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Abstract

Bad conditioned matrix of normal equations in connection with small
values of model parameters is a source of problems in parameter estima-
tion. One solution gives the ridge estimator. Some modification of it is
the aim of the paper. The behaviour of it in models with constraints is
investigated as well.
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1 Introduction

The linear model Y ~,, (X3, 0?I) is considered. Here Y is an n-dimensional
random vector (observation vector), X3 is the mean value of it, i.e. F(Y) = X33,
X is an n x k known matrix with the rank »(X) = k < n, 8 is an unknown
k-dimensional parameter which must be estimated and o2 is an unknown pa-
rameter o2 € (0,00).

The best linear unbiased estimator (BLUE) of 8 is 8 = (X'X)"'X'Y and
its covariance matrix is Var(8) = ¢2(X'X) L.

Let the spectral decomposition of the matrix X’X be

k
X'X =Y Afif] = FAF/, f/f; = 6;; (the Kronecker delta)
=1
F= (fl, N ,fk), A= Diag()\l, N 7>\k)
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The problem occurs when A\jyax = max{\1,..., \;} differs significantly from
Amin = min{A1, ..., Ag}, 1.6 Amax/Amin is large number. In this case variances
of the BLUEs of different linear functions of 3 can differ significantly as well
and it can be in some cases unacceptable.

It seems that the way out this problem is to use either the estimator B with
the property

var(3) + [B(8) - 8] [B(B) - 8] <1 Vax(B) &)

(<, means the Loevner ordering positive semidefinite matrices), or the property
- - / - ~
Tr {Var(ﬁ)} + [E(ﬁ) - 5} {E(ﬁ) - ﬁ} <Tr {Var(,@)} . 2)

The ridge estimator has the property (2) (see in more detail [3], [4]), however
not the property (1).

2 Some comments to the ridge estimator
In the first step let us try to find the estimator of 3 in the form AY, such that
v{h € R*} Var(W'AY) + b7 ;, = min{Var(h'BY) + b} ,: B € M**"}  (3)

where by, = E(h’AY) — h/B = h/(AX — I)3, M**" is the class of k x n
matrices and I is the identity matrix.

Lemma 2.1 The random vector
B =pA (XBEX +o° )Y,
satisfies (3).
Proof Let
®y(A) = 0’WAA'h + h'(AX - T)BB'(X'A’ — T)h.

Then (see [2], p. 285)

A
aq’a’ii ) _ 90?hh/A + 2hh'AX3A'X' — 2hh'BA'X' =0
= A =38'X'(*1+XB3'X")" L.
thus 8* = BB'X' (021 + XBA'X')"1Y. O

Remark 2.2 The random vector 8* has the covariance matrix

Var(8*) = o?B8'X' (0’1 + XBB'X') 72X B4’
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and the bias

bs = BE(8") — 8= [B8'X'(¢’ 1+ XBB'X') ' X ~1]8.
Thus

Var(8*) + bgbl; = o [3'X'(c’1 + XBB'X') °X3]| 86
+[BX/(0* 1+ XBE'X')1XB] BB - 2[B'X (0’1 + XBE'X') "X 68 + B
and

Tr [ Var(8*)] + bjybs = 0®[B'X'(c°1 + XBB'X/) °XB]8'8
+H[EX (0P I+XBA'X) X BB - 2[B X (0* 1+ XBA'X)1XB] BB+ 0'B.
Since B'X/(XBB'X')~X3 = 1, it is valid that
o? =0 = Tr [ Var(B)] + bjbg = 0.

The vector 3" is of no use for an estimation. Even an attempt to use an iter-
ation is useless. If 3, is a starting vector in an iteration procedure for a determi-
nation of 3%, then the first step leads to B(;) = BoBo(c* 1+ XB,B,X’)~1Y. It is
valid that P{8{;, € M(B,)} = 1, since dimension of B;(c°1+X3,8,X') 'Y is
one. An analogous situation occurs in the second and other steps, i.e. P{ﬂa) €
M(By)} =1,i=2,3,... Thus the starting vector 3, determines the direction
of the vector 3* and it is not admissible.

