 35], and the references therein.
There has been a significant development in impulse theory in recent years,

especially in the area of impulsive differential equations with fixed moments;
see the monographs of Benchohra et al. [14], and Lakshmikantham et al. [22].
Recently some results on the Darboux problem for fractional order impulsive
hyperbolic differential equations and inclusions have been obtained by Abbas et
al. [1, 4, 5, 6].
The method of upper and lower solutions plays an important role in the

investigation of solutions for differential and partial differential equations and
inclusions. We refer to the monographs by Benchohra et al. [14], and the papers
of Lakshmikantham and Pandit [23], Pandit [28] and the references cited therein.
In [3, 4, 5] the authors applied the method of upper and lower solutions for some
classes of Darboux problem for hyperbolic fractional order differential equations
and inclusions.
In the present article we are concerning by the existence of solutions to

fractional order IVP for the system

D
r

θku(x, y) = f(x, y, u(x, y), D
r

θku(x, y)); if (x, y) ∈ Jk, k = 0, . . . ,m, (1)

u(x+k , y) = u(x−k , y) + Ik(u(x
−
k , y)); if y ∈ [0, b], k = 1, . . . ,m, (2)⎧⎪⎨⎪⎩

u(x, 0) = ϕ(x); x ∈ [0, a],

u(0, y) = ψ(y); y ∈ [0, b],

ϕ(0) = ψ(0),

(3)

where J0 = [0, x1] × [0, b], Jk := (xk, xk+1] × [0, b]; k = 1, . . . ,m, a, b > 0,
θk = (xk, 0); k = 0, . . . ,m, D

r

θk
is the mixed regularized derivative of order

r = (r1, r2) ∈ (0, 1]× (0, 1], 0 = x0 < x1 < · · · < xm < xm+1 = a, f : J × R
n ×

R
n → R

n, J = [0, a] × [0, b], Ik : Rn → R
n, k = 1, . . . ,m are given functions,

ϕ : [0, a] → R
n and ψ : [0, b] → R

n are given absolutely continuous functions.
Here u(x+k , y) and u(x

−
k , y) denote the right and left limits of u(x, y) at x = xk,

respectively.
In this paper we initiate the application of the method of upper and lower

solutions for impulsive hyperbolic implicit differential equations. These results
are based on Schauder’s fixed point theorem [18].

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper. By C(J) we denote the Banach space of all
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continuous functions from J into Rn with the norm

‖w‖∞ = sup
(x,y)∈J

‖w(x, y)‖,

where ‖.‖ denotes a suitable complete norm on R
n. As usual, by AC(J) we

denote the space of absolutely continuous functions from J into Rn and L1(J)
is the space of Lebegue-integrable functions w : J → R

n with the norm

‖w‖1 =

∫ a

0

∫ b

0

‖w(x, y)‖ dydx.

Definition 2.1 [20, 30] Let α ∈ (0,∞) and u ∈ L1(J). The partial Riemann–
Liouville integral of order α of u(x, y) with respect to x is defined by the ex-
pression

Iα0,xu(x, y) =
1

Γ(α)

∫ x

0

(x− s)α−1u(s, y) ds,

for almost all x ∈ [0, a] and almost all y ∈ [0, b],

where Γ(.) is the (Euler’s) Gamma function defined by Γ(ς) =
∫∞
0
tς−1e−t dt;

ς > 0.

Analogously, we define the integral

Iα0,yu(x, y) =
1

Γ(α)

∫ y

0

(y − s)α−1u(x, s) ds,

for almost all x ∈ [0, a] and almost all y ∈ [0, b].

Definition 2.2 [20, 30] Let α ∈ (0, 1] and u ∈ L1(J). The Riemann–Liouville
fractional derivative of order α of u(x, y) with respect to x is defined by

(Dα
0,xu)(x, y) =

∂

∂x
I1−α
0,x u(x, y), for almost all x ∈ [0, a] and almost all y ∈ [0, b].

