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Abstract

Bad conditioned matrix of normal equations in connection with small
values of model parameters is a source of problems in parameter estima-
tion. One solution gives the ridge estimator. Some modification of it is
the aim of the paper. The behaviour of it in models with constraints is
investigated as well.
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1 Introduction

The linear model Y ∼n (Xβ, σ2I) is considered. Here Y is an n-dimensional
random vector (observation vector),Xβ is the mean value of it, i.e. E(Y) = Xβ,
X is an n × k known matrix with the rank r(X) = k ≤ n, β is an unknown
k-dimensional parameter which must be estimated and σ2 is an unknown pa-
rameter σ2 ∈ (0,∞).
The best linear unbiased estimator (BLUE) of β is β̂ = (X′X)−1X′Y and

its covariance matrix is Var(β̂) = σ2(X′X)−1.
Let the spectral decomposition of the matrix X′X be

X′X =
k∑

i=1

λifif
′
i = FΛF′, f ′i fj = δi,j (the Kronecker delta)

F = (f1, . . . , fk), Λ = Diag(λ1, . . . , λk).
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The problem occurs when λmax = max{λ1, . . . , λk} differs significantly from
λmin = min{λ1, . . . , λk}, i.e. λmax/λmin is large number. In this case variances
of the BLUEs of different linear functions of β can differ significantly as well
and it can be in some cases unacceptable.
It seems that the way out this problem is to use either the estimator β̃ with

the property

Var(β̃) +
[
E(β̃)− β

] [
E(β̃)− β

]′
≤L Var(β̂) (1)

(≤L means the Loevner ordering positive semidefinite matrices), or the property

Tr
[
Var(β̃)

]
+

[
E(β̃)− β

]′ [
E(β̃)− β

]
≤ Tr

[
Var(β̂)

]
. (2)

The ridge estimator has the property (2) (see in more detail [3], [4]), however
not the property (1).

2 Some comments to the ridge estimator

In the first step let us try to find the estimator of β in the form AY, such that

∀{h ∈ Rk}Var(h′AY) + b2A,h = min{Var(h′BY) + b2B,h : B ∈ Mk×n} (3)

where bA,h = E(h′AY) − h′β = h′(AX − I)β, Mk×n is the class of k × n
matrices and I is the identity matrix.

Lemma 2.1 The random vector

β∗ = ββ′(Xββ′X′ + σ2I)−1Y,

satisfies (3).

Proof Let

Φh(A) = σ2h′AA′h+ h′(AX− I)ββ′(X′A′ − I)h.

Then (see [2], p. 285)

∂Φh(A)

∂A
= 2σ2hh′A+ 2hh′AXββ′X′ − 2hh′ββ′X′ = 0

⇒ A = ββ′X′(σ2I+Xββ′X′)−1.

thus β∗ = ββ′X′(σ2I+Xββ′X′)−1Y. �

Remark 2.2 The random vector β∗ has the covariance matrix

Var(β∗) = σ2ββ′X′(σ2I+Xββ′X′)−2Xββ′
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and the bias

bβ = E(β∗)− β =
[
ββ′X′(σ2I+Xββ′X′)−1X− I

]
β.

Thus

Var(β∗) + bβb
′
β = σ2

[
β′X′(σ2I+Xββ′X′)−2Xβ

]
ββ′

+
[
β′X′(σ2I+Xββ′X′)−1Xβ

]2
ββ′ − 2

[
β′X′(σ2I+Xββ′X′)−1Xβ

]
ββ′ +ββ′

and

Tr
[
Var(β∗)

]
+ b′

βbβ = σ2
[
β′X′(σ2I+Xββ′X′)−2Xβ

]
β′β

+
[
β′X′(σ2I+Xββ′X′)−1Xβ

]2
β′β− 2

[
β′X′(σ2I+Xββ′X′)−1Xβ

]
β′β+β′β.

