Triple Constructions of Decomposable MS-Algebras

Abd El-Mohsen BADAWY ${ }^{1}$, Daniela GUFFOVÁ ${ }^{2 a}$, Miroslav HAVIAR ${ }^{2 b}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Tanta University, Egypt
e-mail: mohsen_badawy@ymail.com
${ }^{2}$ Department of Mathematics, Matej Bel University
Tajovského 40, 97401 Banská Bystrica, Slovakia
${ }^{a}$ e-mail: Daniela.Guffova@umb.sk
${ }^{b}$ e-mail: Miroslav.Haviar@umb.sk

(Received November 22, 2011)

Abstract

A simple triple construction of principal $M S$-algebras is given which is parallel to the construction of principal p-algebras from principal triples presented by the third author in [7]. It is shown that there exists a one-to-one correspondence between principal $M S$-algebras and principal $M S$ triples. Further, a triple construction of a class of decomposable $M S$ algebras that includes the class of principal $M S$-algebras is given. It is a modification of the quadruple constructions by T. S. Blyth and J. C. Varlet [1], [2] and T. Katriňák and K. Mikula [10]; instead of Kleene algebras and the filters L^{\vee} used in their quadruples, de Morgan algebras and the filters $D(L)$, respectively, are used in our triples.

Key words: principal $M S$-algebra, principal $M S$-triple, decomposable $M S$-algebra, decomposable $M S$-triple, de Morgan algebra, filter
2000 Mathematics Subject Classification: 06D05, 06D30

1 Introduction

In 1980 T. S. Blyth and J. C. Varlet presented the first triple construction of $M S$ algebras from the subvariety K_{2} by means of Kleene algebras and distributive lattices [3]. In [4] this construction was improved via the language of quadruples. It was independently done by T. Katriňák and K. Mikula (in an unpublished paper) who then compared both approaches in [10].

Later, the third author [6] proved that there exists a one-to-one correspondence between the class of locally bounded K_{2}-algebras and the class of decomposable K_{2}-quadruples. In his work he assumed that the filter L^{\vee} of an $M S$-algebra L was principal which allowed him to simplify the previous constructions and work with pairs of elements only. A year later in [7] he presented a similar triple construction of principal p-algebras.

In Section 3 of this paper we present a simple triple construction of principal $M S$-algebras similar to that of [7] and we show that there is a one-to-one correspondence between principal $M S$-algebras and so-called principal $M S$-triples.

We also introduce a class of so-called decomposable $M S$-algebras containing the class of principal $M S$-algebras and we present a triple construction of decomposable $M S$-algebras generalising that in Section 3. It is a modification of the quadruple constructions by T. S. Blyth and J. C. Varlet [3], [4] and T. Katriňák and K. Mikula [10].

Firstly, we use de Morgan algebras instead of Kleene algebras in our triples and secondly, the filter chosen for our construction is different. Instead of the filter L^{\vee} used in the constructions in [3], [4], [10] and [6], in our constructions in Sections 3 and 4 we consider the set $D(L)$ of dense elements of an $M S$-algebra L. As $D(L)$ is a filter for any $M S$-algebra L we do not need a quadruple to construct an $M S$-algebra. It is sufficient to use the triple construction, because we do not need to use the modal operator used in the constructions by T. S. Blyth and J. C. Varlet [3], [4] and T. Katriňák and K. Mikula [10] or the congruence used by the third author [6].

2 Preliminaries

An MS-algebra is an algebra $\left(L ; \vee, \wedge,{ }^{0}, 0,1\right)$ of type $(2,2,1,0,0)$ where $(L ; \vee, \wedge$, 0,1) is a bounded distributive lattice and ${ }^{0}$ is a unary operation such that for all $x, y \in L$
(1) $x \leq x^{00}$;
(2) $(x \wedge y)^{0}=x^{0} \vee y^{0}$;
(3) $1^{0}=0$.

The class of all $M S$-algebras is equational. A de Morgan algebra is an $M S$ algebra satisfying the additional identity
(4) $x=x^{00}$.

A de Morgan algebra satisfying the identity
(5) $\left(x \wedge x^{0}\right) \vee y \vee y^{0}=y \vee y^{0}$
is called a Kleene algebra.
Let L be an $M S$-algebra. Then
(i) $L^{00}=\left\{x \in L \mid x=x^{00}\right\}$ is a de Morgan algebra and a subalgebra of L (as $x^{00} \vee y^{00}=(x \vee y)^{00}$ and $\left.x^{00} \wedge y^{00}=(x \wedge y)^{00}\right)$;
(ii) $D(L)=\left\{x \in L \mid x^{0}=0\right\}$ is a filter (of dense elements) of L.

