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Abstract

This paper presents vector versions of some existence results recently
published for certain fourth order differential systems based on gener-
alisations drawn from possibilities arising from the underlying auxiliary
equation. The results obtained also extend some known works involving
third order differential systems to the corresponding fourth order.
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1 Introduction

Studies into fourth order nonlinear differential equations of the form

x(iv) + φ(x′′′) + f(x′′) + g(x′) + h(x) = p(t, x, x′, x′′, x′′′) (1.1)

have engaged several authors for over half a century, with a wide range of qual-
itative properties being investigated (See Reissig, Sansone and Conti [8] for the
earlier results). Still there is much ground yet uncovered. Attention has recently
focused on periodic boundary value problems of fourth order nonlinear differ-
ential equations and new results have appeared in this regard to point the way
forward, particularly the papers by Ezeilo ([3, 4]) and Tejumola ([9, 10]). Credi-
ble solvability hypotheses have been evolved which were derived from techniques
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which include generalisations of the Routh-Hurwitz conditions, permutations in-
volving roots of the underlying auxiliary equation, and an eigenvalue problem
approach. The proofs were based on the application of one of several versions
of the Leray-Schauder continuation technique in which the parameter depen-
dent equations and the mode of computing the relevant a priori estimates may
vary from one configuration of the given problem to the other depending on the
hypotheses employed.
Vector results for boundary value problems of fourth order nonlinear dif-

ferential systems appear not to have received much, if any, attention, since
the theory for the scalar forms are currently still being developed themselves.
Notwithstanding, it is important both from the mathematical and practical
point of view, to attempt to provide vector versions to available results in the
scalar case which appear on the horizon, which is by no means a trivial transi-
tion. This is our prime motivation for this work.
We shall be concerned with the T -periodic boundary value problems of forced

fourth order differential systems of the form

X(IV ) +AX ′′′ +BX ′′ +
d

dt
G(X) +DX = P (t) (1.2)

and
X(IV ) +AX ′′′ +BX ′′ +G(t,X ′) +DX = P (t) (1.3)

subject to the periodic boundary conditions

D(r)X(0) = D(r)X(T ),

(
D =

d

dt

)
, r = 0, 1, 2, 3 (1.4)

on [0, T ] with T > 0.
Here, X ≡ (xi)1≤i≤n : [0, T ] → R

n, the n-dimensional Euclidean Space,
equipped with the usual norm ‖ ·‖ and scalar product 〈·, ·〉, defined by 〈X,Y 〉 =∑n

i=1 xiyi for any pair X,Y ∈ R
n, so that 〈X,X〉 = ‖X‖2 is the usual Euclidean

norm in R
n. A, B and D are constant real symmetric n × n matrices, while

G and P are n-vectors, which are T -periodic in t. Furthermore, G ∈ C1 while
G(t, Y ) satisfies the Carathéodory conditions.
The classical spaces of k times continuously differentiable functions shall be

denoted by Ck([0, T ],Rn), k ≥ 0 an integer, where C0 = C and C∞ =
⋂

k≥0 C
k

with norms ‖X‖Ck and ‖X‖∞ respectively.
Lp = Lp([0, T ]), 1 ≤ p ≤ ∞, will denote the usual Lebesgue spaces, with

their respective norms ‖X‖Lp.
Finally, W k,p

T ([0, T ],Rn), will denote the Sobolev space of T -periodic func-
tions of order k, defined by

W k,p
T = {X : [0, T ]→R

n : X,X
′
, . . . , X(k−1) are absolutely continuous on [0, T ],

X(k) ∈ Lp (0, T ) and X(i)(0)−X(i)(T ) = 0, i = 0, 1, 2, . . . , k − 1, k ∈ R}

with corresponding norm ‖X‖Wk,p
T
.
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It is standard result that if M is a real n × n symmetric matrix, then for
any X ∈ R

n,
δm‖X‖2 ≤ 〈MX,X〉 ≤ Δm‖X‖2, (1.5)

where δm and Δm are positive real constants which represent respectively, the
least and greatest eigenvalues ofM . In general, λi(M), i = 1, . . . , n, shall denote
the eigenvalues of any matrixM ; and ‖M‖ denote the norm ofM thought of as
a linear operator in R

n (that is, spectral norm of M with respect to the inner
product 〈·, ·〉).
Furthermore, the following algebraic inequalities also hold:
LetM1 andM2 be any two real n×n commuting symmetric matrices. Then
(i) the eigenvalues λi(M1 +M2), i = 1, . . . , n, of the sum of matrices M1 and