Analogously, we define the derivative

(Dα
0,yu)(x, y) =

∂

∂y
I1−α
0,y u(x, y), for almost all x ∈ [0, a] and almost all y ∈ [0, b].

Definition 2.3 [20, 30] Let α ∈ (0, 1] and u ∈ L1(J). The Caputo fractional
derivative of order α of u(x, y) with respect to x is defined by the expression

cDα
0,xu(x, y) = I1−α

0,x

∂

∂x
u(x, y), for almost all x ∈ [0, a] and almost all y ∈ [0, b].

Analogously, we define the derivative

cDα
0,yu(x, y) = I1−α

0,y

∂

∂y
u(x, y), for almost all x ∈ [0, a] and almost all y ∈ [0, b].
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Definition 2.4 [33] Let r = (r1, r2) ∈ (0,∞)×(0,∞), θ = (0, 0) and u ∈ L1(J).
The left-sided mixed Riemann–Liouville integral of order r of u is defined by

(Irθu)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1u(s, t) dtds.

In particular,

(Iθθu)(x, y) = u(x, y), (Iσθ u)(x, y) =

∫ x

0

∫ y

0

u(s, t) dtds;

for almost all (x, y) ∈ J,

where σ = (1, 1). For instance, Irθu exists for all r1, r2 ∈ (0,∞), when u ∈ L1(J).
Note also that when u ∈ C(J), then (Irθu) ∈ C(J), moreover

(Irθu)(x, 0) = (Irθu)(0, y) = 0; x ∈ [0, a], y ∈ [0, b].

Example 2.5 Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0,∞)× (0,∞), then

Irθx
λyω =

Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ+ r1)Γ(1 + ω + r2)
xλ+r1yω+r2 , for almost all (x, y) ∈ J.

By 1 − r we mean (1 − r1, 1 − r2) ∈ [0, 1)× [0, 1). Denote by D2
xy := ∂2

∂x∂y ,
the mixed second order partial derivative.

Definition 2.6 [33] Let r ∈ (0, 1] × (0, 1] and u ∈ L1(J). The mixed frac-
tional Riemann–Liouville derivative of order r of u is defined by the expression
Dr

θu(x, y) = (D2
xyI

1−r
θ u)(x, y) and the Caputo fractional-order derivative of or-

der r of u is defined by the expression cDr
θu(x, y) = (I1−r

θ D2
xyu)(x, y).

The case σ = (1, 1) is included and we have

(Dσ
θ u)(x, y) = (cDσ

θ u)(x, y) = (D2
xyu)(x, y), for almost all (x, y) ∈ J.

Example 2.7 Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0, 1]× (0, 1], then

Dr
θx

λyω =
Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ− r1)Γ(1 + ω − r2)
xλ−r1yω−r2 , for almost all (x, y) ∈ J.

Definition 2.8 [35] For a function u : J → R
n, we set

q(x, y) = u(x, y)− u(x, 0)− u(0, y) + u(0, 0).

By the mixed regularized derivative of order r = (r1, r2) ∈ (0, 1] × (0, 1] of a
function u(x, y), we name the function

D
r

θu(x, y) = Dr
θq(x, y).
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The function
D

r1
0,xu(x, y) = Dr1

0,x[u(x, y)− u(0, y)],

is called the partial r1-order regularized derivative of the function u(x, y) : J →
R

n with respect to the variable x. Analogously, we define the derivative

D
r2
0,yu(x, y) = Dr2

0,y[u(x, y)− u(x, 0)].

Let a1 ∈ [0, a], z+ = (a1, 0) ∈ J , Jz = (a1, a] × [0, b], r1, r2 > 0 and
r = (r1, r2). For u ∈ L1(Jz,R

n), the expression

(Irz+u)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

a+
1

∫ y

0

(x− s)r1−1(y − t)r2−1u(s, t) dtds,

is called the left-sided mixed Riemann–Liouville integral of order r of u.