The following definition mimics the one in [7].
Definition 2.1 An $M S$-algebra $\left(L ; \vee, \wedge,{ }^{0}, 0,1\right)$ is called a principal $M S$-algebra if it satisfies the following conditions:
(i) The filter $D(L)$ is principal, i.e. there exists an element $d_{L} \in L$ such that $D(L)=\left[d_{L}\right) ;$
(ii) $x=x^{00} \wedge\left(x \vee d_{L}\right)$ for any $x \in L$.

Now we introduce a new concept of a decomposable $M S$-algebra generalising the concept of a principal $M S$-algebra.

Definition 2.2 An $M S$-algebra ($L ; \vee, \wedge,^{0}, 0,1$) will be called a decomposable $M S$-algebra if for every $x \in L$ there exists $d \in D(L)$ such that $x=x^{00} \wedge d$.

Let L be a principal $M S$-algebra with $D(L)=\left[d_{L}\right)$ and for $x \in L$ let $d:=$ $x \vee d_{L}$. Then $d \in\left[d_{L}\right)$ and Definition 2.1 gives us $x=x^{00} \wedge d$. Thus Definition 2.2 is satisfied for any principal $M S$-algebra.

3 Principal $M S$-algebras

In this section we give a construction of principal $M S$-algebras which works with pairs of elements only and is similar to the construction of principal p-algebras from [7].

Definition 3.1 An (abstract) principal $M S$-triple is (M, D, φ), where
(i) M is a de Morgan algebra;
(ii) D is a bounded distributive lattice;
(iii) φ is a $(0,1)$-lattice homomorphism from M into D.

Theorem 3.2 Let (M, D, φ) be a principal $M S$-triple. Then

$$
L=\{(x, y) \mid x \in M, y \in D, y \leq \varphi(x)\}
$$

is a principal MS-algebra if we define

$$
\begin{gathered}
\left(x_{1}, y_{1}\right) \vee\left(x_{2}, y_{2}\right)=\left(x_{1} \vee x_{2}, y_{1} \vee y_{2}\right) \\
\left(x_{1}, y_{1}\right) \wedge\left(x_{2}, y_{2}\right)=\left(x_{1} \wedge x_{2}, y_{1} \wedge y_{2}\right) \\
(x, y)^{0}=\left(x^{0}, \varphi\left(x^{0}\right)\right) \\
1_{L}=\left(1_{M}, 1_{D}\right) \\
0_{L}=\left(0_{M}, 0_{D}\right) .
\end{gathered}
$$

Moreover, $L^{00} \cong M$ and $D(L) \cong D$.

Proof One can easily prove that L is a sublattice of $M \times D$. Obviously, $0_{D}=\varphi\left(0_{M}\right)$ and $1_{D}=\varphi\left(1_{M}\right)$. Hence, L is a bounded distributive lattice. Clearly,

$$
(x, y) \wedge(x, y)^{00}=\left(x \wedge x^{00}, y \wedge \varphi\left(x^{00}\right)\right)=(x, y)
$$

so the identity (1) holds in L. We can verify the identities (2) and (3) similarly.
Now,

$$
\begin{aligned}
D(L) & =\left\{(x, y) \in L \mid(x, y)^{0}=\left(0_{M}, 0_{D}\right)\right\} \\
& =\left\{(x, y) \in L \mid\left(x^{0}, \varphi\left(x^{0}\right)\right)=\left(0_{M}, 0_{D}\right)\right\} \\
& =\left\{\left(1_{M}, y\right) \mid y \in D\right\} \\
& \cong D .
\end{aligned}
$$

Evidently, an element $d_{L}=\left(1_{M}, 0_{D}\right)$ is the smallest dense element of L and the filter $D(L)$ is principal.

Also, for any $(x, y) \in L$,

$$
\begin{aligned}
(x, y)^{00} \wedge((x, y) & \left.\vee\left(1_{M}, 0_{D}\right)\right)=\left(x^{00}, \varphi\left(x^{00}\right)\right) \wedge\left(x \vee 1_{M}, y \vee 0_{D}\right) \\
& =(x, \varphi(x)) \wedge\left(1_{M}, y\right)=(x, y) .
\end{aligned}
$$

Hence L is a principal $M S$-algebra.
It remains to prove that $L^{00} \cong M$. We have

$$
\begin{aligned}
L^{00} & =\left\{(x, y) \in L \mid(x, y)^{00}=(x, y)\right\} \\
& =\left\{(x, y) \in L \mid\left(x^{00}, \varphi\left(x^{00}\right)\right)=(x, y)\right\} \\
& =\{(x, y) \mid x \in M, y \in D, y=\varphi(x)\} \\
& =\{(x, \varphi(x)) \mid x \in M\},
\end{aligned}
$$

which is obviously isomorphic to M. The proof is complete.
We shall say that the principal $M S$-algebra L from Theorem 3.2 is associated with the principal $M S$-triple (M, D, φ) and the construction of L described in Theorem 3.2 will be called a principal $M S$-construction.