Since β′X′(Xββ′X′)−Xβ = 1, it is valid that

σ2 = 0 ⇒ Tr
[
Var(β̃)

]
+ b′

βbβ = 0.

The vector β∗ is of no use for an estimation. Even an attempt to use an iter-
ation is useless. If β0 is a starting vector in an iteration procedure for a determi-
nation of β∗, then the first step leads to β∗

(1) = β0β
′
0(σ

2I+Xβ0β
′
0X

′)−1Y. It is
valid that P{β∗

(1) ∈ M(β0)} = 1, since dimension of β′
0(σ

2I+Xβ0β
′
0X

′)−1Y is
one. An analogous situation occurs in the second and other steps, i.e. P{β∗

(i) ∈
M(β0)} = 1, i = 2, 3, . . . Thus the starting vector β0 determines the direction
of the vector β∗ and it is not admissible.

Hoerl and Kennard [3], [4] solved the problem in more efficient way. They

minimized the function φ(β̃) = β̃
′
β̃ under the condition

(y −Xβ̃)′(y −Xβ̃) = (y −Xβ̂)′(y −Xβ̂) + d, d > 0,

where β̂ = (X′X)−1X′y is the value of t for which the function

φ(t) = (y −Xt)′(y −Xt)

attains its minimum. They obtained the estimator β̃ of the form β̃ = (cI +
X′X)−1X′Y (ridge estimator), where c > 0 can be chosen in such a way that
Tr

[
Var(β̃)

]
+

[
E(β̃)− β

]′[
E(β̃)− β

]
is significantly smaller than Tr

[
Var(β̂)

]
mainly in the case that ‖β‖ is relatively small with respect to σ and the matrix
X′X is bad conditioned.
In [7] new reasons for utilization of the ridge estimator are given and in [5]

a general view on the philosophy of the ridge estimator is analyzed.

3 Modification

Let us try to find explicit value for c in the expression for the ridge estimator.
The spectral decomposition of the matrix X′X from Introduction is used. The
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quantity Tr
[
Var(β̃)

]
+ b′

βbβ is a function of c and it can be expressed as

Φ(c) = Tr
[
Var(β̃)

]
+ b′

βbβ = σ2 Tr
[
(cI+X′X)−1X′X(cI+X′X)−1

]
+β′[(cI+X′X)−1X′X−I

]2
β = σ2 Tr

[
(cFF′+FΛF′)−1FΛF′(cFF′+FΛF′)−1

]
+ β′[(cFF′ + FΛF′)−1FΛF′ − FF′]2β = σ2

k∑
i=1

λi
(c+ λi)2

+
k∑

i=1

c2(f ′iβ)
2

(c+ λi)2
.

Thus

dΦ(c)

dc
=

k∑
i=1

2λi(c(f
′
iβ)

2 − σ2)

(c+ λi)3

and in the case that β is approximately known, it is possible to solve the equation

k∑
i=1

λi(c(f
′
iβ)

2 − σ2)

(c+ λi)3
= 0

for c.
Let the function

Φ(t) = t′Dt+ λ
[
(y −Xt)′(y −Xt)− (y −Xβ̂)′(y −Xβ̂)− d

]
(4)

instead the function

Φ(t) = t′t+ λ
[
(y −Xt)′(y −Xt)− (y −Xβ̂)′(y −Xβ̂)− d

]
be considered. Her D is a positive definite matrix which will be determined
later.

Theorem 3.1 The solution of the optimization problem (4) is

t = (D+X′X)−1X′y,

where D = D/λ. The MSE-optimum choice of the matrix D is

D = σ2FDiag

(
1

(f ′1β)2
, . . . ,

1

(f ′kβ)2

)
F′,

where X′X = FΛF′, F = (f1, . . . , fk), Λ =

⎛⎝ λ1, . . . , 0
. . . . . . . . . .
0, . . . , λk

⎞⎠.
Proof Let U = Diag(u1, . . . , uk) and D = FUF′. Then the MSE of the
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estimator t can be written as

