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Abstract
Let T be a periodic time scale. The purpose of this paper is to use a

modification of Krasnoselskii’s fixed point theorem due to Burton to prove
the existence of periodic solutions on time scale of the nonlinear dynamic
equation with variable delay x� (t) = −a (t)h (xσ (t))+c(t)x

˜� (t− r (t))+
G (t, x (t) , x (t− r (t))), t ∈ T, where f� is the �-derivative on T and

f
˜� is the �-derivative on (id − r)(T). We invert the given equation to
obtain an equivalent integral equation from which we define a fixed point
mapping written as a sum of a large contraction and a compact map. We
show that such maps fit very nicely into the framework of Krasnoselskii–
Burton’s fixed point theorem so that the existence of periodic solutions is
concluded. The results obtained here extend the work of Yankson [15].
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1 Introduction

Let T be a periodic time scale such that 0 ∈ T. In this paper, we are interested
in the analysis of qualitative theory of periodic solutions of dynamic equations.
Motivated by the papers [1]–[4], [7]–[13], [15] and the references therein, we
consider the following totally nonlinear neutral dynamic equation with variable
delay

x� (t) = −a (t)h (xσ (t)) + c(t)x
˜� (t− r (t)) +G (t, x (t) , x (t− r (t))) , t ∈ T.

(1.1)
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Throughout this paper we assume that r : T → R and that id − r : T→ T is
strictly increasing so that the function x (t− r(t)) is well defined over T. Our
purpose here is to use a modification of Krasnoselskii’s fixed point theorem due
to Burton (see [7] Theorem 3) to show the existence of periodic solutions on
time scales for equation (1.1). Clearly, the present problem is totally nonlinear
so that the variation of parameters can not be applied directly. Then, we resort
to the idea of adding and subtracting a linear term. As noted by Burton in [7],
the added term destroys a contraction already present in part of the equation
but it replaces it with the so called a large contraction mapping which is suitable
for fixed point theory. During the process we have to transform (1.1) into an
integral equation written as a sum of two mapping; one is a large contraction
and the other is compact. After that, we use a variant of Krasnoselskii fixed
point theorem, to show the existence of a periodic solution for equation (1.1). In
the special case T = R, Yankson in [15] shows that (1.1) has a periodic solutions
by using Krasnoselskii–Burton’s fixed point theorem.

In Section 2, we present some preliminary material that we will need through
the remainder of the paper. We will state some facts about the exponential
function on a time scale as well as the modification of Krasnoselskii’s fixed
point theorem established by Burton (see ([7] Theorem 3) and [8]). For details
on Krasnoselskii’s theorem we refer the reader to [14]. We present our main
results on periodicity in Section 3. The results presented in this paper extend
the main results in [15].

2 Preliminaries

The concept of time scales analysis is a fairly new idea. In 1988, it was in-
troduced by the German mathematician Stefan Hilger in his Ph.D. thesis [11].
It combines the traditional areas of continuous and discrete analysis into one
theory. After the publication of two textbooks in this area (by Bohner and
Peterson, 2001, 2003, [5]–[6]), more and more researchers were getting involved
in this fast-growing field of mathematics.

The study of dynamic equations brings together the traditional research
areas of (ordinary and partial) differential and difference equations. It allows
one to handle these two research areas at the same time, hence shedding light
on the reasons for their seeming discrepancies. In fact, many new results for the
continuous and discrete cases have been obtained by studying the more general
time scales case (see [1]–[6], [12], [13] and the references therein).

The reader can find more details on the materials and basic properties used
here in the first chapter of Bohner and Peterson book [6, p. 1–50] and can find
good examples on dynamic equations in Chapter 2 of [7, p. 17–46].

We have studied dynamic nonlinear equations with functional delay on a
time scale and have obtained some interesting results concerning the existence
of periodic solutions (see [2]–[3]) and this work is a continuation. Here, we focus
on the nonlinear dynamic equation with variable delay (1.1) which is challenging
equation and, for our delight, have not yet been studied by mean of fixed point
technic on time scales.
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We start by giving some definitions necessary for our work. The notion of
periodic time scales is introduced in Atici et al. [4] and Kaufmann and Raffoul
[12]. The following two definitions are borrowed from [4] and [12].