We illustrate the principal $M S$-construction on the following example.
Example 3.3 Let M be the four-element subdirectly irreducible de Morgan algebra and let D be the two-element lattice (see Fig. 1).

Figure 1

Define a lattice homomorphism $\varphi: M \rightarrow D$ by the rule

$$
\varphi(0)=\varphi(a)=0, \quad \varphi(b)=\varphi(1)=1
$$

Then (M, D, φ) is a principal $M S$-triple and by the principal $M S$-construction we obtain a principal $M S$-algebra L such that

$$
L=\{(0,0),(a, 0),(b, 0),(b, 1),(1,0),(1,1)\}
$$

and

$$
\begin{aligned}
(0,0)^{0}=(1,1),(a, 0)^{0}=(a, 0) \\
(b, 0)^{0}=(b, 1)^{0}=(b, 1),(1,0)^{0}=(1,1)^{0}=(0,0)
\end{aligned}
$$

The algebra L is represented in Figure 2. The shaded elements form a de Morgan algebra L^{00} which is obviously isomorphic to M. One can also observe that the filter $D(L)$ is isomorphic to the given lattice D. Moreover, the mapping $\varphi(L): L^{00} \rightarrow D(L)$ defined by $\varphi(L)(x, y)=(x, y) \vee(1,0)$ is a $(0,1)$-lattice homomorphism. Hence the triple $\left(L^{00}, D(L), \varphi(L)\right)$ is a principal $M S$-triple.

Figure 2
Let L be a principal $M S$-algebra and let d_{L} be the smallest dense element of L. Define a mapping $\varphi(L): L^{00} \rightarrow D(L)$ by $\varphi(L)(a)=a \vee d_{L}$. It is obvious that $\varphi(L)$ is a $(0,1)$-lattice homomorphism.

We say that $\left(L^{00}, D(L), \varphi(L)\right)$ is the principal $M S$-triple associated with L.
The following theorem states that every principal $M S$-algebra can be obtained by the principal $M S$-construction.

Theorem 3.4 Let L be a principal MS-algebra. Let $\left(L^{00}, D(L), \varphi(L)\right)$ be the principal $M S$-triple associated with L. Then the principal $M S$-algebra L_{1} associated with $\left(L^{00}, D(L), \varphi(L)\right)$ is isomorphic to L.

Proof Let $D(L)=\left[d_{L}\right)$. We shall prove that the mapping $f: L \rightarrow L_{1}$ defined by

$$
f(a)=\left(a^{00}, a \vee d_{L}\right)
$$

is the desired isomorphism. It is obvious that $f(a) \in L_{1}$, as

$$
a \vee d_{L} \leq \varphi(L)\left(a^{00}\right)=a^{00} \vee d_{L}
$$

It is easy to prove that f is a lattice homomorphism and that $f(0)=\left(0, d_{L}\right)$ and $f(1)=(1,1)$. Moreover, we have

$$
f\left(a^{0}\right)=\left(a^{000}, a^{0} \vee d_{L}\right)=\left(a^{0}, \varphi(L)\left(a^{0}\right)\right)=f(a)^{0},
$$

so f is a homomorphism of $M S$-algebras.
Now we will prove the injectivity. Assume that $f\left(a_{1}\right)=f\left(a_{2}\right)$. Then we have $a_{1}^{00}=a_{2}^{00}$ and $a_{1} \vee d_{L}=a_{2} \vee d_{L}$ and we immediately obtain

$$
a_{1}=a_{1}^{00} \wedge\left(a_{1} \vee d_{L}\right)=a_{2}^{00} \wedge\left(a_{2} \vee d_{L}\right)=a_{2}
$$

To prove the surjectivity of f, let $(x, y) \in L_{1}$. Set $a=x \wedge y$. Using the facts that $x \in L^{00}, y \in D(L)$ and $y \leq \varphi(L)(x)$, we get

$$
\begin{aligned}
f(a) & =\left((x \wedge y)^{00},(x \wedge y) \vee d_{L}\right) \\
& =\left(x^{00} \wedge y^{00},\left(x \vee d_{L}\right) \wedge\left(y \vee d_{L}\right)\right) \\
& =\left(x \wedge 1_{L},\left(x \vee d_{L}\right) \wedge y\right) \\
& =(x, \varphi(L)(x) \wedge y) \\
& =(x, y) .
\end{aligned}
$$

The proof is complete.
Now we shall show that the principal $M S$-algebras are represented by the principal $M S$-triples uniquely.

Definition 3.5 An isomorphism of principal $M S$-triples (M, D, φ) and $\left(M_{1}, D_{1}, \varphi_{1}\right)$ is a pair (f, g) where f is an isomorphism of M and M_{1}, g is an isomorphism of D and D_{1} and the diagram

is commutative.
Theorem 3.6 Two principal MS-algebras are isomorphic if and only if their associated principal MS-triples are isomorphic.

