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Abstract

Commutative bounded integral residuated lattices form a large class
of algebras containing some classes of algebras behind many valued and
fuzzy logics. In the paper we introduce and investigate additive closure
and multiplicative interior operators on this class of algebras.
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1 Introduction

Commutative bounded integral residuated lattices form a large class of algebras
containing some classes of algebras behind many valued and fuzzy logics, such
as MV -algebras [2], BL-algebras [9], MTL-algebras [7] and commutative R�-
monoids [12], [6]. Moreover, Heyting algebras [1] which are algebras of the
intuitionistic logic can be also viewed as commutative bounded integral lattices.

Topological Boolean algebras, i.e. closure or interior algebras [15], are gen-
eralizations of topological spaces defined by means of topological closure and
interior operators. In [13] closure and interior MV -algebras as generalizations
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of topological Boolean algebras were introduced by means of so-called addi-
tive closure and multiplicative interior operators. It is known that every MV -
algebra M contains the greatest Boolean subalgebra B(M) of all complemented
elements. By [13], the restriction of any additive closure operator on M onto
B(M) is a topological closure operator on B(M). Moreover, if M is a complete
MV -algebra, then every topological closure operator on B(M) can be extended
to an additive closure operator on M . Since the addition and multiplication of
MV -algebras are mutually dual operations, analogous properties are also true
for multiplicative interior operators on M and B(M).

The notions of additive closure and multiplicative interior operators (ac-
and mi- operators, for short) were generalized in [14] to commutative residu-
ated �-monoids (= commutative R�-monoids), i.e. commutative bounded inte-
gral residuated lattices satisfying divisibility [11], [8]. But the dual operation
to multiplication in such residuated lattices does not exist in general. Hence,
connections between mi- and ac-operators are more complicated than those in
the case of MV -algebras.

In the paper we introduce and investigate analogous operators on arbitrary
commutative bounded integral residuated lattices. We describe connections
between mi-operators and ac-operators in this general setting. Moreover, we
generalize the notions of mi- and ac-operators to so-called weak mi-operators
and strong ac-operators and show that there is an antitone Galois connection
between them. Furthermore, we describe, for residuated lattices with Glivenko
property, connections between mi- and ac- operators on them and on the resid-
uated lattices of their regular elements.

2 Preliminaries

A commutative bounded integral residuated lattice is an algebra

M = (M ;#,∨,∧,→, 0, 1)
of type (2, 2, 2, 2, 0, 0) satisfying the following conditions:

(i) (M ;#, 1) is a commutative monoid,

(ii) (M ;∨,∧, 0, 1) is a bounded lattice,

(iii) x# y ≤ z iff x ≤ y → z for all x, y, z ∈M .

In what follows, by a residuated lattice we will mean a commutative bounded
integral residuated lattice.

For any residuated lattice M we define a unary operation (negation) − on
M such that x− := x→ 0.

Recall that algebras of logics mentioned in Introduction are characterized in
the class of residuated lattices as follows:

A residuated lattice M is
(a) an MTL-algebra if M satisfies the identity of pre-linearity

(iv) (x→ y) ∨ (y → x) = 1;
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(b) involutive if M satisfies the identity of double negation

(v) x−− = x;

(c) an R�-monoid (or a bounded commutative GBL-algebra) if M satisfies
the identity of divisibility

(vi) (x→ y)# x = x ∧ y;

(d) a BL-algebra if M satisfies both (iv) and (vi);
(e) an MV -algebra if M is an involutive BL-algebra;
(f) a Heyting algebra if the operations “#” and “∧” coincide.

Proposition 2.1 [4, 11] Let M be a residuated lattice. Then for any x, y, z ∈
M we have:

(i) x ≤ y =⇒ y− ≤ x−,
(ii) x# y ≤ x ∧ y,
(iii) (x→ y)# x ≤ y,
(iv) x ≤ x−−,

(v) x−−− = x−,

(vi) x→ (y → z) = y → (x→ z),

(vii) x→ (y → z) = (x# y)→ z,

(viii) x ≤ y =⇒ z → x ≤ z → y,

(ix) x ≤ y =⇒ y → z ≤ x→ z,

(x) y → z ≤ (x→ y)→ (x→ z),

(xi) x→ y ≤ (y → z)→ (x→ z).