Definition 2.1 We say that a time scale T is periodic if there exist a p > 0
such that if t ∈ T then t ± p ∈ T. For T �= R, the smallest positive p is called
the period of the time scale.

Below are examples of periodic time scales taken from [12].

Example 2.2 The following time scales are periodic.

(1) T =
⋃∞

i=−∞ [2(i− 1)h, 2ih] , h > 0 has period p = 2h.

(2) T = hZ has period p = h.

(3) T = R.

(4) T = {t = k − qm : k ∈ Z, m ∈ N0}, where 0 < q < 1 has period p = 1.

Remark 2.3 [12] All periodic time scales are unbounded above and below.

Definition 2.4 Let T �= R be a periodic time scales with the period p. We say
that the function f : T → R is periodic with period T if there exists a natural
number n such that T = np, f(t± T ) = f(t) for all t ∈ T and T is the smallest
number such that f(t ± T ) = f(t). If T = R, we say that f is periodic with
period T > 0 if T is the smallest positive number such that f(t± T ) = f(t) for
all t ∈ T.

Remark 2.5 [12] If T is a periodic time scale with period p, then σ(t± np) =
σ(t)± np. Consequently, the graininess function μ satisfies

μ(t± np) = σ(t± np)− (t± np) = σ(t)− t = μ(t)

and so, is a periodic function with period p.

Our first two theorems concern the composition of two functions. The first
theorem is the chain rule on time scales ([5, Theorem 1.93]).

Theorem 2.6 (Chain Rule) Assume ν : T → R is strictly increasing and

T̃ := ν (T) is a time scale. Let ω : T̃ → R. If ν� (t) and ω ˜� (ν (t)) exist
for t ∈ Tk, then

(ω ◦ ν)� =
(
ω

˜� ◦ ν
)
ν�.

In the sequel we will need to differentiate and integrate functions of the
form f(t − r(t)) = f(ν(t)), where ν(t) := t − r(t). Our second theorem is the
substitution rule ([5, Theorem 1.98]).
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Theorem 2.7 (Substitution) Assume ν : T → R is strictly increasing and
T̃ := ν (T) is a time scale. If f : T → R is rd-continuous function and ν is
differentiable with rd-continuous derivative, then for a, b ∈ T,∫ b

a

f(t)ν�(t)�t =
∫ ν(b)

ν(a)

(
f ◦ ν−1

)
(s) �̃s.

A function p : T → R is said to be regressive provided 1 + μ(t)p(t) �= 0 for
all t ∈ Tk. The set of all regressive rd-continuous function f : T→ R is denoted
by R while the set

R+ = {f ∈ R : 1 + μ(t)f(t) > 0 for all t ∈ T} .
Let p ∈ R and μ(t) �= 0 for all t ∈ T. The exponential function on T is

defined by

ep(t, s) = exp

(∫ t

s

1

μ(z)
log (1 + μ(z)p(z))�z

)
.

It is well known that if p ∈ R+, then ep(t, s) > 0 for all t ∈ T. Also, the
exponential function y(t) = ep(t, s) is the solution to the initial value problem
y� = p(t)y, y(s) = 1. Other properties of the exponential function are given in
the following lemma.

Lemma 2.8 [5] Let p, q ∈ R. Then
(i) e0(t, s) = 1 and ep(t, t) = 1;

(ii) ep(σ(t), s) = (1 + μ(t)p(t)) ep(t, s);

(iii) 1
ep(t,s)

= e�p(t, s), where

	p(t) = − p(t)

1 + μ(t)p(t)
;

(iv) ep(t, s) = 1
ep(s,t)

= e�p(s, t);

(v) ep(t, s)ep(s, r) = ep(t, r);

(vi) e�p (., s) = pep(., s) and(
1

ep(., s)

)�
= − p(t)

eσp (., s)
.

Lemma 2.9 [1] If p ∈ R+, then

0 < ep(t, s) ≤ exp

(∫ t

s

p(u)�u
)
, ∀t ∈ T.

Corollary 2.10 [1] If p ∈ R+ and p(t) < 0 for all t ∈ T, then for all s ∈ T
with s ≤ t we have

0 < ep(t, s) ≤ exp

(∫ t

s

p(u)�u
)
< 1.
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Krasnoselskii (see [7] or [14]) combined the contraction mapping theorem and
Shauder’s theorem and formulated the following hybrid and attractive result.