Hoerl and Kennard [3], [4] solved the problem in more efficient way. They
minimized the function ¢(B) = B/B under the condition

(v —XB)(y ~XB) = (y - XB)'(y - XB) +4d, d>0,
where 8 = (X'X)~1X'y is the value of t for which the function
¢(t) = (y — Xt)'(y — X¢t)

attains its minimum. They obtained the estimator B of the form B = (I +
X'X)"!X'Y (ridge estimator), where ¢ > 0 can be chosen in such a way that

~ ~ o~

Tr [ Var(B)] + [E(8) — ﬁ]/[E(ﬂ) — B3] is significantly smaller than Tr [ Var(3)]
mainly in the case that ||3| is relatively small with respect to o and the matrix
X'X is bad conditioned.

In [7] new reasons for utilization of the ridge estimator are given and in [5]
a general view on the philosophy of the ridge estimator is analyzed.

3 Modification

Let us try to find explicit value for ¢ in the expression for the ridge estimator.
The spectral decomposition of the matrix X’X from Introduction is used. The
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quantity Tr [Var(B)} + bjzbg is a function of ¢ and it can be expressed as

®(c) = Tr [ Var(B)] + bjbs = o Tr [(cl + X'X) "' X'X (I + X'X) ']
+8'[(A4+X'X) "' X'X—1]°8 = 0 Tr [((FF'+FAF') " 'FAF'(cFF +FAF') "]

k K
(P PAR)RAR PR =02y Ny OO
i=1 (C + )\1)2 i=1 (C + )\1)2

Thus

Z 20 (c(f!B3)? — 0?)
P (c+N\)

and in the case that 3 is approximately known, it is possible to solve the equation

Ni(c(£!B)? — o?)
S MClER -
~ (c+X\i)

for c.
Let the function

O(t) = t'Dt + A[(y — Xt) (y - Xt) — (y — XB)'(y - XB) —d]  (4)
instead the function
O(t) = t't + A[(y — Xt)'(y — Xt) — (y — XB)'(y — XB) — d]

be considered. Her D is a positive definite matrix which will be determined
later.

Theorem 3.1 The solution of the optimization problem (4) is
t=(D+X'X) X'y,

where D = D/\. The MSE-optimum choice of the matriz D is

1 1
D = ¢?F Dia ( )F’,
t\@Ep)?  EB)
M, ..., 0
where X' X =FAF , F=(f;,... fx), A= ..........
0, .0y A

Proof Let U = Diag(uy,...,u;) and D = FUF’. Then the MSE of the
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estimator t can be written as
Tr [ Vax(t)] + bzby = o* Tr { [F(U + A)F']'FAF/[F(U + A)F'] '}

+ 8 {FAF/[F(U+ A)F'] " — FF' }{[F(U+ A)F']'FAF - FF'} 3

= 2Tr[FD'a ( )D'a DYTRND
7 188 UL+ A1 Uk + Mg lg( ! k)

1 1
X Dia, sy F’
g(u1+)\1 uk+)\k) ]

. A1 Ak
"IFD F — FF’
o { 1ag<u1+/\1, ’uk-l—)\k) }
2
. M Ak , , a?\i + (£8)*uf
FD F' — FF = ML S L —"Ch
X |: lag (u1 T )\17 ”UJk n )\k) ﬁ ; (Uz 4 >\i)2

Here the relationship

[F(U+A)F] " =FU+A)"'F
was taken into account.
The optimum entries uy, ..., u; of the matrix U can be now easily find.

z’“: o?\i + (£18)%u3

=1 ul + /\ ) ’
02(U) _, ({18)°us(ui + i) — [°\i + (£8)°u]
aU/i N (uz + A1)3 .