Definition 2.9 [33]. For u ∈ L1(Jz ,R
n) where D2

xyu is Lebesque integrable
on [xk, xk+1] × [0, b], k = 0, . . . ,m, the Caputo fractional-order derivative of
order r of u is defined by the expression (cDr

z+f)(x, y) = (I1−r
z+ D2

xyf)(x, y).
The Riemann–Liouville fractional-order derivative of order r of u is defined by
(Dr

z+f)(x, y) = (D2
xyI

1−r
z+ f)(x, y).

Analogously, we define the derivatives

D
r

z+u(x, y) = Dr
z+q(x, y),

D
r1
a1,xu(x, y) = Dr1

a1,x[u(x, y)− u(0, y)],

and
D

r2
a1,yu(x, y) = Dr2

a1,y[u(x, y)− u(x, 0)].

3 Existence of solutions

To define the solutions of problems (1)–(3), we shall consider the space

PC(J) =
{
u : J → R

n : u ∈ C(Jk); k = 0, 1, . . . ,m, and

there exist u(x−k , y) and u(x
+
k , y); k = 1, . . . ,m,

with u(x−k , y) = u(xk, y) for each y ∈ [0, b]
}
.

This set is a Banach space with the norm

‖u‖PC = sup
(x,y)∈J

‖u(x, y)‖.

Definition 3.1 A function u ∈ PC(J)
⋂⋃m

k=0 C
1((xk, xk+1)× [0, b]) such that

u, D
r1
xk,xu, D

r2
xk,yu, D

r

θku; k = 0, . . . ,m, are continuous on Jk and I
1−r
θk

u ∈
AC(Jk) is said to be a solution of (1)–(3) if u satisfies equation (1) on Jk, and
conditions (2), (3) are satisfied.
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Let z, z̄ ∈ C(J) be such that

z(x, y) = (z1(x, y), z2(x, y), . . . , zn(x, y)); (x, y) ∈ J,

and
z̄(x, y) = (z̄1(x, y), z̄2(x, y), . . . , z̄n(x, y)); (x, y) ∈ J.

The notation z ≤ z̄ means that

zi(x, y) ≤ z̄i(x, y); i = 1, . . . , n,

and

max
(x,y)∈J

z(x, y) :=

(
max

(x,y)∈J
z1(x, y), max

(x,y)∈J
z2(x, y), . . . , max

(x,y)∈J
zn(x, y)

)
.

Definition 3.2 A function z ∈ PC(J)
⋂⋃m

k=0 C
1((xk, xk+1)× [0, b]) is said to

be a lower solution of (1)–(3) if z satisfies

D
r

θkz(x, y) ≤ f(x, y, z(x, y), D
r

θkz(x, y)),

z(x, 0) ≤ ϕ(x), z(0, y) ≤ ψ(y) on Jk,

z(x+k , y) ≤ z(x−k , y) + Ik(z(x
−
k , y)), if y ∈ [0, b]; k = 1, . . . ,m,

z(x, 0) ≤ ϕ(x), z(0, y) ≤ ψ(y) on J, and z(0, 0) ≤ ϕ(0).

The function z is said to be an upper solution of (1)–(3) if the reversed inequal-
ities hold.

For the existence of solutions for the problem (1)–(3) we need the following
lemmas

Lemma 3.3 [35] Let a function f : J × R
n × R

n → R
n be continuous. Then

problem

D
r

θ0u(x, y) = f(x, y, u(x, y), D
r

θ0u(x, y)); if (x, y) ∈ J := [0, a]× [0, b], (4)⎧⎪⎨⎪⎩
u(x, 0) = ϕ(x); x ∈ [0, a],

u(0, y) = ψ(y); y ∈ [0, b],

ϕ(0) = ψ(0),

(5)

is equivalent to the equation

g(x, y) = f(x, y, μ(x, y) + Irθ0g(x, y), g(x, y)), (6)

and if g ∈ C(J) is the solution of (6), then u(x, y) = μ(x, y) + Irθ0g(x, y), where