Theorem 2.11 Let M be a closed convex nonempty subset of a Banach space
(S, ‖.‖). Suppose that A and B map M into S such that

(i) ∀x, y ∈M ⇒ Ax+By ∈M ,
(ii) A is continuous and AM is contained in a compact set,

(iii) B is a contraction with constant α < 1.

Then there is a z ∈M with z = Az +Bz.

This is a captivating result and has a number of interesting applications. In
recent year much attention has been paid to this theorem. Burton [7] observed
that Krasnoselskii result can be more interesting in applications with certain
changes and formulated in Theorem 2.14 below (see [7] for the proof).

Definition 2.12 Let (M,d) be a metric space and B : M → M . B is said to
be a large contraction if ϕ, ψ ∈ M , with ϕ �= ψ then d(Bϕ,Bψ) < d(ϕ, ψ) and
if for all ε > 0 there exists δ < 1 such that

[ϕ, ψ ∈M, d(ϕ, ψ) ≥ ε]⇒ d(Bϕ,Bψ) ≤ δd(ϕ, ψ).
Theorem 2.13 Let (M,d) be a complete metric space and B be a large con-
traction. Suppose there is an x ∈ M and L > 0, such that d (x,Bnx) ≤ L for
all n ≥ 1. Then B has a unique fixed point in M .

Theorem 2.14 (Krasnoselskii–Burton) Let M be a closed bounded convex
non-empty subset of a Banach space (S, ‖.‖). Suppose that A, B map M into
M and that

(i) ∀x, y ∈M ⇒ Ax+By ∈M ,
(ii) A is continuous and AM is contained in a compact subset of M ,

(iii) B is a large contraction.

Then there is a z ∈M with z = Az +Bz.

It is obvious that if we want to apply the above theorem we need to construct
two mappings, one is large contraction and the other is compact.

3 Existence of periodic solutions

We will state and prove our main result in this section. After we provide an ex-
ample to illustrate our results. Let T > 0, T ∈ T be fixed and if T �= R, T = np
for some n ∈ N. By the notation [a, b] we mean [a, b] = {t ∈ T : a ≤ t ≤ b} ,
unless otherwise specified. The intervals [a, b), (a, b] and (a, b) are defined simi-
larly.

Define
CT = {ϕ : T→ R | ϕ ∈ C and ϕ(t+ T ) = ϕ(t)}
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where C is the space of continuous real-valued functions on T. Then (CT , ‖.‖)
is a Banach space with the supremum norm

‖ϕ‖ = sup
t∈T

|ϕ(t)| = sup
t∈[0,T ]

|ϕ(t)| .

We will need the following lemma whose proof can be found in [12].

Lemma 3.1 Let x ∈ CT . Then ‖xσ‖ = ‖x ◦ σ‖ exists and ‖xσ‖ = ‖x‖ .
In this paper we assume that h is continuous, a ∈ R+ is continuous, a (t) > 0

for all t ∈ T and

a(t+ T ) = a(t), c(t+ T ) = c(t), (id− r) (t+ T ) = (id− r) (t), (3.1)

with c continuously delta-differentiable, r twice continuously delta-differentiable
and id the identity function on T. Since we are searching for periodic solutions,
it is natural to ask that G(t, x, y) is continuous and periodic in t and Lipschitz
continuous in x and y. That is

G(t+ T, x, y) = G(t, x, y), (3.2)

and there are positive constants k1, k2 such that

|G(t, x, y)−G(t, z, w)| ≤ k1 ‖x− z‖+ k2 ‖y − w‖ , for x, y, z, w ∈ R. (3.3)

Also, we assume that for all t ∈ [0, T ],

r�(t) �= 1. (3.4)

Lemma 3.2 Suppose (3.1), (3.2) and (3.4) hold. If x ∈ CT , then x is a solution
of equation (1.1) if and only if

x(t) = (1− e�a(t, t− T ))−1
∫ t

t−T

a(s)H (x(s)) e�a(t, s)�s

+
c(t)

1− r�(t)
x (t− r(t))