M2 are all real and satisfy

min1≤j≤n λj(M1) + min1≤k≤n λk(M2) ≤ λi(M1 +M2)

≤ max1≤j≤n λj(M1) + max1≤k≤n λk(M2) (1.6)

(ii) the eigenvalues λi(M1M2), i = 1, . . . , n, of the product of matrices M1

and M2 are all real and satisfy

min
1≤j,k≤n

{λj(M1)λk(M2)} ≤ λi(M1M2) ≤ max
1≤j,k≤n

{λj(M1)λk(M2)}. (1.7)

Our results complement existing results in the literature and also extend some
known works (Afuwape et al. [1], Ezeilo and Nkashama [5], Ezeilo and Omari
[6] and Ezeilo and Onyia [7]) involving third order differential systems to the
corresponding fourth order.

2 Preliminary analysis and main results

Let L : domL ⊂W 4,1
T → L1 be the linear differential operator defined by

LX := X(IV ) +AX ′′′ +BX ′′ + CX ′ +DX. (2.1)

By substituting X(t) = In exp(ikωt), with In ∈ R
n a unit vector, i =

√−1,
ω = 2π

T , k ∈ N, we have

L1X ≡ exp(ikωt)
[
k2ω2(k2ω2I −B) +D + ikω(C − k2ω2A)

]
, (2.2)

where I is the n× n identity matrix.
If we set LX ≡ 0, then we have two situations, namely, the resonance case

when kerL �= {0}, and the non-resonance case when kerL = {0}.
The nonresonance situation corresponds to, amongst several possibilities,

either (or both) of the following conditions holding:

λi(A
−1C) �= k2i ω

2, with ki = 0, 1, 2, . . . (2.3)
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or

λi(D) �= k2ω2(k2ω2 − λi(B)), with k = 1, 2, . . . , i = 1, . . . , n. (2.4)

Condition (2.4) is also equivalent to

λi(D) �= 1

4
λ2i (B)), i = 1, . . . , n (2.5)

or in the special case that λi(B)) > 0, but 1
2λi(B)) �= integer2ω2, that is,

k2ω2 < 1
2λi(B)) < (k + 1)2ω2, with k = 1, 2, . . . (2.5) can be relaxed to

λi(D) �= 1

4
λ2i (B))− η2, i = 1, . . . , n, (2.6)

where

η := min

{
1

2
λi(B))− k2ω2, (k + 1)2ω2 − 1

2
λi(B))

}
> 0,

with k = 1, 2, . . . , i = 1, . . . , n.
In this paper, we shall be concerned with the particular case of condition

(2.3). Results relating to generalisations of conditions (2.5) and (2.6) will follow
in a subsequent paper.
We deduce therefore that the homogeneous T -periodic boundary value prob-

lem LX = 0 subject to (2.3) has no non-trivial solution. This in turn implies
that the inhomogeneous T -periodic boundary value problemLX = P (t) subject
to (2.3) has a solution for every P ∈ L1(0, T ).
Our main results are as follows:

Theorem 2.1 Let A and D be nonsingular matrices and suppose that G satis-
fies

k2ω2 + α1(‖X‖) ≤ 〈A−1G(X), X〉
‖X‖2 ≤ (k + 1)2ω2 − α2(‖X‖) (2.7)

uniformly in X ∈ R
n with ‖X‖ ≥ r > 0, and a.e. [0, T ], where k ∈ N, ω = 2π

T ,
and αi : R

n
+ → R, i = 1, 2 are two functions which are such that

lim
‖X‖→+∞

‖X‖αi(‖X‖) = +∞. (2.8)

Then system (1.2)–(1.4) has at least one solution, for every P ∈ L1([0, T ],Rn)
and all arbitrary matrix B.

Theorem 2.2 Let A and D be nonsingular matrices and suppose that G sat-
isfies

k2ω2 + β1(‖X ′‖) ≤ 〈A−1G(t,X ′), X ′〉
‖X ′‖2 ≤ (k + 1)2ω2 − β2(‖X ′‖) (2.9)
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uniformly in X ′ ∈ R
n with ‖X ′‖ ≥ r > 0, and a.e. [0, T ], where k ∈ N, ω = 2π

T ,
and βi : Rn

+ → R, i = 1, 2 are two functions which are such that

lim
‖X′‖→+∞

‖X ′‖ βi(‖X ′‖) = +∞. (2.10)

Then system (1.3)–(1.4) has at least one solution, for every P ∈ L1([0, T ],Rn)
and all arbitrary matrix B.