μ(x, y) = ϕ(x) + ψ(y)− ϕ(0).
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Lemma 3.4 [6] Let 0 < r1, r2 ≤ 1 and let h : J → R
n be continuous. A func-

tion u ∈ PC(J) is a solution of the fractional integral equation

u(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(x, y) +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t) dtds;

if (x, y) ∈ [0, x1]× [0, b],

μ(x, y) +

k∑
i=1

(Ii(u(x
−
i , y))− Ii(u(x

−
i , 0)))

+
1

Γ(r1)Γ(r2)

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1h(s, t) dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t) dtds;

if (x, y) ∈ (xk, xk+1]× [0, b], k = 1, . . . ,m,

(7)
if and only if u is a solution of the fractional IVP

cDr
θku(x, y) = h(x, y); (x, y) ∈ Jk, k = 0, . . . ,m, (8)

u(x+k , y) = u(x−k , y) + Ik(u(x
−
k , y)); y ∈ [0, b], k = 1, . . . ,m. (9)

By Lemmas 3.3 and 3.4, we have

Lemma 3.5 Let a function f : J×R
n×R

n → R
n be continuous. Then problem

(1)–(3) is equivalent to the problem of the solution of the equation

g(x, y) = f(x, y, ξ(x, y), g(x, y)), (10)

where

ξ(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(x, y) +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1g(s, t) dtds;

if (x, y) ∈ [0, x1]× [0, b],

μ(x, y) +

k∑
i=1

(Ii(u(x
−
i , y))− Ii(u(x

−
i , 0)))

+
1

Γ(r1)Γ(r2)

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1g(s, t) dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1g(s, t) dtds;

if (x, y) ∈ (xk, xk+1]× [0, b], k = 1, . . . ,m,

μ(x, y) = ϕ(x) + ψ(y)− ϕ(0).

And if g ∈ C(J) is the solution of (10), then u(x, y) = ξ(x, y).
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Further, we present conditions for the existence of solutions of problem
(1)–(3).

Theorem 3.6 Assume

(H1) The function f : J × R
n × R

n → R
n is continuous,

(H2) There exist v and w ∈ PC
⋂
C1((xk, xk+1) × [0, b]), k = 0, . . . ,m lower

and upper solutions for the problem (1)–(3) such that v ≤ w,

(H3) The functions Ik : Rn → R
n; k = 1, . . . ,m are continuous and for each

y ∈ [0, b], we have

v(x+k , y) ≤ min
u∈[v(x−

k ,y),w(x−
k ,y)]

Ik(u) ≤ max
u∈[v(x−

k ,y),w(x−
k ,y)]

Ik(u) ≤ w(x+k , y),

k = 1, . . . ,m.

Then the problem (1)–(3) has at least one solution u such that

v(x, y) ≤ u(x, y) ≤ w(x, y); for all (x, y) ∈ J.

Proof Transform the problem (1)–(3) into a fixed point problem. Consider
the following modified problem,

D
r

θk
u(x, y) = g(x, y); if (x, y) ∈ Jk; k = 0, . . . ,m, (11)

u(x+k , y) = u(x−k , y) + Ik(h(x
−
k , y, u(x

−
k , y))); if y ∈ [0, b]; k = 1, . . . ,m, (12)

u(x, 0) = ϕ(x), u(0, y) = ψ(y); x ∈ [0, a], y ∈ [0, b], (13)

where g ∈ C(J) such that for each (x, y) ∈ J

g(x, y) = f(x, y, h(x, y, u(x, y)), D
r

θkh(x, y, u(x, y))); k = 0, . . . ,m,

and
h(x, y, u(x, y)) = max{v(x, y),min{u(x, y), w(x, y)}}.