− (1− e�a(t, t− T ))−1
∫ t

t−T

R(s)xσ (s− r(s)) e�a (t, s)�s

+ (1− e�a(t, t− T ))−1
∫ t

t−T

G (s, x(s), x (s− r(s))) e�a(t, s)�s, (3.5)

where

H(x(s)) = xσ(s)− h (xσ(s)) , (3.6)

R(s) =

(
c�(s) + cσ(s)a(s)

) (
1− r�(s)

)
+ r��(s)c(s)

(1− r�(s)) (1− r�(σ(s)))
. (3.7)
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Proof Let x ∈ CT be a solution of (1.1). First we write this equation as

x� (t) + a (t)xσ (t) = H (x (t)) + c(t)x
˜� (t− r (t)) +G (t, x (t) , x (t− r (t))) .

Multiply both sides of the above equation by ea (t, 0) and then integrate from
t− T to t to obtain∫ t

t−T

(ea(s, 0)x(s))
��s

=

∫ t

t−T

a(s)H (x(s)) ea(s, 0)�s+
∫ t

t−T

c(s)x
˜� (s− r(s)) ea(s, 0)�s

+

∫ t

t−T

G (s, x(s), x (s− r(s))) ea(s, 0)�s.

As a consequence, we arrive at

ea(t, 0)x(t)− ea(t− T, 0)x(t− T )

=

∫ t

t−T

a(s)H (x(s)) ea(s, 0)�s+
∫ t

t−T

c(s)x
˜� (s− r(s)) ea(s, 0)�s

+

∫ t

t−T

G (s, x(s), x (s− r(s))) ea(s, 0)�s.

Divide both sides of the above equation by ea(t, 0). Since x ∈ CT , we have

x (t) (1− e�a (t, t− T ))

=

∫ t

t−T

a(s)H (x(s)) e�a (s, 0)�s+
∫ t

t−T

c(s)x
˜� (s− r(s)) e�a(t, s)�s

+

∫ t

t−T

G (s, x(s), x (s− r(s))) e�a(t, s)�s. (3.8)

Here we have used Lemma 2.8 to simplify the exponentials. We want to pull
the factor x˜�(s− r(s)) from under the integral in (3.8). Clearly∫ t

t−T

c(s)x
˜� (s− r(s)) e�a(t, s)�s

=

∫ t

t−T

(
1− r�(s)

)
x
˜� (s− r(s)) c(s)

(1− r�(s))
e�a(t, s)�s.

Using the integration by parts formula∫ t

t−T

f�(s)g(s)�s = (fg) (t)− (fg) (t− T )−
∫ t

t−T

fσ(s)g�(s)�s,

and by Theorems 2.6 and 2.7 we obtain∫ t

t−T

c(s)x
˜� (s− r(s)) e�a(t, s)�s = c(t)

1− r�(t)
x (t− r(t)) (1− e�a(t, t− T ))

−
∫ t

t−T

R(s)xσ (s− r(s)) e�a(t, s)�s, (3.9)
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where R is given by (3.7). We obtain (3.5) by substituting (3.9) in (3.8). Since
each step is reversible, the converse follows easily. This completes the proof. �

To apply Theorem 2.14, we need to define a Banach space B, a closed
bounded convex subset ML of B and construct two mappings, one is a large
contraction and the other is compact. So, we let (B, ‖.‖) = (CT , ‖.‖) and
ML = {ϕ ∈ B : ‖ϕ‖ ≤ L, ϕ� is bounded}, where L is positive constant. We
express equation (3.5) as

ϕ (t) = (Bϕ) (t) + (Aϕ) (t) = (Cϕ) (t) ,

where A,B : M → B are defined by

(Aϕ) (t) =
c(t)

1− r�(t)
ϕ(t− r(t))

− (1− e�a(t, t− T ))−1
∫ t

t−T

R(s)ϕσ (s− r(s)) e�a(t, s)�s

+ (1− e�a(t, t− T ))−1
∫ t

t−T

G (s, ϕ(s), ϕ (s− r(s))) e�a(t, s)�s, (3.10)

and

(Bϕ) (t) = (1− e�a(t, t− T ))−1
∫ t

t−T

a(s)H (ϕ(s)) e�a(t, s)�s. (3.11)

We need the following assumptions

(k1 + k2)L+ |G(t, 0, 0)| ≤ βLa(t), (3.12)

|R(t)| ≤ δLa(t), (3.13)

max
t∈[0,T ]

∣∣∣∣ c(t)

1− r�(t)

∣∣∣∣ = α, (3.14)

J (α+ β + δ) ≤ 1, (3.15)

max (|H (−L)| , |H (L)|) ≤ (J − 1)L

J
, (3.16)

where α, β, δ and J are constants with J ≥ 3.
We begin with the following proposition (see [1]) and for convenience we

present, below, its proof. In the next proposition we prove that, for a well
chosen function h, the mapping H in (3.6) is a large contraction on ML. So, let
us make the following assumptions on the function h : R→ R.