Thus u; = 0?/(£f/8)%,i=1,...,k and

. 1 1 /
D—O'QFDlag(<f{ﬂ)2,..., (f/cﬂ)2>F'

O

Remark 3.2 The matrix D must be determined by the iteration. We start
with some ﬁ(o), then obtain the matrix D§O), by the help of it we obtain the

estimator B(l), etc. The choice of the matrix D from Theorem 3.1 gives

S AT Ly
. ; 7T LNEB)E + o2
= ((f;ﬁ)ﬁAi) =i RO e

Tr [Var(t)] + b’BbB =

what can be significantly smaller than Tr [Var( )] = o? ZZ 1 )\i
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4 Model with the type I constraints

The model is
YNn (X5702I)7 g+G/6:07

where (X, ) = k <n, 71(Ggr) = ¢ < k. The matrix X, the vector g and the
matrix G are given.

Obviously M(G’) C M(X'). In this case the BLUE of the parameter (3 is

B=XX)"'XY - (X'X)'G'[G(X'X)'G] - [(X'X)"'X'Y +g]
and its covariance matrix is

= 1

Var(8) = 02{(X’X)‘1 ~ (X'X) '@ [GX'X)G] G(X’X)—l}

= 0% (M X'XMe) ",
where Mg = I — G/(GG’)"1G and * is notation for the Moore-Penrose gen-

eralized inverse (see [6]).
If the idea of Hoerl and Kennard is a little bit generalized, we seek for an

estimator B which satisfy the constraints g + GB = 0 and also the constraints
(y — XB)'(y — XB) = (- XB)(y — XB) + d and at the same time it will
minimize the quantity B'ﬁB.

Lemma 4.1 The estz’matoré 18

B=D+X'X)'X'Y - (D+X'X)"'¢'[GD +XX)'¢]"

x[G(D +X'X)"'X'Y +g] = ng(’é;’”(D +X'X)TX'Y = Gy xox)8

/

:2F'(1 1>F
where D = 0“F Diag @82 TP

Proof The auxiliary Lagrange function is

®(t) = t'Dt — A[(y — Xt)'(y — Xt) — (y — Xﬁ)’(y - XE) —d] +2k'(Gt + g),

where A is the Lagrange multiplier and « is a vector of the Lagrange multipliers.
Thus

oB(t)
% — 9Dt + A(—2X'y + 2X'Xt) + 2G'k = 0

= (D +X'X)t + G’g = X'y,

where D = D/) and

B=(D+XX) XY (D+ X’X)*G’;.



Ridge estimator revisited 79

Further
0=g+GB=g+GD+XX) XY -GD+ x'x)"ar
=T = [GD+XX)T'C] ' [GD + X'X) XY +¢]
=B =D+XX)'X'Y - (D+XX)"'¢[GD+X'X) 1G]
x[G(D +X'X)'X'Y + g]
_ {1 ~ (D +X'X)"'G'[GD + X'X)"'G'] _1G}(D +X'X)IX'Y

1

~(D+X'X)"'G'[GD +X'X)"'G'] g

_ 5(D+X'X) 1 -
=P (D +X'X)" XY - G prxx)8

where Pg;)é;x) is the projection matrix on Ker(G) = {u: u € R*, Gu = 0}
in the norm given by the positive definite matrix D + X'X.
The bias of the estimator 3 is

bs = E(B) - B=PL LD+ X'X)"1X'X - 1]6.

and

' ’ /
Var(B) = o* P (D + XX) XKD + X'X) ! (PLEY)

Since the bias of the estimator 3 = (D 4+ X'X) "' XY is
E(B)-pB=[D+XX)"'X'X 1|8,

(D+X'X)

it is obvious that bg = P Ker(G) [E (B) — ﬁ] and analogously for the covariance

matrix

D+X'X = D+x'x)\’
Var(B) = P Var(3) (PLIE V)Y

Thus the estimator B from the model without constraints can be used in the

formula for the estimator ,B in the model with the type I constraints. The bias

and the covariance matrix are reasonably diminished by the projection matrix

P;éZjé;X) which fully respects the constraints. O

5 Model with the type II constraints
The model considered is
Y ~, (X517U2I)7 g+ G168, + G2, =0,

where (X, 1,)) = k1 <0y 7(G1(g.k1)s Go,(a.k2)) = @ < k1 + k2, 7(Go (gks) =
ks < q. The matrix X, the vector g and the matrices Gi, G2 are given.
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The BLUES of the vector parameters 8, and 3, are
B, = (X'X)"'X'Y — (X'X)"'G} [M¢, G (X'X)'G/ Mg, ] "
x [g+ G1(X'X)'X"Y],