Tr
[
Var(t)

]
+ b′

βbβ = σ2 Tr
{[

F(U+Λ)F′]−1
FΛF′[F(U+Λ)F′]−1

}
+ β′

{
FΛF′[F(U +Λ)F′]−1 − FF′

}{[
F(U+Λ)F′]−1

FΛF′ − FF′
}
β

= σ2 Tr

[
FDiag

(
1

u1 + λ1
, . . . ,

1

uk + λk

)
Diag (λ1, . . . , λk)

× Diag

(
1

u1 + λ1
, . . . ,

1

uk + λk

)
F′

]
+ β′

[
FDiag

(
λ1

u1 + λ1
, . . . ,

λk
uk + λk

)
F′ − FF′

]

×
[
FDiag

(
λ1

u1 + λ1
, . . . ,

λk
uk + λk

)
F′ − FF′

]
β =

k∑
i=1

σ2λi + (f ′iβ)
2u2i

(ui + λi)2
.

Here the relationship [
F(U +Λ)F′]−1

= F(U+Λ)−1F′

was taken into account.
The optimum entries u1, . . . , uk of the matrix U can be now easily find.

Φ(U) =

k∑
i=1

σ2λi + (f ′iβ)
2u2i

(ui + λi)2
,

∂Φ(U)

∂ui
= 2

(f ′iβ)
2ui(ui + λi)−

[
σ2λi + (f ′iβ)

2u2i
]

(ui + λi)3
.

Thus ui = σ2/(f ′iβ)
2, i = 1, . . . , k and

D = σ2FDiag

(
1

(f ′1β)2
, . . . ,

1

(f ′kβ)2

)
F′.

�

Remark 3.2 The matrix D must be determined by the iteration. We start
with some β(0), then obtain the matrix D

(0)
1 , by the help of it we obtain the

estimator β̃
(1)
, etc. The choice of the matrix D from Theorem 3.1 gives

Tr
[
Var(t)

]
+ b′

βbβ =

k∑
i=1

λiσ
2 + (f ′iβ)

2 σ4

(f ′iβ)4(
σ2

(f ′iβ)2
+ λi

)2 = σ2
k∑

i=1

(f ′iβ)
2

λi(fiβ)2 + σ2
,

what can be significantly smaller than Tr
[
Var(β̂)

]
= σ2

∑k
i=1

1
λi
.



78 Lubomír Kubáček

4 Model with the type I constraints

The model is
Y ∼n (Xβ, σ2I), g +Gβ = 0,

where r(Xn,k) = k < n, r(Gq,k) = q < k. The matrix X, the vector g and the
matrix G are given.
ObviouslyM(G′) ⊂ M(X′). In this case the BLUE of the parameter β is

̂̂
β = (X′X)−1X′Y − (X′X)−1G′[G(X′X)−1G′]−1[

(X′X)−1X′Y + g
]

and its covariance matrix is

Var(
̂̂
β) = σ2

{
(X′X)−1 − (X′X)−1G′[G(X′X)−1G′]−1

G(X′X)−1
}

= σ2 (MG′X′XMG′)
+
,

where MG′ = I −G′(GG′)−1G and + is notation for the Moore–Penrose gen-
eralized inverse (see [6]).
If the idea of Hoerl and Kennard is a little bit generalized, we seek for an

estimator ˜̃β which satisfy the constraints g +G
˜̃
β = 0 and also the constraints

(y − X˜̃β)′(y − X˜̃β) = (y − X
̂̂
β)′(y − X

̂̂
β) + d and at the same time it will

minimize the quantity ˜̃β′D˜̃β.

Lemma 4.1 The estimator ˜̃β is

˜̃
β = (D+X′X)−1X′Y − (D+X′X)−1G′[G(D+X′X)−1G′]−1

×[
G(D+X′X)−1X′Y + g

]
= P

(D+X′X)
Ker(G) (D+X′X)−1X′Y −G−

m(D+X′X)g

where D = σ2FDiag
(

1

(f ′1β)2
, . . . , 1

(f ′kβ)2

)
F′.