(H1) h is continuous on UL = [−L,L] and differentiable on (−L,L).
(H2) h is strictly increasing on UL.

(H3) sups∈(−L,L) h
′(s) ≤ 1.

Proposition 3.3 Let h : R→ R be a function satisfying (H1)–(H3). Then the
mapping H in (3.6) is a large contraction on the set ML.
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Proof Let φ, ϕ ∈ ML with φσ �= ϕσ. Then φσ(t) �= ϕσ(t) for some t ∈ T.
Define the set

D(φ, ϕ) = {t ∈ T : φσ(t) �= ϕσ(t)} .
Note that ϕσ(t) ∈ UL for all t ∈ T whenever ϕ ∈ ML. Since h is strictly
increasing

h (ϕσ(t))− h (φσ(t))
ϕσ(t)− φσ(t) =

h (φσ(t))− h (ϕσ(t))

φσ(t)− ϕσ(t)
> 0, (3.17)

holds for all t ∈ D(φ, ϕ). On the other hand, for all t ∈ D(φ, ϕ), we have

|(Hφ)(t) − (Hϕ)(t)| = |φσ(t)− h (φσ(t))− ϕσ(t) + h (ϕσ(t))|

= |φσ(t)− ϕσ(t)|
∣∣∣∣1− (h (φσ(t))− h (ϕσ(t))

φσ(t)− ϕσ(t)

)∣∣∣∣ . (3.18)

For each fixed t ∈ D(φ, ϕ), define the set Ut ⊂ UL by

Ut =

{
(ϕσ(t), φσ(t)) , if φσ(t) > ϕσ(t),

(φσ(t), ϕσ(t)) , if ϕσ(t) > φσ(t),
for t ∈ D(φ, ϕ).

The mean value theorem implies that for each fixed t ∈ D(φ, ϕ) there exists a
real number ct ∈ Ut such that

h (φσ(t))− h (ϕσ(t))

φσ(t)− ϕσ(t)
= h′ (ct) .

By (H2) and (H3), we have

1 ≥ sup
t∈(−L,L)

h′(t) ≥ sup
t∈Ut

h′(t) ≥ h′ (ct) ≥ inf
s∈Ut

h′(s) ≥ inf
t∈(−L,L)

h′(t) ≥ 0.

(3.19)
Consequently, by (3.17)–(3.19), we obtain

|(Hφ)(t)− (Hϕ)(t)| ≤
∣∣∣1− inf

u∈(−L,L)
h′(u)

∣∣∣ |φσ(t)− ϕσ(t)| , (3.20)

for all t ∈ D(φ, ϕ). Hence, the mapping H is a large contraction in the supremum
norm. Indeed, fix ε ∈ (0, 1) and assume that φ and ϕ are two functions in ML

satisfying
‖φ− ϕ‖ = sup

t∈D(φ,ϕ)

|φ(t)− ϕ(t)| ≥ ε.

If |φσ(t)− ϕσ(t)| ≤ ε/2 for some t ∈ D(φ, ϕ), then from (3.19) and (3.20), we
get

|(Hφ)(t) − (Hϕ)(t)| ≤ |φσ(t)− ϕσ(t)| ≤ 1

2
‖φ− ϕ‖ . (3.21)

Since h is continuous and strictly increasing, the function h
(
u+ ε

2

) − h(u)
attains its minimum on the closed and bounded interval [−L,L]. Thus, if

ε

2
< |φσ(t)− ϕσ(t)| for some t ∈ D(φ, ϕ),
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then from (H2) and (H3) we conclude that

1 ≥ h(φσ(t))− h(ϕσ(t))

φσ(t)− ϕσ(t)
> λ,

where,

λ =
1

2L
min

{
h
(
u+

ε

2

)
− h(u), u ∈ [−L,L]

}
> 0.