Proof Let $h: L_{1} \rightarrow L_{2}$ be an isomorphism of $M S$-algebras. Then the pair of restrictions $h \upharpoonright L_{1}^{00}$ and $h \upharpoonright D\left(L_{1}\right)$ is the required isomorphism of their associated principal $M S$-triples.

Conversely, let $\left(M_{1}, D_{1}, \varphi_{1}\right)$ and $\left(M_{2}, D_{2}, \varphi_{2}\right)$ be the principal $M S$-triples associated to principal $M S$-algebras L_{1} and L_{2} and let

$$
(f, g):\left(M_{1}, D_{1}, \varphi_{1}\right) \rightarrow\left(M_{2}, D_{2}, \varphi_{2}\right)
$$

be an isomorphism of principal $M S$-triples. Let us denote by L_{1}^{\prime} and L_{2}^{\prime} the principal $M S$-algebras associated to the principal $M S$-triples $\left(M_{1}, D_{1}, \varphi_{1}\right)$ and $\left(M_{2}, D_{2}, \varphi_{2}\right)$, respectively. Consider the mapping $h: L_{1}^{\prime} \rightarrow L_{2}^{\prime}$ defined by the rule $h(a, x)=(f(a), g(x))$. It is clear that h is a (0,1)-lattice isomorphism. Moreover, we have

$$
\begin{gathered}
h\left((a, x)^{0}\right)=h\left(a^{0}, \varphi_{1}\left(a^{0}\right)\right)=\left(f\left(a^{0}\right), g\left(\varphi_{1}\left(a^{0}\right)\right)\right) \\
=\left(f\left(a^{0}\right), \varphi_{2}\left(f\left(a^{0}\right)\right)\right)=\left(f(a)^{0}, \varphi_{2}\left(f(a)^{0}\right)\right)=(f(a), g(x))^{0}=(h(a, x))^{0} .
\end{gathered}
$$

Hence h is an isomorphism of $M S$-algebras.
The next theorem together with the previous two theorems show that there is a one-to-one correspondence between principal $M S$-algebras and principal $M S$-triples.

Theorem 3.7 Let (M, D, φ) be a principal $M S$-triple and let L be its associated principal MS-algebra. Then

$$
\left(L^{00}, D(L), \varphi(L)\right) \cong(M, D, \varphi)
$$

Proof By Theorem 3.2 the mappings $f: L^{00} \rightarrow M$ and $g: D(L) \rightarrow D$ such that $f(a, \varphi(a))=a$ and $g\left(1_{M}, x\right)=x$ are isomorphisms. It remains to prove that the diagram

is commutative. Let $u \in L^{00}$. Then $u=(a, \varphi(a))$ for some $a \in M$ and we have

$$
\begin{gathered}
g(\varphi(L)(u))=g\left((a, \varphi(a)) \vee\left(1_{M}, 0_{D}\right)\right) \\
=g\left(a \vee 1_{M}, \varphi(a) \vee 0_{D}\right)=g\left(1_{M}, \varphi(a)\right)=\varphi(a)=\varphi(f(a, \varphi(a))),
\end{gathered}
$$

as required. The proof is complete.
Hence, here the situation is different from [6], where it was possible to construct an $M S$-algebra from the subvariety K_{2} (of algebras abstracting Stone and Kleene algebras, cf. [6, p. 72] or [2]) from two non-isomorphic K_{2}-quadruples.

Example 3.8 Let K be the three-element subdirectly irreducible Kleene algebra and let D be the two-element lattice. Define two homomorphisms $\varphi_{1}, \varphi_{2}: K \rightarrow D$, by the rules

$$
\varphi_{1}(0)=\varphi_{1}(a)=0, \quad \varphi_{1}(1)=1
$$

and

$$
\varphi_{2}(0)=0, \quad \varphi_{2}(a)=\varphi_{2}(1)=1
$$

(see Figure 3).

Figure 3
By the principal $M S$-constructions, from the principal $M S$-triples (K, D, φ_{1}) and $\left(K, D, \varphi_{2}\right)$ we obtain the non-isomorphic principal $M S$-algebras L_{1} resp. L_{2} depicted in Figure 4.

L_{1}

L_{2}

Figure 4
One can easily observe that $L_{1}^{00} \cong L_{2}^{00}$ (Kleene algebras L_{1}^{00}, L_{2}^{00} are shaded) and $D\left(L_{1}\right) \cong D\left(L_{2}\right)$, but $\varphi\left(L_{1}\right) \neq \varphi\left(L_{2}\right)$. So taking two different $(0,1)$ homomorphisms between a de Morgan algebra and a bounded distributive lattice can lead to obtaining two non-isomorphic principal $M S$-algebras by the principal $M S$-construction.