By =~ [(Gé);[c/l(x'x)flcl]]/[g +G1(X'X) " XY]

(in more detail see [1]).
In both estimators the effect of the bad conditioned matrix X'X is fully

manifested.
The modification of the Kennard and Hoerl approach can be made in two

ways.
The first one starts with a minimization of the quantity B/lﬁl Bl and the

other starts with a minimization of the quantity B’lﬁl ,Bl + 5/25232.

Let us consider the minimization of Blﬁl Bl, i.e.

B(t1,t2) =t D1ty + A[(y — Xt1)'(y — Xt1) — (y — XB1) (y — XB,) — d]
-2k (g + G1t1 + Gata),

0D (ty,t —
% = 2Dty + A(—2X'y + 2X'Xt) — 2G/ &,
1
0D (1, ts) ,
b2 929Gk,
Oto 2k

Let D1 = %ﬁl. Thus the following relationships can be written.
(D + AX'X)t; — A X'y — Gk =0,
t; = (D) + X'X)"'X'y + (D1 + X’X)*G’l;,
g+ G (D; + X'X)"'X'y + Gy (D1 + X’X)*G’l; + Gty =0

Gi(D: +X'X)'GY, Go\ (k/A) g+ Gi(Dy +X'X) X'y
G, 0 ta ) 0 '

Regarding the Pandora—Box theorem [6], we obtain

() (R (o),

]+

Mg, G1(D; + X'X) "G Mg,

= (G;);[G1(D1+X’X)*1G’l]’
— /
[(G/Z)m[Gl(D1+X/X)71G,1]j| ?
_ / _ —
*[(Gé)m[GI(DﬁX/X)fIG;]] G1(D; +X'X) 1G/1(G/2)m[G1(D1+X’X)*1G’1]'

Thus the following theorem can be stated.
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Theorem 5.1 In the reqular model with the type constraints II the estimators
Bgl) and Bél) minimizing the quantity B’lDl,Bl and satisfying the constraints
(v = X8 (y ~XB1") — [(v — XB,)'(y — XBy) +d] =0

and

g+GiB" +GyB" = 0.
are
3Y = (D + X'X)"'X'Y — (D; + X'X)"' G} [Mg, G (D; + X'X)™!
x GiMg,] " [g + G1(D; + X'X)'X'Y],

(1) _ - / _
2 - _[<G/2)m[G1(D1+X’X)*1G’1]] [g + Gl(Dl + X/X) 1X’Y] .

Since égl) can be written as
By = (1 — (D1 + X'X)"'G{ Mg, [Mg,G1(D; + X’X)—1G3M02]+MG2G1>

X (Dl + X/X)*IX/Y - (Dl + X_/X)flG/l [MG2G1(D1 + X/x)flG/lMG2j|+g
Di+X'X _ B
= P ity (D1 + X'X) XY — (D) +X'X) 7' Gy

x [Mg,G1(D: +X'X)"'G|Mg,] g,
the bias of the estimator égl) is
BBY) - By =P (D + XX) XX - 1] 6,

The same reasoning for the utilization of the matrix

1 1
D; = ¢*F Dia, < )F’
' S\ B2 (66,

can be made as at the end of the section 4.
As far as the estimator ,Bgl) is concerned, there exists just one solution of
the equation

g+ Glégl) + Gzégl) =0
for égl), since r(Gz) = k2 < ¢. Thus

By = —(GhG2) 'GY(G1 B + g)

- [(Gé);z[Gl(DﬁX/X)flG;]]/[Gl(Dl +X'X)T'X'Y +g].
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Thus the matrix