Let ν and β be constants defined by

ν =
1

2

(
k2ω2 + (k + 1)2ω2

)
, β =

1

2

(
(k + 1)2ω2 − k2ω2

)
.

Since ν �= integer2ω2, the constant coefficient differential system

W (IV ) +AW
′′′
+BW

′′
+ νAW ′ +DW = 0 (2.11)

subject to the periodic boundary conditions (1.4) has only the trivial solution
W ≡ 0. Consequently, for each P ∈ L1([0, T ],Rn), there exists exactly one
function W = KP ∈W 4,1

T ([0, T ],Rn), satisfying (1.4) and

W (IV ) +AW
′′′
+BW

′′
+ νAW ′ +DW = P (·) (2.12)

by the Fredholm alternative, where K : domK ⊂ L1 →W 4,1
T .

For ease of evaluation, we make the change of variable Z = X −W , with W
given by (2.12), then from (1.2), (1.3) and (1.4) we obtain respectively

Z(IV ) +AZ ′′′ +BZ ′′ +
d

dt

(
G(Z +W )− νAW

)
+DZ = 0 (2.13)

and

Z(IV ) +AZ ′′′ +BZ ′′ +G(t, Z ′ +W ′)− νAW ′ +DZ = 0 (2.14)

subject to

D(r)Z(0) = D(r)Z(T ),

(
D =

d

dt

)
, r = 0, 1, 2, 3. (2.15)

For λ ∈ [0, 1], we shall embed (2.13) and (2.14) in the parameter (λ)-dependent
systems

Z(IV )+AZ ′′′+BZ ′′+(1−λ)νAZ ′+λ
d

dt

(
G(Z+W )−νAW

)
+DZ = 0 (2.16)

and

Z(IV )+AZ ′′′+BZ ′′+(1−λ)νAZ ′
+λ

(
G(t, Z ′+W ′)−νAW ′)+DZ = 0 (2.17)

respectively.
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Then observe that at λ = 0, both equations reduce to the constant coefficient
differential system

Z(IV ) +AZ
′′′
+BZ

′′
+ νAZ ′ +DZ = 0 (2.18)

which subject to (2.15) has only the trivial solution W ≡ 0 as shown earlier.
Similarly at λ = 1, the equations reduce to their original forms (1.2) and (1.3)
respectively.
Thus the existence of solutions is then established by standard Leray–Schau-

der techniques by showing that there exists a constant Δ > 0 independent of
λ ∈ [0, 1] such that

‖Z(r)‖C ≤ Δ, where r = 0, 1, 2, 3 (2.19)

for every possible solution of (2.16) and (2.17) respectively.

3 Proof of our main results

Proof of Theorem 2.1 In order to apply conditions (2.7) and (2.8), we shall
re-write (2.16) as

Z ′′′+AZ ′′+BZ ′+(1−λ)νAZ+λ
(G(Z+W )−νAW )

= −D
∫ t

0

Z(τ) dτ. (3.1)

Then if we set Z1 = Z, Z2 = Z ′
1, Z3 = Z ′

2, (3.1) reduces to the system

Z ′
1 = Z2, Z ′

2 = Z3

Z ′
3 = Z4 − AZ3 −BZ2 − νAZ1 − λ

(G(Z1 +W )−AνW − νAZ1

)
Z ′
4 = −DZ1

⎫⎪⎬⎪⎭ (3.2)

with the corresponding periodic boundary conditions

Zr(0) = Zr(T ) r = 1, 2, 3, 4. (3.3)

With this representation, the defining equation for Z ′
3 assumes prominence in

our study, which we now write in the form

Z ′
3 = Z4 − AZ3 −BZ2 − G̃λ(t, Z1) (3.4)

where G̃λ(t, Z1) = (1− λ)νAZ1 + λAG̃(t, Z1), with G̃(t, Z1) = A−1G(Z1 +W )−
νW .
Indeed with notation, we obtain by hypotheses (2.7) and (2.8) the estimate

‖G̃(t, Z1)− νZ1‖ = ‖A−1G(Z1 +W )− νW − νZ1

)‖
≤ (‖Z1‖+ ‖W‖∞)