A solution to (11)–(13) is a fixed point of the operator N : PC(J) → PC(J)
defined by,

N(u)(x, y) = μ(x, y) +
∑

0<xk<x

(Ik(h(x
−
k , y, u(x

−
k , y)))− Ik(h(x

−
k , 0, u(x

−
k , 0))))

+
1

Γ(r1)Γ(r2)

∑
0<xk<x

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1g(s, t) dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1g(s, t) dtds.

Notice that g is a continuous function, and from (H2) there exists M > 0 such
that

‖g(x, y)‖ ≤M, for each (x, y) ∈ J. (14)



Upper and lower solutions method for Darboux problem. . . 13

Also, by the definition of h and from (H3) we have

v(x+k , y) ≤ Ik(h(xk, y, u(xk, y))) ≤ w(x+k , y); y ∈ [0, b]; k = 1, . . . ,m, (15)

Set

η = ‖μ‖∞ + 2

m∑
k=1

max
y∈[0,b]

(‖v(x+k , y)‖, ‖w(x+k , y)‖) +
2Mar1br2

Γ(r1 + 1)Γ(r2 + 1)
,

and
D = {u ∈ PC(J) : ‖u‖PC ≤ η}.

Clearly D is a closed convex subset of PC(J) and that N maps D into D. We
shall show that N satisfies the assumptions of Schauder’s fixed point theorem
[18]. The proof will be given in several steps.

Step 1: N is continuous.
Let {un}n∈N be a sequence such that un → u in D. Then, for each (x, y) ∈ J ,
we have

‖N(un)(x, y) −N(u)(x, y)‖

≤
m∑

k=1

(
‖Ik(h(x−k , y, un(x−k , y))))− Ik(h(x

−
k , y, u(x

−
k , y)))‖

+ ‖Ik(h(x−k , 0, un(x−k , 0)))− Ik(h(x
−
k , 0, u(x

−
k , 0)))‖

)
+

1

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1‖gn(s, t)− g(s, t)‖ dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1‖gn(s, t)− g(s, t) ‖dtds, (16)

where gn, g ∈ C(J) such that

gn(x, y) = f(x, y, h(x, y, un(x, y)), D
r

θk
h(x, y, un(x, y))); k = 0, . . . ,m,

and

g(x, y) = f(x, y, h(x, y, u(x, y)), D
r

θk
h(x, y, u(x, y))); k = 0, . . . ,m.

Since un → u as n→ ∞ and f, h are continuous functions, we get
gn(x, y) → g(x, y) as n→ ∞, for each (x, y) ∈ J.

Also Ik; k = 1, . . . ,m are continuous functions. Hence, (16) gives

‖N(un)−N(u)‖PC → 0 as n→ ∞.

Step 2: N(D) is bounded.
This is clear since N(D) ⊂ D and D is bounded.
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Step 3: N(D) is equicontinuous.
Let (τ1, y1), (τ2, y2) ∈ J , τ1 < τ2 and y1 < y2 and let u ∈ D. Then

‖N(u)(τ2, y2)−N(u)(τ1, y1)‖ ≤ ‖μ(τ1, y1)− μ(τ2, y2)‖

+
m∑

k=1

∥∥∥Ik(h(x−k , y1, u(x−k , y1))) − Ik(h(x
−
k , y2, u(x

−
k , y2)))

∥∥∥
+

1

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y1

0

(xk − s)r1−1[(y2 − t)r2−1− (y1 − t)r2−1]‖g(s, t)‖dtds

+
1

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y2

y1

(xk − s)r1−1(y2 − t)r2−1‖g(s, t)‖dtds

+
1

Γ(r1)Γ(r2)

∫ τ1

0

∫ y1

0

[(τ2 − s)r1−1(y2 − t)r2−1 − (τ1 − s)r1−1(y1 − t)r2−1]