Proof The auxiliary Lagrange function is

Φ(t) = t′Dt− λ
[
(y −Xt)′(y −Xt)− (y −X

̂̂
β)′(y −X

̂̂
β)− d

]
+ 2κ′(Gt+ g),

where λ is the Lagrange multiplier and κ is a vector of the Lagrange multipliers.
Thus

∂Φ(t)

∂t
= 2Dt+ λ(−2X′y + 2X′Xt) + 2G′κ = 0

⇒ (D+X′X)t+G′κ
λ

= X′y,

where D = D/λ and

˜̃
β = (D+X′X)−1X′Y − (D+X′X)−1G′κ

λ
.
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Further

0 = g +G
˜̃
β = g+G(D+X′X)−1X′Y −G(D+X′X)−1G′κ

λ

⇒ κ

λ
=

[
G(D+X′X)−1G′]−1[

G(D+X′X)−1X′Y + g
]

⇒ ˜̃
β = (D+X′X)−1X′Y − (D+X′X)−1G′

[
G(D+X′X)−1G′]−1

×[
G(D+X′X)−1X′Y + g

]
=

{
I− (D+X′X)−1G′[G(D+X′X)−1G′]−1

G
}
(D+X′X)−1X′Y

−(D+X′X)−1G′[G(D+X′X)−1G′]−1
g

= P
(D+X′X)
Ker(G) (D+X′X)−1X′Y −G−

m(D+X′X)g,

where P(D+X′X)
Ker(G) is the projection matrix on Ker(G) = {u : u ∈ Rk,Gu = 0}

in the norm given by the positive definite matrix D+X′X.
The bias of the estimator ˜̃β is

bβ = E(
˜̃
β)− β = P

(D+X′X)
Ker(G)

[
(D+X′X)−1X′X− I

]
β.

and

Var(
˜̃
β) = σ2P

(D+X′X)
Ker(G) (D+X′X)−1X′X(D+X′X)−1

(
P

(D+X′X)
Ker(G)

)′

Since the bias of the estimator β̃ = (D+X′X)−1X′Y is

E(β̃)− β =
[
(D+X′X)−1X′X− I

]
β,

it is obvious that bβ = P
(D+X′X)
Ker(G)

[
E(β̃)−β

]
and analogously for the covariance

matrix
Var(˜̃β) = P

(D+X′X)
Ker(G) Var(β̃)

(
P

(D+X′X)
Ker(G)

)′
.

Thus the estimator β̃ from the model without constraints can be used in the

formula for the estimator ˜̃β in the model with the type I constraints. The bias
and the covariance matrix are reasonably diminished by the projection matrix

P
(D+X′X)
Ker(G) which fully respects the constraints. �

5 Model with the type II constraints

The model considered is

Y ∼n (Xβ1, σ
2I), g +G1β1 +G2β2 = 0,

where r(X(n,k1)) = k1 < n, r(G1,(q,k1),G2,(q,k2)) = q < k1 + k2, r(G2,(q,k2)) =
k2 < q. The matrix X, the vector g and the matrices G1, G2 are given.
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The BLUEs of the vector parameters β1 and β2 arê̂
β1 = (X′X)−1X′Y − (X′X)−1G′

1

[
MG2G1(X

′X)−1G′
1MG2

]+
× [

g+G1(X
′X)−1X′Y

]
,̂̂

β2 = −[
(G′

2)
−
m[G′

1(X
′X)−1G1]

]′[
g+G1(X

′X)−1X′Y
]

(in more detail see [1]).
In both estimators the effect of the bad conditioned matrix X′X is fully

manifested.
The modification of the Kennard and Hoerl approach can be made in two

ways.

The first one starts with a minimization of the quantity ˜̃
β′
1D1

˜̃
β1 and the

other starts with a minimization of the quantity ˜̃β′
1D1

˜̃β1 +
˜̃β′
2D2

˜̃β2.