. 1 1 /
D; = o”F Diag <(f1ﬁ1)2 T (fkﬂ1)2> ‘

can be used for the estimator Bgl) as well.
Let us consider a little more general problem, i.e. a minimization of the
function ¢(t1,t2) = t)D1t1 + t45Dots under the conditions

[(y = Xt1)' (y — Xt1) = (y — XB,)'(y — XB,) — d],
Git1 + Gaota +g =0.
The Lagrangian auxiliary function is

(I)(tl,tg) = tllﬁltl + t;ﬁgtg + /\[(y — th)/(y — th)

—(y— XB1)/(Y - XB1) - d] +2k/(G1t1 + Gata + g).

Then
D(tq,t —
W = 2D1ty + M(—2Xy + 2X'Xt1) + 2G1k,
1
oD (ty,t —
M = 2Dty + 2Ghk
Oto
and

R

t; = (D) + X'X)" X'y — (D; + X’X)_lGlx,

ty = —D2_1G’2§,

where D; = D; /) and Dy = D/ .

Since
0=g+ GIB1 + GZBQ =g+ (D +X'X) X'y
—[G(Dy + X'X) G + GQD;G;]”;,
we have
K

T = [G1(D1 + X'X) TG + G2D; ' G g+ Gi(Dy + X'X) ' Xy].

The following theorem can be stated.

Theorem 5.2 In the reqular model with the constraints 11

YNn (X/81702I)7 g+G’1ﬂ1 +G'2/82 :Oa
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where
T<X’ﬂ7k1) =k < n, r(Gl,(q,lﬂ)a G2,(q,k2)) =q< ky + k27 T(GZ,(q,kz)) =ky < q,

the estimators ,Bf) and Bg) minimizing the quantity

(B1Y DB + (B5”)DaBy”
are
= (D; + X'X)"'X'Y — (D1 + X'X) " 'G} [G1(D: + X'X) 7' G/

+GyD; G g+ Gy (D + X'X)TIX'Y],

BY = —Dy'G4[Gi(D; + X'X)'G + GoDy Gy
x [g+ Gi1(D; + X'X)'X'Y],

where Dy = D1/ and Dy = Dy/\.

The problem of the MSE-optimization of the matrix D5 is out of the scope
of the paper. For the sake of simplicity the choice D> =1 can be used.

6 Numerical examples

Let singular value decomposition of the matrix X be

X = JssAYZF, 5, 33 = T3, AY? = Diag (\/Z, Vi, \/0.1) . F=1I,

0?=1and
0.5 1 1 1
/ . . /
,6: 8421 s XX:Dlag(4,4,01), D:FDlag <W,m,7>F
Thus

Var(8) = (X'X)~! = Diag(0.25,0.25, 10),
111
0.527 0.427 .22
x Diag (\/71, VA4, \/0.1) J'y = Diag(0.250000, 0.195122, 0.012599)J"y,

-1
B=(D+XX) X'y = [Diag ( ) + Diag (4,4,0.1)]

Var(3) = Diag(0.062500, 0.038073,0.000159)
E(B) = Diag(0.250000, 0.195122,0.012599)J'JA'/?F'3
= (0.250000,0.156098, 0.000797)".
The bias of ,@ is

bz = (0.250000, 0.156098, 0.000797)" — (0.5,0.4,0.2)’
= (—0.250000, —0.243902, —0.199203)’.
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Thus
Tr [ Var(B)] = 10.5 and Tr [ Var(3)] +bjsbs = 0.100732+0.161670 = 0.262402.