4 Decomposable $M S$-algebras

In this section we present a construction of decomposable $M S$-algebras. As the class of decomposable $M S$-algebras includes the class of principal $M S$-algebras, the construction given in this section generalises the one given in Theorem 3.2.

Our construction is similar to those by T. S. Blyth and J. C. Varlet [3], [4] and T. Katriňák and K. Mikula [10]. However, working with the filter $D(L)$
instead of the filter $L^{\vee}=\left\{x \vee x^{0} \mid x \in L\right\}$, which they used, enables us to use the triple construction only. Also we use de Morgan algebras instead of Kleene algebras in our triples. Consequently, we construct decomposable $M S$-algebras not only from the subvariety K_{2}.

For a distributive lattice D we will use the notation $F(D)$ for the lattice of all filters of D ordered by inclusion and the notation $F_{d}(D)$ for the dual lattice of the lattice $F(D)$.

We consider the mapping $\varphi(L): L^{00} \rightarrow F(D(L))$ defined by

$$
\varphi(L)(a)=\left\{x \in D(L) \mid x \geq a^{0}\right\}=\left[a^{0}\right) \cap D(L), \quad a \in L^{00}
$$

Obviously, for a decomposable $M S$-algebra L the mapping $\varphi(L)$ defined above is a $(0,1)$-homomorphism from L^{00} into $F(D(L))$ and $\varphi(L)(a) \cap[y)$ is a principal filter of $D(L)$ for every $a \in L^{00}$ and for every $y \in D(L)$.

Definition 4.1 A decomposable $M S$-triple is (M, D, φ), where
(i) M is a de Morgan algebra;
(ii) D is a distributive lattice with 1 ;
(iii) φ is a $(0,1)$-lattice homomorphism from M into $F(D)$ such that for every element $a \in M$ and for every $y \in D$ there exists an element $t \in D$ with $\varphi(a) \cap[y)=[t)$.

In the following theorem we present a triple construction for decomposable $M S$-algebras.

Theorem 4.2 Let (M, D, φ) be a decomposable MS-triple. Then

$$
L=\left\{\left(a, \varphi\left(a^{0}\right) \vee[x)\right) \mid a \in M, x \in D\right\}
$$

is a decomposable MS-algebra if we define

$$
\begin{aligned}
&\left(a, \varphi\left(a^{0}\right) \vee[x)\right) \vee\left(b, \varphi\left(b^{0}\right) \vee[y)\right)=\left(a \vee b,\left(\varphi\left(a^{0}\right) \vee[x)\right) \cap\left(\varphi\left(b^{0}\right) \vee[y)\right)\right), \\
&\left(a, \varphi\left(a^{0}\right) \vee[x)\right) \wedge\left(b, \varphi\left(b^{0}\right) \vee[y)\right)=\left(a \wedge b,\left(\varphi\left(a^{0}\right) \vee[x)\right) \vee\left(\varphi\left(b^{0}\right) \vee[y)\right)\right), \\
&\left(a, \varphi\left(a^{0}\right) \vee[x)\right)^{0}=\left(a^{0}, \varphi(a)\right), \\
& 1_{L}=(1,[1)), \\
& 0_{L}=(0, D) .
\end{aligned}
$$

Conversely, every decomposable MS-algebra L can be constructed in this way from its associated decomposable MS-triple $\left(L^{00}, D(L), \varphi(L)\right)$, where $\varphi(L)(a)=$ $\left[a^{0}\right) \cap D(L)$.

Proof Let $\left(a, \varphi\left(a^{0}\right) \vee[x)\right),\left(b, \varphi\left(b^{0}\right) \vee[y)\right) \in L$. As φ is a $(0,1)$-lattice homomorphism, we have

$$
\left(a, \varphi\left(a^{0}\right) \vee[x)\right) \wedge\left(b, \varphi\left(b^{0}\right) \vee[y)\right)=\left(a \wedge b, \varphi\left((a \wedge b)^{0}\right) \vee[x \wedge y)\right)
$$

and

$$
\begin{aligned}
\left(a, \varphi\left(a^{0}\right) \vee[x)\right) \vee & \left(b, \varphi\left(b^{0}\right) \vee[y)\right)=\left(a \vee b,\left(\varphi\left(a^{0}\right) \vee[x)\right) \cap\left(\varphi\left(b^{0}\right) \vee[y)\right)\right) \\
& =\left(a \vee b, \varphi\left((a \vee b)^{0}\right) \vee[t)\right), \quad t \in D,
\end{aligned}
$$

because

$$
\begin{gathered}
\left(\varphi\left(a^{0}\right) \vee[x)\right) \cap\left(\varphi\left(b^{0}\right) \vee[y)\right) \\
=\left(\varphi\left(a^{0}\right) \cap \varphi\left(b^{0}\right)\right) \vee\left(\varphi\left(a^{0}\right) \cap[y)\right) \vee\left(\varphi\left(b^{0}\right) \cap[x)\right) \vee([x) \cap[y)) \\
=\varphi\left((a \vee b)^{0}\right) \vee[t), \quad t \in D,
\end{gathered}
$$

where $[t)=[q) \vee[p) \vee[x \vee y)=[q \wedge p \wedge(x \vee y))$ and $\varphi\left(a^{0}\right) \cap[y)=[q)$ and $\varphi\left(b^{0}\right) \cap[x)=[p), p, q \in D$. This implies that L is a sublattice of $M \times F_{d}(D)$.