Let us consider the minimization of ˜̃β1D1
˜̃β1, i.e.

Φ(t1, t2) = t′1D1t1 + λ
[
(y −Xt1)

′(y −Xt1)− (y −X
̂̂
β1)

′(y −X
̂̂
β1)− d

]
−2κ′(g+G1t1 +G2t2),

∂Φ(t1, t2)

∂t1
= 2D1t1 + λ(−2X′y + 2X′Xt1)− 2G′

1κ,

∂Φ(t1, t2)

∂t2
= −2G′

2κ.

Let D1 = 1
λD1. Thus the following relationships can be written.

(D1 + λX′X)t1 − λX′y −G′
1κ = 0,

t1 = (D1 +X′X)−1X′y + (D1 +X′X)−1G′
1

κ

λ
,

g +G1(D1 +X′X)−1X′y +G1(D1 +X′X)−1G′
1

κ

λ
+G2t2 = 0(

G1(D1 +X′X)−1G′
1, G2

G′
2, 0

)(
κ/λ
t2

)
= −

(
g +G1(D1 +X′X)−1X′y

0

)
.

Regarding the Pandora–Box theorem [6], we obtain(
κ/λ
t2

)
=

(
aa , ab

ba , bb

)(−[
g +G1(D1 +X′X)−1X′y

]
0

)
,

aa =
[
MG2G1(D1 +X′X)−1G′

1MG2

]+
,

ab = (G′
2)

−
m[G1(D1+X′X)−1G′

1]
,

ba =
[
(G′

2)
−
m[G1(D1+X′X)−1G′

1]

]′
,

bb = −[
(G′

2)
−
m[G1(D1+X′X)−1G′

1]

]′
G1(D1 +X′X)−1G′

1(G
′
2)

−
m[G1(D1+X′X)−1G′

1]
.

Thus the following theorem can be stated.
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Theorem 5.1 In the regular model with the type constraints II the estimators
˜̃
β
(1)
1 and ˜̃

β
(1)
2 minimizing the quantity ˜̃

β′
1D1

˜̃
β1 and satisfying the constraints

(y −X˜̃β
(1)
1 )′(y −X˜̃β

(1)
1 )− [

(y −X
̂̂
β1)

′(y −X
̂̂
β1) + d

]
= 0

and
g+G1

˜̃
β
(1)
1 +G2

˜̃
β
(1)
1 = 0.

are

˜̃
β
(1)
1 = (D1 +X′X)−1X′Y − (D1 +X′X)−1G′

1

[
MG2G1(D1 +X′X)−1

×G′
1MG2

]+[
g +G1(D1 +X′X)−1X′Y

]
,

˜̃
β
(1)
2 = −[

(G′
2)

−
m[G1(D1+X′X)−1G′

1]

]′[
g+G1(D1 +X′X)−1X′Y

]
.

Since ˜̃β(1)
1 can be written as

˜̃
β
(1)
1 =

(
I− (D1 +X′X)−1G′

1MG2

[
MG2G1(D1 +X′X)−1G′

1MG2

]+
MG2G1

)
× (D1 +X′X)−1X′Y − (D1 +X′X)−1G′

1

[
MG2G1(D1 +X′X)−1G′

1MG2

]+
g

= P
(D1+X′X)
Ker(MG2G1)

(D1 +X′X)−1X′Y − (D1 +X′X)−1G′
1

× [
MG2G1(D1 +X′X)−1G′

1MG2

]+
g,

the bias of the estimator ˜̃β(1)
1 is

E(
˜̃
β
(1)
1 )− β1 = P

(D1+X′X)
Ker(MG2G1)

[
(D1 +X′X)−1X′X− I

]
β1.