Therefore, from (3.18), we have

|(Hφ)(t) − (Hϕ)(t)| ≤ (1− λ) ‖φ− ϕ‖ . (3.22)

Consequently, it follows from (3.21) and (3.22) that

|(Hφ)(t) − (Hϕ)(t)| ≤ η ‖φ− ϕ‖ ,
where

η = max

{
1

2
, 1− λ

}
< 1.

The proof is complete. �

We shall prove that the mapping C has a fixed point which solves (1.1),
whenever its derivative exists.

Lemma 3.4 For A defined in (3.10), suppose that (3.1)–(3.4) and (3.12)–
(3.15) hold. Then A : ML → ML is continuous in the supremum norm and
maps ML into a compact subset of ML.

Proof We first show that A : ML →ML. Clearly, if ϕ is continuous, then Aϕ
is. Evaluating (3.10) at t+ T gives

(Aϕ)(t + T ) =
c(t+ T )

1− r�(t+ T )
ϕ(t+ T − r(t+ T ))

− (1− e�a(t+ T, t))
−1
∫ t+T

t

R(s)ϕσ(s− r(s))e�a(t+ T, s)�s

+ (1− e�a(t+ T, t))
−1
∫ t+T

t

G(s, ϕ(s), ϕ(s − r(s)))e�a(t+ T, s)�s. (3.23)

Use Theorem 2.7 with u = s− T and conditions (3.1) and (3.2) to get

(Aϕ)(t + T ) =
c(t)

1− r�(t)
ϕ(t− r(t))

− (1− e�a(t+ T, t))
−1
∫ t

t−T

h(u + T )ϕσ(u+ T − r(u + T ))e�a(t+ T, u+ T )�u

+ (1− e�a(t+ T, t))−1

×
∫ t

t−T

G(u+ T, ϕ(u+ T ), ϕ(u+ T − r(u + T )))e�a(t+ T, u+ T )�u.
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From Theorem 2.7, we have

σ(u + T − r(u + T )) = σ(u − r(u)) + T, e�a(t+ T, u+ T ) = e�a(t, u),

e�a(t+ T, t) = e�a(t, t− T ).

Thus (3.23) becomes

(Aϕ)(t + T ) =
c(t)

1− r�(t)
ϕ(t− r(t))

− (1− e�a(t, t− T ))−1
∫ t

t−T

R(u)ϕσ(u − r(u))e�a(t, u)�u

+ (1− e�a(t, t− T ))−1
∫ t

t−T

G(u, ϕ(u), ϕ(u − r(u)))e�a(t, u)�u = (Aϕ)(t).

That is, A : CT → CT . In view of (3.3) we arrive at

|G(t, x, y)| ≤ |G(t, x, y)−G(t, 0, 0)|+ |G(t, 0, 0)| ≤ k3‖x‖+ k4‖y‖+ |G(t, 0, 0)|.

Note that from Corollary 2.10, we have

1− e�a(t, t− T ) > 0.

So, for any ϕ ∈ML, we have

|(Aϕ)(t)| ≤
∣∣∣∣ c(t)

1− r�(t)

∣∣∣∣ |ϕ(t− r(t))|
+ (1− e�a(t, t− T ))−1

∫ t

t−T

|R(s)| |ϕσ(u− r(s))| e�a(t, s)�s

+ (1− e�a(t, t− T ))−1
∫ t

t−T

|G(s, ϕ(s), ϕ(s − r(s)))| e�a(t, s)�s

≤ αL+ (1− e�a(t, t− T ))−1
∫ t

t−T

δa(s)Le�a(t, s)�s

+ (1− e�a(t, t− T ))−1
∫ t

t−T

((k1 + k2)L+ |G(s, 0, 0)|) e�a(t, s)�s

≤ αL+ δL (1− e�a(t, t− T ))−1
∫ t

t−T

a(s)e�a(t, s)�s

+ βL (1− e�a(t, t− T ))−1
∫ t

t−T

a(s)e�a(t, s)�s

= (α+ β + δ)L ≤ L

J
< L.