Now we shall prove that L is an $M S$-algebra. Clearly,

$$
\left(a, \varphi\left(a^{0}\right) \vee[x)\right)^{00}=\left(a^{0}, \varphi(a)\right)^{0}=\left(a, \varphi\left(a^{0}\right)\right) \geq\left(a, \varphi\left(a^{0}\right) \vee[x)\right),
$$

so the identity (1) holds in L. Moreover, we have

$$
\begin{gathered}
{\left[\left(a, \varphi\left(a^{0}\right) \vee[x)\right) \wedge\left(b, \varphi\left(b^{0}\right) \vee[y)\right)\right]^{0}=\left(a \wedge b, \varphi\left((a \wedge b)^{0}\right) \vee[x \wedge y)\right)^{0}} \\
=\left((a \wedge b)^{0}, \varphi(a \wedge b)\right)=\left(a^{0} \vee b^{0}, \varphi(a) \cap \varphi(b)\right)=\left(a^{0}, \varphi(a)\right) \vee\left(b^{0}, \varphi(b)\right) \\
=\left(a, \varphi\left(a^{0}\right) \vee[x)\right)^{0} \vee\left(b, \varphi\left(b^{0}\right) \vee[y)\right)^{0}
\end{gathered}
$$

and $(1,[1))^{0}=(0, D)$, thus the identities (2), (3) are satisfied in L.
It remains to prove that L is decomposable. For every $\left(a, \varphi\left(a^{0}\right) \vee[x)\right) \in L$ we have

$$
\left(a, \varphi\left(a^{0}\right) \vee[x)\right)=\left(a, \varphi\left(a^{0}\right)\right) \wedge(1,[x))=\left(a, \varphi\left(a^{0}\right) \vee[x)\right)^{00} \wedge(1,[x))
$$

where $(1,[x)) \in D(L)$. We have proved that L is a decomposable $M S$-algebra.
Conversely, let L be a decomposable $M S$-algebra. Then L^{00} is a de Morgan algebra and $D(L)$ is a filter of L which is indeed a distributive lattice with 1. Let us consider the mapping $\varphi(L): L^{00} \rightarrow F(D(L))$ defined by

$$
\varphi(L)(a)=\left[a^{0}\right) \cap D(L) .
$$

Obviously, $\varphi(L)$ is a $(0,1)$-homomorphism from L^{00} into $F(D(L))$ and $\varphi(L)(a) \cap$ [y) is a principal filter of $D(L)$ for every $a \in L^{00}$ and for every $y \in D(L)$. Hence $\left(L^{00}, D(L), \varphi(L)\right)$ is a decomposable $M S$-triple.

Now denote by L_{1} the decomposable $M S$-algebra constructed from the decomposable $M S$-triple $\left(L^{00}, D(L), \varphi(L)\right)$ by the previous construction. Let us consider the mapping $\alpha: L \rightarrow L_{1}$ defined by $\alpha(x)=\left(x^{00},[x) \cap D(L)\right)$. Since $x=x^{00} \wedge d$, we have

$$
\varphi(L)\left(x^{0}\right) \vee[d)=\left(\left[x^{00}\right) \cap D(L)\right) \vee[d)=\left[x^{00} \wedge d\right) \cap D(L)=[x) \cap D(L)
$$

Now for every $\left(x^{00}, \varphi(L)\left(x^{0}\right) \vee[d)\right) \in L_{1}$ we get

$$
\left(x^{00}, \varphi(L)\left(x^{0}\right) \vee[d)\right)=\left(x^{00},[x) \cap D(L)\right)=\alpha(x)
$$

so α is surjective.
To prove that α is injective, let $\alpha(x)=\alpha(y)$ for some $x, y \in L$. Then the equality $\left(x^{00},[x) \cap D(L)\right)=\left(y^{00},[y) \cap D(L)\right)$ implies that $x^{00}=y^{00}$ and $[x) \cap D(L)=[y) \cap D(L)$. Since L is a decomposable $M S$-algebra, we have $x=x^{00} \wedge d_{1}$ and $y=y^{00} \wedge d_{2}$ for some $d_{1}, d_{2} \in D(L)$. Then we obtain

$$
\begin{aligned}
{[x) \vee D(L) } & =\left[x^{00} \wedge d_{1}\right) \vee D(L) \\
& =\left[x^{00}\right) \vee\left[d_{1}\right) \vee D(L)=\left[x^{00}\right) \vee D(L) \\
& =\left[y^{00}\right) \vee D(L)=\left[y^{00}\right) \vee\left[d_{2}\right) \vee D(L) \\
& =\left[y^{00} \wedge d_{2}\right) \vee D(L)=[y) \vee D(L) .
\end{aligned}
$$

By distributivity we get $([x) \cap D(L)) \vee[x)=([y) \cap D(L)) \vee[y$, which implies $x=y$, as required.