(xii) x−− → y−− = x→ y−−,

(xiii) (x→ y−−)−− = x→ y−−,

(xiv) (x# y)− = y → x− = x→ y− = x−− → y− = y−− → x−,

(xv) (x# y)−− ≥ x−− # y−−.

Let M be a residuated lattice. We define a binary operation ⊕ on M as
follows:

x⊕ y = (x− # y−)−.
Lemma 2.2 [4] Let M be a residuated lattice. For any x, y ∈M we have

(i) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,
(ii) x⊕ y ≥ x−− ∨ y−− ≥ x ∨ y,
(iii) x⊕ 0 = x−−,

(iv) (x⊕ y)−− = x−− ⊕ y−− = x⊕ y,
(v) x# x− = 0, x⊕ x− = 1.
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We call a residuated lattice M normal if it satisfies the identity

(x# y)−− = x−− # y−−.

For example, every involutive residuated lattice, every Heyting algebra and
every BL-algebra is normal [5] (note that the name “normal” is sometimes used
for non-commutative residuated lattices where all filters are normal, see [10]).

Similarly as in [14] for residuated �-monoids we can prove the following
identities.

Lemma 2.3 Let M be a normal residuated lattice. Then for any x, y ∈M

(i) (x⊕ y)− = x− # y−,
(ii) (x# y)− = x− ⊕ y−.

Proof (i) Since M is normal, we have

(x⊕ y)− = (x− # y−)−− = x−−− # y−−− = x− # y−.

(ii) By Lemma 2.2 (iv), we have

x− ⊕ y− = (x− ⊕ y−)−− = ((x−− # y−−)−)−−

= (x−− # y−−)− = (x # y)−−− = (x# y)−.
�

3 Connections between interior and closure operators

Definition 3.1 Let M be a residuated lattice. A mapping f : M →M is called
a multiplicative interior operator (mi-operator) on M if for any x, y ∈M

(1) f(x# y) = f(x)# f(y),
(2) f(x) ≤ x,

(3) f(f(x)) = f(x),

(4) f(1) = 1.

(5) x ≤ y ⇒ f(x) ≤ f(y).

Remark 3.2 If M is an R�-monoid, i.e. a residuated lattice satisfying

x# (x→ y) = x ∧ y

for any x, y ∈ M , then it can be shown [14] that the property 5 from the
definition follows from properties 1–4.
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Example 3.3 Let M1 = {0, u, a, b, v, 1}. We define the operations # and→ on
M1 as follows:

# 0 u a b v 1
0 0 0 0 0 0 0
u 0 0 0 0 0 u
a 0 0 a 0 a a
b 0 0 0 b b b
v 0 0 a b v v
1 0 u a b v 1

→ 0 u a b v 1
0 1 1 1 1 1 1
u v 1 1 1 1 1
a b b 1 b 1 1
b a a a 1 1 1
v u u a b 1 1
1 0 u a b v 1
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Then M1 is an involutive normal residuated lattice in which pre-linearity
and divisibility are not satisfied since we have (a → b) ∨ (b → a) = b ∨ a �= 1,
and v # (v → u) = v # u = 0 �= u = v ∧ u. However, we get x−− = x for all
x ∈M1.

Let f1 : M1 →M1 be the mapping such that f1(0) = 0, f1(u) = u, f1(a) = a,
f1(b) = 0, f1(v) = v, f1(1) = 1. Then the mapping f1 satisfies the conditions
1–4 from the definition of an mi-operator, but the mapping f1 is not monotone
since u < b, whereas f1(u) � f1(b).

Example 3.4 Let M1 be the residuated lattice from Example 3.3. Let us
consider the mapping f2 : M1 →M1 such that f2(0) = f2(u) = f2(a) = f2(b) =
0, f2(v) = v, f2(1) = 1. Then f2 is an mi-operator on M1.

Lemma 3.5 Let f be an mi-operator on a residuated lattice M . Then for any
x, y ∈M

f(x→ y) ≤ f(x)→ f(y).

Proof Let x, y ∈M . Then (x→ y)# x ≤ y and we have f(x→ y)# f(x) =
f((x→ y)# x) ≤ f(y). Thus f(x→ y) ≤ f(x)→ f(y). �

Let f : M → M be a mapping on a residuated lattice M . We define a
mapping f− : M →M such that

f−(x) = (f(x−))−,

for any x ∈M .
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Proposition 3.6 If f : M →M is a monotone mapping on a residuated lattice
M , then the mapping f− is monotone, too.