( 〈A−1G(Z1), Z1〉
‖Z1‖2 − ν

)
≤ (‖Z1‖+ ‖W‖∞)(β − α2(‖Z1‖)) ≤ β‖Z1‖ − k1, (3.5)
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uniformly in Z1 ∈ R
n and t ∈ [0, T ] with ‖Z1‖ ≥ r1, for some constant k1 > 0

and r1 > 0 depending on k1 and ‖W‖∞.
This implies that for a suitable constant k2 > 0,

‖G̃(t, Z1)− νZ1‖2 ≤ β2‖Z1‖2 − 2βk1‖Z1‖+ k2 (3.6)

for all Z1 ∈ R
n and t ∈ [0, T ].

Now, proceeding as in [12], we multiply both sides of (3.4) scalarly by Z3

and integrate over [0, T ] yielding∫ T

0

(〈Z ′
3, Z3〉− 〈Z4, Z3〉+ 〈AZ3, Z3〉+ 〈BZ2, Z3〉+ 〈G̃λ(t, Z1), Z3〉

)
dt = 0. (3.7)

It is easily checked that
∫ T

0
〈Z ′

3, Z3〉dt = 0,
∫ T

0
〈Z4, Z3〉dt = 0,

∫ T

0
〈BZ2, Z3〉dt =

0, so that (3.7) reduces to∫ T

0

(〈Z3, Z3〉+ 〈A−1G̃λ(t, Z1), Z3〉
)
dt = 0. (3.8)

The integrand in (3.8) can be reset as

〈Z3 +A−1G̃λ(t, Z1), Z3〉 = 〈Z3 +A−1G̃λ(t, Z1), Z3 + νZ1 − νZ1〉
= 〈Z3 +A−1G̃λ(t, Z1), Z3 + νZ1〉+ 〈Z3 +A−1G̃λ(t, Z1),−νZ1〉
=

1

2
‖Z3 +A−1G̃λ(t, Z1)‖

2
+

1

2
‖Z3 + νZ1‖2 − 1

2
‖A−1G̃λ(t, Z1)− νZ1‖

2

− ν
(〈Z3, Z1〉+ 〈A−1G̃λ(t, Z1), Z3〉

)
. (3.9)

However, if we multiply both sides of (3.4) scalarly by Z1 and integrate over
[0, T ], we obtain∫ T

0

(〈Z ′
3, Z1〉−〈Z4, Z1〉+〈AZ3, Z1〉+〈BZ2, Z1〉+〈G̃λ(t, Z1), Z1〉

)
dt = 0. (3.10)

Again noting that
∫ T

0
〈Z ′

3, Z1〉 dt = 0,
∫ T

0
〈Z4, Z1〉 dt = 0,

∫ T

0
〈BZ2, Z1〉 dt = 0,

we obtain ∫ T

0

(〈Z3, Z1〉+ 〈A−1G̃λ(t, Z1), Z3〉
)
dt = 0. (3.11)

Thus the integral over [0, T ] of the last term in (3.9) vanishes leading from (3.8)
to the identity∫ T

0

‖Z3 +A−1G̃λ(t, Z1)‖2dt+
∫ T

0

‖Z3 + νZ1‖2dt

=

∫ T

0

‖A−1G̃λ(t, Z1)− νZ1‖2dt = λ2
∫ T

0

‖G̃(t, Z1)− νZ1‖2dt. (3.12)
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Using the inequality ∫ T

0

‖Z3 + νZ1‖2dt ≥ β2

∫ T

0

‖Z1‖2dt (3.13)

which is derived from Lemma 3.1 of [2] by setting ν := ‖A−1JG‖, where JG is
the Jacobian matrix of G, and Z3 = Z ′′

1 , and also by (3.6), (3.12) becomes

β2

∫ T

0

‖Z1‖2dt+
∫ T

0

‖Z ′′
1 +A−1G̃λ(t, Z1)‖2dt

≤ β2

∫ T

0

‖Z1‖2dt− 2βk1

∫ T

0

‖Z1‖+ k2T. (3.14)

This yields the estmates(∫ T

0

‖Z ′′
1 +A−1G̃λ(t, Z1)‖2 dt

) 1
2

≤ k3 := k2T (3.15)

and ∫ T

0

‖Z1‖ dt ≤ k4 :=
k2T

2βk1
. (3.16)