The same reasoning for the utilization of the matrix

D1 = σ2FDiag

(
1

(f ′1β1)
2
, . . . ,

1

(f ′kβ1)
2

)
F′

can be made as at the end of the section 4.
As far as the estimator ˜̃β(1)

2 is concerned, there exists just one solution of
the equation

g +G1
˜̃β
(1)
1 +G2

˜̃β
(1)
2 = 0

for ˜̃β(1)
2 , since r(G2) = k2 < q. Thus

˜̃β
(1)
2 = −(G′

2G2)
−1G′

2(G1
˜̃β
(1)
1 + g)

= −[
(G′

2)
−
m[G1(D1+X′X)−1G′

1]

]′[
G1(D1 +X′X)−1X′Y + g

]
.
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Thus the matrix

D1 = σ2FDiag

(
1

(f1β1)
2
, . . . ,

1

(fkβ1)
2

)
F′

can be used for the estimator ˜̃β(1)
2 as well.

Let us consider a little more general problem, i.e. a minimization of the
function φ(t1, t2) = t′1D1t1 + t′2D2t2 under the conditions[

(y −Xt1)
′(y −Xt1)− (y −X

̂̂
β1)

′(y −X
̂̂
β1)− d

]
,

G1t1 +G2t2 + g = 0.

The Lagrangian auxiliary function is

Φ(t1, t2) = t′1D1t1 + t′2D2t2 + λ
[
(y −Xt1)

′(y −Xt1)

− (y −X
̂̂
β1)

′(y −X
̂̂
β1)− d

]
+ 2κ′(G1t1 +G2t2 + g).

Then

∂Φ(t1, t2)

∂t1
= 2D1t1 + λ(−2X′y + 2X′Xt1) + 2G1κ,

∂Φ(t1, t2)

∂t2
= 2D2t2 + 2G′

2κ

and

t1 = (D1 +X′X)−1X′y − (D1 +X′X)−1G′
1

κ

λ
,

t2 = −D−1
2 G′

2

κ

λ
,

where D1 = D1/λ and D2 = D2/λ.
Since

0 = g+G1
˜̃
β1 +G2

˜̃
β2 = g+ (D1 +X′X)−1X′y

−[
G1(D1 +X′X)−1G′

1 +G2D
−1
2 G′

2

]−1κ

λ
,

we have

κ

λ
=

[
G1(D1 +X′X)−1G′

1 +G2D
−1
2 G′

2

]−1[
g+G1(D1 +X′X)−1X′y

]
.

The following theorem can be stated.

Theorem 5.2 In the regular model with the constraints II

Y ∼n (Xβ1, σ
2I), g +G1β1 +G2β2 = 0,
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where

r(Xn,k1 ) = k1 < n, r(G1,(q,k1),G2,(q,k2)) = q < k1 + k2, r(G2,(q,k2)) = k2 < q,

the estimators ˜̃β(2)
1 and ˜̃β

(2)
2 minimizing the quantity

(
˜̃
β
(2)
1 )′D1

˜̃
β
(2)
1 + (

˜̃
β
(2)
2 )′D2

˜̃
β
(2)
2

are

˜̃
β
(2)
1 = (D1 +X′X)−1X′Y − (D1 +X′X)−1G′

1

[
G1(D1 +X′X)−1G′

1

+G2D
−1
2 G′

2

]−1[
g+G1(D1 +X′X)−1X′Y

]
,

˜̃
β
(2)
2 = −D−1

2 G′
2

[
G1(D1 +X′X)−1G′

1 +G2D
−1
2 G′

2

]−1

× [
g +G1(D1 +X′X)−1X′Y

]
,

where D1 = D1/λ and D2 = D2/λ.

The problem of the MSE-optimization of the matrix D2 is out of the scope
of the paper. For the sake of simplicity the choice D2 = I can be used.

6 Numerical examples

Let singular value decomposition of the matrix X be

Xn,k = J8,3Λ
1/2
3,3 F

′
3,3, J′J = I3,Λ

1/2 = Diag
(√

4,
√
4,
√
0.1

)
, F = I3

σ2 = 1 and

β =

⎛⎝ 0.5
0.4
0.2

⎞⎠ , X′X = Diag (4, 4, 0.1) , D = FDiag

(
1

0.52
,

1

0.42
,

1

0.22

)
F′.