Thus, Aϕ ∈ML. Consequently, we have A : ML →ML.
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We show that A is continuous in the supremum norm. Toward this, let
ϕ, ψ ∈ML, and let

α′ = max
t∈[0,T ]

(1− e�a(t, t− T ))−1
,

β′ = max
t∈[t−T,t]

{e�a(t, s)} ,

ρ = max
t∈[0,T ]

|G(t, 0, 0)|,

γ = max
t∈[0,T ]

{a(t)} , (3.24)

μ = max
t∈[0,T ]

∣∣∣∣ c�(t)

1− r� (σ(t))

∣∣∣∣ ,
μ′ = max

t∈[0,T ]

∣∣∣∣ cσ(t)

1− r� (σ(t))

∣∣∣∣ ,
υ = max

t∈[0,T ]

∣∣∣∣ r��(t)c(t)

(1− r�(t)) (1− r� (σ(t)))

∣∣∣∣ .
Note that from a(t) > 0 we have maxs∈[t−T,t] {e�a(t, s)} ≤ 1. So,

|(Aϕ)(t) − (Aψ)(t)| ≤
∣∣∣∣ c(t)

1− r�(t)

∣∣∣∣ |ϕ(t− r(t)) − ψ(t− r(t))|
+ (1− e�a(t, t− T ))−1

×
∫ t

t−T

|h(s)| |Qσ(ϕ(s− r(s))) −Qσ(ψ(s− r(s)))| e�a(t, s)�s

+ (1− e�a(t, t− T ))−1

×
∫ t

t−T

|G(s, ϕ(s), ϕ(s − r(s))) −G(s, ψ(s), ψ(s − r(s)))| e�a(t, s)�s

≤ α‖ϕ− ψ‖+ δ‖ϕ− ψ‖ (1− e�a(t, t− T ))−1
∫ t

t−T

a(s)e�a(t, s)�s

+ (k1 + k2) ‖ϕ− ψ‖ (1− e�a(t, t− T ))−1
∫ t

t−T

e�a(t, s)�s

≤ (α+ δ + (k1 + k2)Tα
′β′) ‖ϕ− ψ‖.

Let ε > 0 be arbitrary. Define θ = ε/K with K = α+ δ+(k1+ k2)Tα
′β′, where

k1 and k2 are given by (3.3). Then, for ‖ϕ− ψ‖ < θ we obtain

‖Aϕ−Aψ‖ ≤ K‖ϕ− ψ‖ < ε.

This proves that A is continuous.
It remains to show that A is compact. Let ϕn ∈ ML, where n is a positive

integer. Then, as above, we see that

‖Aϕn‖ ≤ L.
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Moreover, a direct calculation shows that

(Aϕn)
� (t) =

=
c�(t)ϕn(t− r(t)) + cσ(t)ϕ�

n (t− r(t))
1− r�(σ(t))

+
r��(t)c(t)ϕn(t− r(t))

(1− r�(t)) (1− r�(σ(t)))

−R(t)ϕσ
n(t− r(t)) +G (t, ϕn(t), ϕn(t− r(t)))

+ a(t)

[
(1− e�a(t, t− T ))−1

∫ t

t−T

R(s)ϕσ
n(s− r(s))e�a(t, s)�s

]σ
− a(t)

[
(1− e�a(t, t− T ))−1

∫ t

t−T

G(s, ϕn(s), ϕn(s− r(s)))e�a(t, s)�s
]σ
.

Let L′ be the norm bound of ϕ�. By invoking (3.3), (3.24) and Lemma 3.1 we
obtain ∣∣∣(Aϕn)

�
(t)
∣∣∣ ≤ μL+ μ′L′ + υL+ δγL+ (k1 + k2)L + ρ

+ γ2α′Tδβ′L+ γα′T [(k1 + k2)L+ ρ]β′

≤ (1 + γα′β′T ) [(k1 + k2)L+ ρ]

+ [μ+ υ + δγ (1 + γα′β′T )]L+ μ′L′ ≤ D,
for some positive constant D. Hence the sequence (Aϕn) is uniformly bounded
and equicontinuous. The Ascoli–Arzela theorem implies that a subsequence
(Aϕnk

) of (Aϕn) converges uniformly to a continuous T -periodic function. Thus
A is continuous and AML is contained in a compact subset of ML. �

Lemma 3.5 Let B be defined by (3.11) and that (H1)–(H3), (3.1) and (3.16)
hold. Then B : ML →ML is a large contraction.