Clearly by definition of G̃λ(t, Z1) in (3.4), there exist constants k5 > 0, k6 > 0
such that

‖G̃λ(t, Z1)‖ ≤ k5‖Z1‖+ k6 (3.17)

so that by (3.16), we obtain for some constant k7 > 0∫ T

0

‖G̃λ(t, Z1)‖dt ≤ k7. (3.18)

Hence, we deduce from (3.15) that∫ T

0

‖Z ′′
1 +A−1G̃λ(t, Z1)‖ dt ≤

(
T

∫ T

0

‖Z ′′
1 +A−1G̃λ(t, Z1)‖2 dt

) 1
2

≤ k8 := k3T
1
2

(3.19)
so that by (3.18), we obtain∫ T

0

‖Z ′′
1 ‖ dt ≤

∫ T

0

‖Z ′′
1 +A−1G̃λ(t, Z1)‖ dt+ ‖A‖−1

∫ T

0

‖G̃λ(t, Z1)‖ dt

≤ k9 := k8 + δ−1
A k7. (3.20)

Thus, applying (3.20) and the fact that Z1(0) = Z1(T ), we have

‖Z ′
1‖C ≤ T−1

∥∥∥∥ ∫ T

0

Z ′
1(t) dt

∥∥∥∥+

∫ T

0

‖Z ′′
1 ‖ dt ≤ k9. (3.21)
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This in turn yields, by (3.16)

‖Z1‖C ≤ T−1

∥∥∥∥∫ T

0

Z1(t) dt

∥∥∥∥+

∫ T

0

‖Z ′
1‖ dt ≤ k10 := k4T

−1 + k9T (3.22)

proving the case for r = 0, 1 in (2.19).
Next, we integrate both sides of (3.4) over [0, T ] using (3.3) to obtain

0 =

∫ T

0

Z4dt−
∫ T

0

G̃λ(t, Z1)dt (3.23)

yielding, by (3.18) ∥∥∥∥ ∫ T

0

Z4dt

∥∥∥∥ ≤ k7. (3.24)

Also, since Z ′
4 = −DZ1, we obtain

‖Z4‖C ≤ T−1

∥∥∥∥ ∫ T

0

Z4(t) dt

∥∥∥∥+

∫ T

0

‖Z ′
4‖ dt

≤ T−1

∥∥∥∥ ∫ T

0

Z4(t) dt

∥∥∥∥+ ‖D‖
∫ T

0

‖Z1‖ dt

≤ k11 := k7T
−1 +ΔDk4T. (3.25)

This estimate (3.25) obtained for Z4 will enable us to compute estimates for
the outstanding cases r = 2, 3 in (2.19), and for these we reset (3.4) and (2.16)
respectively as

Z ′
3 +AZ3 = U, where U = Z4 −BZ2 − G̃λ(t, Z1) (3.26)

and

Z
(IV )
1 +AZ ′′′

1 = V, where V = −(BZ ′′
1 + (1− λ)νAZ ′

1 +λA
d

dt
G̃(t, Z1) +DZ1).

(3.27)
It follows from estimates already established for ‖Z1‖C and ‖Z ′

1‖C that for some
constant k12 > 0

‖U‖C ≤ k12. (3.28)

Thus the linear equation (3.26) has solution Z3 = Z ′′
1 which satisfies

‖Z ′′
1 ‖C ≤ k13 := k12e

ΔATT. (3.29)

Similarly, we deduce from the estimates so far established for ‖Z1‖C , ‖Z ′
1‖C

and ‖Z ′′
1 ‖C that for some constant k14 > 0

‖V ‖C ≤ k14. (3.30)
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Then multiplying (3.27) scalarly by Z(IV )
1 and integrating over [0, T ] yields, in

view of (3.27)∫ T

0

‖Z(IV )
1 ‖2 dt ≤ ‖V ‖C

∫ T

0

‖Z(IV )
1 ‖ dt ≤ k14

(
T

∫ T

0

‖Z(IV )
1 ‖2 dt

) 1
2

(3.31)

from which we obtain (∫ T

0

‖Z(IV )
1 ‖2 dt

) 1
2

≤ k14T
1
2 (3.32)

implying in turn that for some constant k15 > 0

‖Z ′′′
1 ‖C ≤ k15 := k14T (3.33)

proving the cases for r = 2, 3 in (2.19), and concluding the proof of the theorem.