Finally, we have

$$
\alpha(x)^{0}=\left(x^{00},[x) \cap D(L)\right)^{0}=\left(x^{0},\left[x^{0}\right) \cap D(L)\right)=\alpha\left(x^{0}\right)
$$

and also

$$
\begin{aligned}
\alpha(x \wedge y) & =\left((x \wedge y)^{00},[x \wedge y) \cap D(L)\right) \\
& =\left(x^{00} \wedge y^{00},([x) \vee[y)) \cap D(L)\right) \\
& =\left(x^{00} \wedge y^{00},([x) \cap D(L)) \vee([y) \cap D(L))\right) \\
& =\left(x^{00},[x) \cap D(L)\right) \wedge\left(y^{00},[y) \cap D(L)\right)=\alpha(x) \wedge \alpha(y)
\end{aligned}
$$

and

$$
\begin{aligned}
\alpha(x \vee y) & =\left((x \vee y)^{00},[x \vee y) \cap D(L)\right) \\
& =\left(x^{00} \vee y^{00},([x) \cap[y)) \cap D(L)\right. \\
& =\left(x^{00} \vee y^{00},([x) \cap D(L)) \cap([y) \cap D(L))\right) \\
& =\left(x^{00},[x) \cap D(L)\right) \vee\left(y^{00},[y) \cap D(L)\right)=\alpha(x) \vee \alpha(y) .
\end{aligned}
$$

Hence α is the desired isomorphism.
We shall say that the decomposable $M S$-algebra constructed in Theorem 4.2 is associated with the decomposable $M S$-triple (M, D, φ) and the construction of L described in Theorem 4.2 will be called a decomposable MS-construction.

Lemma 4.3 Let L be a decomposable MS-algebra associated with the decomposable triple (M, D, φ). Then
(i) $L^{00}=\left\{\left(a, \varphi\left(a^{0}\right)\right) \mid a \in M\right\}$;
(ii) $D(L)=\{(1,[x)) \mid x \in D\}$;
(iii) $D \cong D(L), M \cong L^{00}$.

Proof (i) As $\left(a, \varphi\left(a^{0}\right) \vee[x)\right)^{00}=\left(a^{0}, \varphi(a)\right)^{0}=\left(a, \varphi\left(a^{0}\right)\right)$ for every $a \in M$, we have $L^{00}=\left\{\left(a, \varphi\left(a^{0}\right)\right) \mid a \in M\right\}$.
(ii) For every $x \in D(1,[x))^{0}=\left(1, \varphi\left(1^{0}\right) \vee[x)\right)^{0}=(0, \varphi(1))=(0, D)$ holds. Hence $D(L)=\{(1,[x)) \mid x \in D\}$.
(iii) It is easy to check that $\psi: a \mapsto\left(a, \varphi\left(a^{0}\right)\right)$ and $\chi: d \mapsto(1,[d))$ are desired isomorphisms of M and L^{00}, and of D and $D(L)$, respectively.

Definition 4.4 An isomorphism of decomposable $M S$-triples (M, D, φ) and $\left(M_{1}, D_{1}, \varphi_{1}\right)$ is a pair (α, β) where α is an isomorphism of M and M_{1}, β is an isomorphism of D and D_{1} and the diagram

commutes. $\left(F(\beta)\right.$ is the isomorphism of $F(D)$ and $F\left(D_{1}\right)$ induced by β.)
Theorem 4.5 Two decomposable MS-algebras are isomorphic if and only if their associated decomposable $M S$-triples are isomorphic.

Proof Let L_{1}, L_{2} be decomposable $M S$-algebras and let $\tau: L_{1} \rightarrow L_{2}$ be an isomorphism. Let us consider the isomorphisms

$$
\alpha: L_{1}^{00} \rightarrow L_{2}^{00} \quad \text { and } \quad F(\beta): F\left(D\left(L_{1}\right)\right) \rightarrow F\left(D\left(L_{2}\right)\right)
$$

such that α is defined by $\alpha(x)=\tau(x)$ and $F(\beta)$ is defined by

$$
F(\beta)(A)=\{\tau(a) \mid a \in A\}
$$

for $A \in F\left(D\left(L_{1}\right)\right)$. Then we have

$$
\varphi\left(L_{2}\right)(\alpha(x))=\varphi\left(L_{2}\right)(\tau(x))=\left[(\tau(x))^{0}\right) \cap D\left(L_{2}\right)
$$