Thus

Var(β̂) = (X′X)−1 = Diag(0.25, 0.25, 10),

β̃ = (D+X′X)−1X′y =

[
Diag

(
1

0.52
,

1

0.42
,

1

0.22

)
+Diag (4, 4, 0.1)

]−1

×Diag
(√

4,
√
4,
√
0.1

)
J′y = Diag(0.250000, 0.195122, 0.012599)J′y,

Var(β̃) = Diag(0.062500, 0.038073, 0.000159)

E(β̃) = Diag(0.250000, 0.195122, 0.012599)J′JΛ1/2F′β
= (0.250000, 0.156098, 0.000797)′.

The bias of β̃ is

bβ = (0.250000, 0.156098, 0.000797)′− (0.5, 0.4, 0.2)′

= (−0.250000,−0.243902,−0.199203)′.
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Thus

Tr
[
Var(β̂)

]
= 10.5 and Tr

[
Var(β̃)

]
+b′

βbβ = 0.100732+0.161670 = 0.262402.

The effect of the optimization is expressive.
Let this model with constraints (2,−2,−1)β = 0 be considered, i.e. g = 0

and G = (2,−2,−1). It is valid that

P
(D+X′X)
Ker(G) =

⎛⎝ 0.462415, 0.537585, 0.268793
0.419579, 0.580421, −0.209789
0.085671, −0.085671, 0.957164

⎞⎠
and

E(˜̃β)−β = P
(D+X′X)
Ker(G)

[
E(β̃)−β

]
= P

(D+X′X)
Ker(G)

⎛⎝−0.250000
−0.243902
−0.199203

⎞⎠ =

⎛⎝−0.300266
−0.204670
−0.191192

⎞⎠ .

Since
Var(˜̃β) = P

(D+X′X)
Ker(G) Var(β̃)

(
P

(D+X′X)
Ker(G)

)′
,

we have

Tr
[
Var(

˜̃
β)

]
+

[
E(

˜̃
β)− β

]′[
E(

˜̃
β)− β

]
= 0.049099+ 0.168604 = 0.217703.

The covariance matrix of the BLUE is

Var(
̂̂
β) = (X′X)−1 − (X′X)−1G′[G(X′X)−1G′]−1

G(X′X−1)−1

and thus
Tr

[
Var(

̂̂
β)

]
= 2.110007.

what is essentially larger than 0.217703.
Let now the type II constraints be considered, e.g.

β = β1 = (0.5, 0.4, 0.2)′, G1 = (2,−2,−1), G2 = 2, g = −0.6, β2 = 0.3.

Thus
˜̃
β
(1)
1 = β̃1 −G′

1MG2

[
MG2G1(D1 +X′X)−1G1MG2

]+
MG2(G1β̃1 + g)

= β̃1 = (D1 +X′X)−1X′Y

sinceMG2 = 0 and

˜̃
β
(1)
2 = −[

(G′
2)

−
m[G1(X′X)−1G′

1]

]′
(g +G1β̃1) =

1

2

[
0.6− (2,−2,−1)β̃1

]
.

b
(1)
β1

= E(
˜̃
β
(1)
1 )− β1 = E(β̃1)− β1 = (−0.250000,−0.243902,−0.199203)′,

Var(˜̃β
(1)
1 ) = Var(β̃1) = Diag(0.062500, 0.038073, 0.000159),

Tr
[
Var(

˜̃
β
(1)
1 )

]
+ (b

(1)
β1

)′b(1)
β1

= 0.262402,

Var(
̂̂
β1) = Var(β̂1) = Diag(0.25, 0.25, 10)⇒ Tr

[
Var(

̂̂
β1)

]
= 10.5
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The difference Tr
[
Var(

̂̂
β1)

]−{
Tr

[
Var(

˜̃
β
(1)
1 )

]
+(b

(1)
β1

)′b(1)
β1

}
is the same as

in the first example.
Since[
(G′

2)
−
m[G1(X′X)−1G′

1]

]′
=

1

2
and (g +G1β̃1) =

[− 0.6 + (2,−2,−1)β̃1

]
,

we have
˜̃
β
(1)
2 = −1

2

[− 0.6 + (2,−2,−1)β̃1
]

and
E

(
˜̃β
(1)
2

)
− β2 = 0.206496− 0.3 = −0.093504 = b

(1)
β2
.