Proof of Theorem 2.2 We shall proceed as in the proof of the preceding
theorem, but here we shall deal with the given fourth order system (1.3) di-
rectly. Accordingly, effecting the usual transformation Z = X −W , we shall
be concerned with the parameter (λ)-dependent system (2.17) which we now
re-write as

A−1Z(IV ) + Z ′′′ +A−1BZ ′′ +A−1G̃λ(t, Z
′) +A−1DZ = 0 (3.34)

where
G̃λ(t, Z

′) = (1 − λ)νAZ
′
+ λAG̃(t, Z ′),

with G̃(t, Z ′) = A−1G(t, Z ′ +W ′)− νW ′.
It suffices to show that every possible solution Z ∈ C4([0, T ],Rn) of (3.34)–

(2.15) satisfies (2.19) for all λ ∈ [0, 1].
Now, multiplying both sides of (3.34) scalarly by Z

′′′
+ νZ

′
and integrating

over [0, T ] using (2.15), observing that∫ T

0

〈A−1Z(IV ) +A−1BZ
′′
+A−1DZ,Z

′′′
+ νZ

′〉 dt = 0,

we obtain ∫ T

0

〈Z ′′′
+A−1G̃λ(t, Z

′), Z
′′′
+ νZ

′〉 dt = 0. (3.35)

As in the preceding case, it is easily verified that (3.35) can be written as∫ T

0

‖Z ′′′
+ νZ

′‖2dt+
∫ T

0

‖Z ′′′
+A−1G̃λ(t, Z

′)‖2dt

=

∫ T

0

‖A−1G̃λ(t, Z
′)− νZ

′‖2dt = λ2
∫ T

0

‖G̃(t, Z ′)− νZ ′‖2dt. (3.36)
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Again, applying hypotheses (2.9) and (2.10), we obtain as in (3.5) and (3.6) the
estimate

‖G̃(t, Z ′)− νZ ′‖2 ≤ β2‖Z ′‖2 − 2βk16‖Z ′‖+ k17 (3.37)

uniformly in Z ′ ∈ R
n and a.e. t ∈ [0, T ] with ‖Z ′‖ ≥ r1, for some constants

k16 > 0, k17 > 0, and r1 > 0 depending on k16 and ‖W ′‖∞.
Hence using the inequality∫ T

0

‖Z ′′′ + νZ ′‖2dt ≥ β2

∫ T

0

‖Z ′‖2dt (3.38)

which has been established in Lemma 3.2 of [11], (3.36) when combined with
(3.37) becomes

β2

∫ T

0

‖Z ′‖2dt+
∫ T

0

‖Z ′′′ +A−1G̃λ(t, Z
′)‖2dt

≤ β2

∫ T

0

‖Z ′‖2dt− 2βk16

∫ T

0

‖Z ′‖+ k17T (3.39)

yielding the estmates(∫ T

0

‖Z ′′′ +A−1G̃λ(t, Z
′)‖2 dt

) 1
2

≤ k18 := k17T (3.40)

and ∫ T

0

‖Z ′‖dt ≤ k19 :=
k17T

2βk16
. (3.41)

Moreover, by definition of G̃λ(t, Z
′) in (3.34), there exist constants k20 > 0,

k21 > 0 such that
‖G̃λ(t, Z

′)‖ ≤ k20‖Z ′‖+ k21 (3.42)

so that by (3.41), we obtain for some constant k22 > 0∫ T

0

‖G̃λ(t, Z
′)‖ dt ≤ k22. (3.43)

Applying the same arguments as in preceding proof after (3.18), we obtain∫ T

0

‖Z ′′′‖ dt ≤ k23 (3.44)

which yields by (3.44), since Z ′(0) = Z ′(T )

‖Z ′′‖C ≤ k24 (3.45)

and in turn implying, since Z(0) = Z(T )

‖Z ′‖C ≤ k25 (3.46)

for some constant k25 > 0.
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Again integrating (3.34) over [0, T ] using (2.15), and applying (3.43) yields∫ T

0

‖Z‖ dt ≤ k26 := k22δ
−1
D (3.47)

leading to
‖Z‖C ≤ k27 := k26T

−1 + k25T (3.48)

for some constant k27 > 0.
Finally, combining (3.45), (3.46) and (3.48) yields

‖Z ′′′‖C ≤ k28 (3.49)

using exactly the same approach as in the preceding proof.
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