Proof Let x, y ∈ M be such that x ≤ y. Then by Proposition 2.1 y− ≤ x−,
so f(y−) ≤ f(x−). Therefore (f(x−))− ≤ (f(y−))− or equivalently f−(x) ≤
f−(y). �

Proposition 3.7 Let M be a residuated lattice. If f is an mi-operator on M
and x, y ∈M , then
(i) x ≤ f−(x),

(ii) f−(f−(x)) = f−(x),

(iii) f−(0) = 0,

(iv) x ≤ y =⇒ f−(x) ≤ f−(y).

Proof (i) If x ∈M , then f−(x) = (f(x−))− ≥ x−− ≥ x.
(ii) For any x ∈ M we have f−(f−(x)) = f−((f(x−))−) = (f(f(x−))−−)−

and f(x−) ≤ (f(x−))−− by Proposition 2.1. Since f is monotone f(f(x−)) =
f(x−) ≤ f((f(x−))−−), thus (f(x−))− ≥ (f((f(x−))−−))−, and f−(x) ≥
f−(f−(x)). By (i) we also have f−(x) ≤ f−(f−(x)). Thus f−(f−(x)) = f−(x).

(iii) f−(0) = (f(0−))− = (f(1))− = 1− = 0.
(iv) It follows from Proposition 3.6. �

Proposition 3.8 LetM be a normal residuated lattice and f be an mi-operator
on M . Then the mapping f− satisfies the identity

f−(x⊕ y) = f−(x) ⊕ f−(y).

Proof Let x, y ∈ M . Then f−(x) ⊕ f−(y) = ((f−(x))− # (f−(y))−)− =
((f(x−))−− # (f(y−))−−)− = (f(x−) # f(y−))−−− = (f(x−) # f(y−))− =
(f(x− # y−))− = (f((x⊕ y)−))− = f−(x⊕ y). �

Definition 3.9 Let M be a residuated lattice. A mapping g : M →M is called
an additive closure operator (ac-operator) on M if for any x, y ∈M

(1) g(x⊕ y) = g(x)⊕ g(y),
(2) x ≤ g(x),
(3) g(g(x)) = g(x),

(4) g(0) = 0,

(5) x ≤ y ⇒ g(x) ≤ g(y).

Proposition 3.10 If M is a normal residuated lattice and f is an mi-operator
on M , then the mapping f− is an ac-operator on M .

Proof It follows from Propositions 3.7 and 3.8. �
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Lemma 3.11 If M is a residuated lattice and g is an ac-operator on M , then
g satisfies the identity

g(x−−) = (g(x))−−.

Proof By Lemma 2.2 (iii), we have g(x−−) = g(x ⊕ 0) = g(x) ⊕ g(0) =
g(x)⊕ 0 = (g(x))−−. �

Proposition 3.12 LetM be a normal residuated lattice and g be an ac-operator
on M . Then we have for any x, y ∈M
(i) g−(x# y) = g−(x) # g−(y),
(ii) g−(x) ≤ x−−,

(iii) g−(g−(x)) = g−(x),

(iv) g−(1) = 1,

(v) x ≤ y =⇒ g−(x) ≤ g−(y).

Proof (i) Let x, y ∈M . Then we have

g−(x# y) = (g((x# y)−))−,

and by Lemma 2.3 we get

(g((x # y)−))− = (g(x−)⊕ g(y−))− = (g(x−))− # (g(y−))− = g−(x)# g−(y).

(ii) Since x− ≤ g(x−), we have (g(x−))− = g−(x) ≤ x−−.

(iii) By Lemma 3.11,

g−(g−(x)) = (g((g(x−))−−))− = (g(g(x−)))−−− = (g(x−))− = g−(x).

(iv) g−(1) = (g(1−))− = (g(0))− = 0− = 1.

(v) For any x, y ∈M such that x ≤ y we have y− ≤ x−, thus g(y−) ≤ g(x−)
and g−(x) = (g(x−))− ≤ (g(y−))− = g−(y). �

Remark 3.13 If g is an ac-operator on a normal residuated lattice M , then
g− need not be an mi-operator, i.e. condition 2 from the definition of an mi-
operator need not be satisfied on M as we can see in the following example.