× ‖g(s, t)‖ dtds
+

1

Γ(r1)Γ(r2)

∫ τ2

τ1

∫ y2

y1

(τ2 − s)r1−1(y2 − t)r2−1‖g(s, t)‖ dtds

+
1

Γ(r1)Γ(r2)

∫ τ1

0

∫ y2

y1

(τ2 − s)r1−1(y2 − t)r2−1‖g(s, t)‖ dtds

+
1

Γ(r1)Γ(r2)

∫ τ2

τ1

∫ y1

0

(τ2 − s)r1−1(y2 − t)r2−1‖g(s, t)‖ dtds,

where g ∈ C(J) such that

g(x, y) = f(x, y, h(x, y, u(x, y)), D
r

θkh(x, y, u(x, y)); k = 0, . . . ,m.

Then,

‖N(u)(τ2, y2)−N(u)(τ1, y1)‖ ≤ ‖μ(τ1, y1)− μ(τ2, y2)‖

+

m∑
k=1

∥∥∥Ik(h(x−k , y1, u(x−k , y1))) − Ik(h(x
−
k , y2, u(x

−
k , y2)))

∥∥∥
+

M

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y1

0

(xk − s)r1−1[(y2 − t)r2−1 − (y1 − t)r2−1] dtds

+
M

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y2

y1

(xk − s)r1−1(y2 − t)r2−1dtds

+
M

Γ(r1)Γ(r2)

∫ τ1

0

∫ y1

0

[(τ2 − s)r1−1(y2 − t)r2−1 − (τ1 − s)r1−1(y1 − t)r2−1]dtds

+
M

Γ(r1)Γ(r2)

∫ τ2

τ1

∫ y2

y1

(τ2 − s)r1−1(y2 − t)r2−1dtds

+
M

Γ(r1)Γ(r2)

∫ τ1

0

∫ y2

y1

(τ2 − s)r1−1(y2 − t)r2−1 dtds

+
M

Γ(r1)Γ(r2)

∫ τ2

τ1

∫ y1

0

(τ2 − s)r1−1(y2 − t)r2−1 dtds.
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Thus,

‖N(u)(τ2, y2)−N(u)(τ1, y1)‖ ≤ ‖μ(τ1, y1)− μ(τ2, y2)‖

+

m∑
k=1

∥∥Ik(h(x−k , y1, u(x−k , y1))) − Ik(h(x
−
k , y2, u(x

−
k , y2)))

∥∥
+

2M

Γ(1 + r1)Γ(1 + r2)

∣∣∣2yr22 (τ2 − τ1)
r1 + 2τr12 (y2 − y1)

r2

+ τr11 yr21 − τr12 yr22 − 2(τ2 − τ1)
r1(y2 − y1)

r2
∣∣∣.

Since the functions μ, h and Ik; k = 1, . . . ,m are continuous, then; for any
ε > 0, there exists δ > 0, such that max{τ2 − τ1, y2 − y1} < δ implies

‖μ(τ1, y1)− μ(τ2, y2)‖ < ε

3
,

m∑
k=1

∥∥∥Ik(h(x−k , y1, u(x−k , y1)))− Ik(h(x
−
k , y2, u(x

−
k , y2)))

∥∥∥ < ε

3
,

and∣∣∣2yr22 (τ2 − τ1)
r1 + 2τr12 (y2 − y1)

r2 + τr11 yr21 − τr12 yr22 − 2(τ2 − τ1)
r1(y2 − y1)

r2
∣∣∣

<
εΓ(1 + r1)Γ(1 + r2)

6M
.

Hence, for any ε > 0, there exists δ > 0, such that max{τ2 − τ1, y2 − y1} < δ
implies

‖N(u)(τ2, y2)−N(u)(τ1, y1)‖ < ε.