Further

Var( ˜̃β
(1)
2 ) =

=
1

4
(2,−2,−1)Diag(0.062500, 0.038073, 0.000159)

⎛⎝ 2
−2
−1

⎞⎠ = 0.100613.

Thus

Tr
[
Var

(
˜̃β
(1)
2

)]
+

(
b
(1)
β2

)2

= 0.109356

Var(
̂̂
β2) =

[
(G′

2)
−
m[G1(X′X)−1G′

1]

]′
G1(X

′X)−1G′
1(G

′
2)

−
m[G1(X′X)−1G′

1]
= 3.

As far as the estimators ˜̃β(2)
1 and ˜̃

β
(2)
2 (D2 = I) are concerned, we obtain

˜̃
β
(2)
1 = (D1+X′X)−1X′Y− (D1+X′X)−1G′

1

[
G1(D1+X′X)−1G′

1+G2G
′
2

]−1

×[
g +G1(D1 +X′X)−1X′Y

]
,

Var
(
˜̃β
(2)
1

)
=

{
I− (D1 +X′X)−1G′

1

[
G1(D1 +X′X)−1G′

1 +G2G
′
2

]−1
G1

}
×Var(β̃1)

{
I− (D1 +X′X)−1G′

1

[
G1(D1 +X′X)−1G′

1 +G2G
′
2

]−1
G1

}′

=

⎛⎝ 0.050857, 0.008001, 0.000853
0.008001, 0.032676, −0.000493
0.000853, −0.000493, 0.000183

⎞⎠ ,

E
(
˜̃
β
(2)
1

)
− β1 = E(β̃1)− (D1 +X′X)−1G′

1

[
G1(D1 +X′X)−1G′

1 +G2G
′
2

]−1

×[
g+G1E(β̃1)

]− β1 =

⎛⎝−0.148785
−0.322899
−0.215333

⎞⎠ ,

Tr
[
Var

(
˜̃
β
(2)
1

)]
+

(
b
(2)
β1

)′
b
(2)
β1

= 0.083716+ 0.172769 = 0.256485.

The behaviour of ˜̃β(1)
1 and ˜̃

β
(2)
1 is similar; the MSEs of both estimators are

almost the same.
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The estimator ˜̃β(2)
2 is

˜̃
β
(2)
2 = −G′

2

[
G1(D1 +X′X)−1G′

1 +G2G
′
2

]−1[
g+G1(D1 +X′X)−1X′Y

]
= −2

1

4.930085

[− 0.6 + (2,−2,−1)β̃1

]
,

we have
E

(
˜̃
β
(2)
2

)
− β2 = b

(2)
β2

= −0.132460

and

Var
(
˜̃β
(2)
2

)
=

= 0.4056732 (2,−2,−1)

⎛⎝ 0.062500, 0, 0
0, 0.038073, 0
0, 0, 0.000159

⎞⎠⎛⎝ 2
−2
−1

⎞⎠ = 0.066232.

Thus

Var
(
˜̃β
(2)
2

)
+

(
b
(2)
β2

)2

= 0.066232+ 0.017546 = 0.083778

and Var(
̂̂
β2) = 3, what is essentialy larger than 0.083778.

The MSE of the estimator ˜̃β
(2)
2 equal to 0.083778 is smaller than the MSE

of the estimator ˜̃β(1)
2 equal to 0.109356.
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