Proof We first show that B : ML →ML. Clearly, if ϕ is continuous, then Bϕ
is. Evaluate (3.11) at t+ T to have

(Bϕ)(t + T ) = (1− e�a(t+ T, t))
−1
∫ t+T

t

a(s)H(ϕ(s))e�a(t+ T, s)�s. (3.25)

Use Theorem 2.7 with u = s− T and condition (3.1) to get

(Bϕ)(t + T ) =

= (1− e�a(t+ T, t))−1
∫ t

t−T

a(u)H(ϕ(u+ T ))e�a(t+ T, u+ T )�u.

From Theorem 2.7, we have σ(u+ T ) = σ(u) + T , e�a(t+ T, u+ T ) = e�a(t, u)
and e�a(t+ T, t) = e�a(t, t− T ). Thus (3.25) becomes

(Bϕ)(t + T ) =

= (1− e�a(t, t− T ))−1
∫ t

t−T

a(u)H(ϕ(u))e�a(t, u)�u = (Bϕ)(t).
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That is, B : CT → CT . Note that from Corollary 2.10, we have

1− e�a(t, t− T ) > 0.

So, for any ϕ ∈ML, we get by (3.11) that

|(Bϕ)(t)| ≤ (1− e�a(t, t− T ))−1
∫ t

t−T

a(s) |H(ϕ(s))| e�a(t, s)�s

≤ max (|H(−L)|, |H(L)|) (1− e�a(t, t− T ))−1
∫ t

t−T

a(s)e�a(t, s)�s

≤ (J − 1)L

J
< L.

Thus Bϕ ∈ML. Consequently, we have B : ML →ML.
It remains to show that B is large contraction with a unique fixed point in

ML. Form the proof of Proposition 3.3 we have for φ, ϕ ∈ML, with φ �= ϕ

|(Bφ)(t) − (Bϕ)(t)|

≤ (1− e�a(t, t− T ))−1
∫ t

t−T

a(s) |H(φ(s))−H(ϕ(s))| e�a(t, s)�s

≤ ‖φ− ϕ‖ (1− e�a(t, t− T ))−1
∫ t

t−T

a(s)e�a(t, s)�s = ‖φ− ϕ‖.

Then ‖Bφ−Bϕ‖ ≤ ‖φ− ϕ‖. Now, let ε ∈ (0, 1) be given and let φ, ϕ ∈ ML

with ‖φ− ϕ‖ ≥ ε. From the proof of the proposition 3.3, we have found a η < 1,
such that

|(Bϕ)(t) − (Bψ)(t)|

≤ (1− e�a(t, t− T ))−1
∫ t

t−T

a(s) |H(φ(s))−H(ϕ(s))| e�a(t, s)�s

≤ η‖φ− ϕ‖ (1− e�a(t, t− T ))−1
∫ t

t−T

a(s)e�a(t, s)�s = η‖ϕ− ψ‖.

Then ‖Bφ−Bϕ‖ ≤ η ‖ϕ− ψ‖. Consequently, B is a large contraction on ML.
�

Theorem 3.6 Let (CT , ‖.‖) be the Banach space of continuous T -periodic real
valued functions on T and ML =

{
ϕ ∈ CT : ‖ϕ‖ ≤ L,ϕ� is bounded

}
, where L

is positive constant. Suppose (H1)–(H3), (3.1)–(3.4) and (3.12)–(3.16) hold.
Then equation (1.1) has a T -periodic solution ϕ in the subset ML.

Proof By Lemma 3.4, A : ML →ML is continuous and AML is contained in
a compact set. Also, from Lemma 3.5, the mapping B : ML → ML is a large
contraction. Next, note that if φ, ϕ ∈ML, we have

‖Aφ +Bϕ‖ ≤ ‖Aφ‖+ ‖Bϕ‖ ≤ L

J
+

(J − 1)L

J
= L.
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Thus Aφ+Bϕ ∈ML. Clearly, all the hypotheses of the Krasnoselskii–Burton’s
theorem (Theorem 2.14) are satisfied. Thus there exists a fixed point ϕ ∈ ML

such that ϕ = Aϕ+Bϕ. Hence the equation (1.1) has a T -periodic solution in
ML. �
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