As a consequence of Steps 1 to 3 together with the Arzelá–Ascoli theorem, we
can conclude that N : D → D is continuous and compact. From an application
of Schauder’s theorem [18], we deduce that N has a fixed point u which is a
solution of the problem (11)–(13).
Step 4: The solution u of (11)–(13) satisfies

v(x, y) ≤ u(x, y) ≤ w(x, y); for all (x, y) ∈ J.

Let u be the above solution to (11)–(13). We prove that

u(x, y) ≤ w(x, y) for all (x, y) ∈ J.

Assume that u−w attains a positive maximum on [xk, xk+1]× [0, b] at (xk, y) ∈
[xk, xk+1]× [0, b] for some k = 0, . . . ,m, that is,

(u − w)(xk, y) = max{u(x, y)− w(x, y) : (x, y) ∈ [xk, xk+1]× [0, b]} > 0,

for some k = 0, . . . ,m.

We distinguish the following cases.
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Case 1. If (xk, y) ∈ (xk, xk+1)×[0, b] there exists (x∗k, y
∗) ∈ (xk, xk+1)×[0, b]

such that

[u(x, y∗)− w(x, y∗)] + [u(x∗k, y)− w(x∗k, y)]− [u(x∗k, y
∗)− w(x∗k , y

∗)] ≤ 0;

for all (x, y) ∈ ([x∗k, xk]× {y∗}) ∪ ({x∗k} × [y∗, b]), (17)

and
u(x, y)− w(x, y) > 0; for all (x, y) ∈ (x∗k, xk]× (y∗, b]. (18)

By the definition of h one has

D
r

θ∗
k
u(x, y) = g(x, y); for all (x, y) ∈ [x∗k, xk]× [y∗, b], (19)

where θ∗k = (x∗k, 0) and

g(x, y) = f(x, y, w(x, y), D
r

θ∗
k
w(x, y)); for all (x, y) ∈ [x∗k, xk]× [y∗, b].

An integration of (19) on [x∗k, x]× [y∗, y] for each (x, y) ∈ [x∗k, xk]× [y∗, b] yields

u(x, y) + u(x∗k, y
∗)− u(x, y∗)− u(x∗k, y)

=
1

Γ(r1)Γ(r2)

∫ x

x∗
k

∫ y

y∗
(x − s)r1−1(y − t)r2−1g(s, t) dtds. (20)

From (20) and using the fact that w is an upper solution to (1)–(3) we get

u(x, y)+u(x∗k, y
∗)−u(x, y∗)−u(x∗k, y) ≤ w(x, y)+w(x∗k , y

∗)−w(x, y∗)−w(x∗k, y),
which gives,

[u(x, y)− w(x, y)]

≤ [u(x, y∗)− w(x, y∗)] + [u(x∗k, y)− w(x∗k, y)]− [u(x∗k, y
∗)− w(x∗k , y

∗)]. (21)

Thus from (17), (18) and (21) we obtain the contradiction

0 < [u(x, y)− w(x, y)]

≤ [u(x, y∗)− w(x, y∗)] + [u(x∗k, y)− w(x∗k, y)]− [u(x∗k, y
∗)− w(x∗k, y

∗)] ≤ 0;

for all (x, y) ∈ [x∗k, xk]× [y∗, b].

Case 2. If xk = xk, k = 1, . . . ,m, then

w(x+k , y) < Ik(h(x
−
k , u(x

−
k , y))) ≤ w(x+k , y),

which is a contradiction. Thus

u(x, y) ≤ w(x, y), for all (x, y) ∈ J.

Analogously, we can prove that

u(x, y) ≥ v(x, y), for all (x, y) ∈ J.

This shows that the problem (11)–(13) has a solution u satisfying v ≤ u ≤ w
which is solution of (1)–(3). �
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of fractional-order controllers. fractional order calculus and its applications. Nonlinear
Dynam. 29 (2002), 281–296.

[30] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives. Theory
and Applications. Gordon and Breach, Yverdon, 1993.
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