The effect of the optimization is expressive.
Let this model with constraints (2, —2,—1)3 = 0 be considered, i.e. g = 0
and G = (2,—2,—1). It is valid that

0.462415, 0.537585, 0.268793

POIEN) = [ 0419579, 0.580421, —0.209789
0.085671, —0.085671, 0.957164
and
. ) —0.250000 —0.300266
E(B)-B =P SV BEB)-8] =PL &Y | —0.243902 | = | —0.204670
—0.199203 —0.191192
Since ~ .
p D+X'X D+X’'X
Var(8) = P var(3) (PEY)
we have

Tr [Var(8)] + [E(B) — B]' [E(B) — 8] = 0.049099 + 0.168604 = 0.217703.
The covariance matrix of the BLUE is
Var(B) = (X'X)~! — (X'X) "'/ [G(X'X) ' Q]
and thus

71G(X/X71)71

Tr [Var(,;\B\)] = 2.110007.

what is essentially larger than 0.217703.
Let now the type II constraints be considered, e.g.

B=p,=(05 04, 02), G, = (2,-2,—1), Go =2, g = —0.6, B2 = 0.3.
Thus
3 = B, — G} Mg, [Mc,Gi (D1 + X'X) " G Mg,] "M, (G1B, +g)
=B, = (D +X'X)"'X'Y

since Mg, = 0 and

z ! 2 1 3
§ =[Gy Jmicn(xx) -1y (8 GiBy) = 2 [06- 22, ~1)B].

bl = B(B) - B, = E(B,) — B, = (—0.250000,—0.243902, —0.199203)’,
Var@ ) = Var(ﬁl) Diag(0.062500, 0.038073, 0.000159),
Tr [Var(81)] + (b5))b) = 0.262402,

Var(8,) = Var(8,) = Diag(0.25,0.25,10) = Tr [Var(ﬁl)] =10.5
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The difference Tr [Var(ﬁl)] - {Tr [Var(égl))] + (bg1 )’bgl)} is the same as

in the first example.
Since

— ! 1 3 ~
[(G2) e (xix)-16y)) = 5 and (g+Guify) = [-06+(2-2-1)B],
we have - 1
B = =3[ 0.6+ (2, -2, -1)3]
and z
Further
Var(ﬂzél)) =
2

1
= —(2,—2,—1) Diag(0.062500,0.038073,0.000159) | —2 | = 0.100613.
-1

Thus

(1) W\? _
T [Var (37)] + (05)) " = 0.109356
Var(ﬂQ) = [(G/Q);n[Gl(X/X)*lG’l]]/Gl(X/X)_lGll(G/Q);n[Gl(X/X)*lG’l] =3.

As far as the estimators égz) and 6:§2) (D2 =1) are concerned, we obtain
1

B = (D1 +X'X) XY — (D1 +X'X) G} [G1 (D1 + X'X) ' G + GG~
x[g+ G1(D: + X'X)"'X'Y],
Var (87 = {1 - (D1 + X'X) G} [G1(D1 + X'X)'G} + G2G4) ' Gu |

3 _ /
x Var(8,){I - (D1 + X'X) ™G} [G1 (D1 + X'X) 7' G} + G2GY] ' Gu |

0.050857, 0.008001, 0.000853
= | 0.008001, 0.032676, —0.000493 | ,
0.000853, —0.000493, 0.000183

E(BY) 8, = B(B)) — (D1 +X'X) ' G{ [G1(D1 + X'X)'G] + G2 Gy
—0.148785

x[g+ G1E(B,)] — B, = | —0.322899 | ,
—0.215333

T [Var (B)] + (b)) b = 0.083716 + 0.172769 = 0.256485.

The behaviour of égl) and égz) is similar; the MSEs of both estimators are

almost the same.
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The estimator Bf) is

37 = —GH[G1 (D1 + X'X)IG + GG g+ G (D + X'X) XY

1 _
=92 [0 2.1
24.930085[ 0.6+(2,-2,~1)81],
we have .
E(B() - 82 = b = ~0.132460
and
Var (252)) =
0.062500, 0, 0 2
= 0.405673% (2, -2, —1) 0, 0.038073, 0 —2 | =0.066232.
0, 0,  0.000159 / \ —1
Thus

z 2
Var (8) + (b)) = 0.066232 + 0.017546 = 0.083778

and Var(B}) = 3, what is essentialy larger than 0.083778.
The MSE of the estimator 352) equal to 0.083778 is smaller than the MSE
of the estimator Bél) equal to 0.109356.
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