and

$$
\begin{gathered}
F(\beta)\left(\varphi\left(L_{1}\right)(x)\right)=F(\beta)\left(\left[x^{0}\right) \cap D\left(L_{1}\right)\right) \\
=\left\{\tau(y) \mid y \in\left[x^{0}\right) \cap D\left(L_{1}\right)\right\}=\left[(\tau(x))^{0}\right) \cap D\left(L_{2}\right),
\end{gathered}
$$

for every $x \in L_{1}^{00}$. So (α, β) is an isomorphism of decomposable triples $\left(L_{1}^{00}, D\left(L_{1}\right), \varphi\left(L_{1}\right)\right)$ and $\left(L_{2}^{00}, D\left(L_{2}\right), \varphi\left(L_{2}\right)\right)$.

Conversely, assume that the triples $\left(L_{1}^{00}, D\left(L_{1}\right), \varphi\left(L_{1}\right)\right)$ and $\left(L_{2}^{00}, D\left(L_{2}\right)\right.$, $\left.\varphi\left(L_{2}\right)\right)$ are isomorphic. Let us consider the mapping $g: L_{1} \rightarrow L_{2}$ defined by

$$
g\left(a, \varphi\left(L_{1}\right)\left(a^{0}\right) \vee[x)\right)=\left(\alpha(a), F(\beta)\left([a) \cap D\left(L_{1}\right)\right) \vee[\beta(x))\right) .
$$

Now let $\left(a, \varphi\left(L_{1}\right)\left(a^{0}\right) \vee[x)\right)=\left(b, \varphi\left(L_{1}\right)\left(b^{0}\right) \vee[y)\right)$. Then we have $a=b$ and $\varphi\left(L_{1}\right)\left(a^{0}\right) \vee[x)=\varphi\left(L_{1}\right)\left(b^{0}\right) \vee[y)$ and we immediately get $\alpha(a)=\alpha(b)$ and $\left([a) \cap D\left(L_{1}\right)\right) \vee[x)=\left([b) \cap D\left(L_{1}\right)\right) \vee[y)$. Using $F(\beta)$ we obtain

$$
\left(\alpha(a), F(\beta)\left([a) \cap D\left(L_{1}\right)\right) \vee[\beta(x))\right)=\left(\alpha(b), F(\beta)\left([b) \cap D\left(L_{1}\right)\right) \vee[\beta(y))\right)
$$

Thus g is well-defined. One can also verify that g is a lattice isomorphism. From

$$
\begin{aligned}
g\left(\left(a, \varphi\left(L_{1}\right)\left(a^{0}\right) \vee[x)\right)^{0}\right) & =g\left(a^{0}, \varphi\left(L_{1}\right)(a)\right) \\
& =\left(\alpha\left(a^{0}\right), \varphi\left(L_{2}\right)(\alpha(a))\right) \\
& =\left(\alpha(a), \varphi\left(L_{2}\right)\left(\alpha\left(a^{0}\right)\right) \vee[\beta(x))\right)^{0} \\
& =\left(g\left(a, \varphi\left(L_{1}\right)\left(a^{0}\right) \vee[x)\right)\right)^{0}
\end{aligned}
$$

it follows that g is an $M S$-isomorphism and the proof is complete.
Acknowledgements The third author acknowledges support from Slovak grant APVV-0223-10.

References

[1] Blyth, T., Varlet, J.: On a common abstraction of de Morgan algebras and Stone algebras. Proc. Roy. Soc. Edinburgh. 94A (1983), 301-308.
[2] Blyth, T., Varlet, J.: Subvarieties of the class of MS-algebras. Proc. Roy. Soc. Edinburgh 95A (1983), 157-169.
[3] Blyth, T., Varlet, J.: Sur la construction de certaines MS-algebres. Portugaliae Math. 39 (1980), 489-496.
[4] Blyth, T., Varlet, J.: Corrigendum sur la construction de certaines MS-algebres. Portugaliae Math. 42 (1983), 469-471.
[5] Chen, C. C.: Stone lattice I, Construction theorems. Cond. J. Math. 21 (1969), 884-894.
[6] Haviar, M.: On certain construction of MS-algebras.. Portugaliae Math. 51 (1994), 71-83.
[7] Haviar, M.: Construction and affine completeness of principal p-algebras. Tatra Mountains Math. 5 (1995), 217-228.
[8] Katriňák, T.: A new proof of the construction theorem for Stone algebras. Proc. Amer. Math. Soc. 40 (1973), 75-78.
[9] Katriňák,T., Mederly, P.: Construction of p-algebras. Algebra Universalis 17 (1983), 288-316.
[10] Katriňák, T., Mikula, K.: On a construction of MS-algebras. Portugaliae Math. 45 (1988), 157-163.