Example 3.14 Let M2 = {0, a, b, c, 1}. Let the operations # and→ be defined
on M2 as follows:

# 0 a b c 1
0 0 0 0 0 0
a 0 a a a a
b 0 a b a b
c 0 a a c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 b b 1 1
1 0 a b c 1
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⊕ 0 a b c 1
0 0 1 1 1 1
a 1 1 1 1 1
b 1 1 1 1 1
c 1 1 1 1 1
1 1 1 1 1 1
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Then M2 = (M2;#,∨,∧,→, 0, 1) is a residuated lattice which is both a
BL-algebra and a Heyting algebra with the derived operation ⊕:

Let g : M2 →M2 be the mapping such that g(0) = 0, g(a) = g(b) = b, g(c) =
1, g(1) = 1. Then we can easily verify that g is an ac-operator on M2. However,
the inequality g−(x) ≤ x does not hold for all x ∈ M2, since, for instance,
g−(a) = (g(a−))− = (g(0))− = 0− = 1 � a.

Recall that a residuated lattice M is called involutive if it satisfies x−− = x
for any x ∈M .

Remark 3.15 It is obvious that any involutive residuated lattice is normal.
Hence by Proposition 3.10, if f is an mi-operator on such a residuated lattice
M , then f− is an ac-operator on M . Furthermore, if g is an ac-operator on an
involutive residuated lattice M , then by Proposition 3.12, g− is an mi-operator
on M . Moreover, f $→ f− and g $→ g− are one-to-one correspondences between
mi-operators and ac-operators on an involutive residuated lattice.

Remark 3.16 The situation for normal residuated lattices which are not in-
volutive is more complicated. Namely, although f− is still an ac-operator for
any mi-operator f on a residuated lattice M , for ac-operator g on M , g− need
not be an mi-operator. Furthermore, if f is an mi-operator on M , then by the
proof of Proposition 3.7 (i), f− satisfies in fact a condition that is stronger than
axiom 2 in the definition of an ac-operator on M . Therefore, we will introduce
now the notions of wmi- and sac- operators on normal residuated lattices.

Definition 3.17 Let M be a residuated lattice and f : M → M . Then f is
called a weak mi-operator (a wmi-operator) on M if it satisfies conditions 1 and
3–5 of the definition of an mi-operator and for any x ∈M

2a f(x) ≤ x−−.

Definition 3.18 Let M be a normal residuated lattice and g : M →M . Then
g is called a strong ac-operator (an sac-operator) on M if it satisfies conditions
1 and 3–5 of the definition of an ac-operator and for any x ∈M

2b x−− ≤ g(x).
Remark 3.19 We have that if f is an mi-operator, then f− is an sac-operator
and if g is an ac-operator, then g− is a wmi-operator.
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Now we will describe connections among mi-, ac-, wmi- and sac-operators
on normal residuated lattices.

Proposition 3.20 Let M be a normal residuated lattice.

(i) If f is a wmi-operator on M , then f− is an sac-operator on M .

(ii) If g is an sac-operator on M , then g− is a wmi-operator on M .

Proof (i) It suffices to prove condition 2b. If x ∈ M , then by 2a, f(x−) ≤
x−−− = x−, hence (f(x−))− = f−(x) ≥ x−−.

(ii) Analogously we will only verify condition 2a. If x ∈ M , then x− =
(x−)−− ≤ g(x−), thus x−− ≥ (g(x−))− = g−(x). �

If M is a normal residuated lattice, denote by wmi(M) the set of wmi-
operators on M and by sac(M) the set of sac-operators on M . Suppose that
wmi(M) and sac(M) are pointwise ordered.

Let α : wmi(M) → sac(M) be the mapping such that α(f) = f−, for any
f ∈ wmi(M), and β : sac(M)→ wmi(M) be the mapping such that β(g) = g−,
for any g ∈ sac(M).

Theorem 3.21 If M is a normal residuated lattice, then α and β form an
antitone Galois connection, i.e. f ≤ β(g) if and only if g ≤ α(f), for any
f ∈ wmi(M) and g ∈ sac(M).

Proof Let f ∈ wmi(M), g ∈ sac(M) and f ≤ β(g) = g−. Then f(x) ≤
g−(x) = (g(x−))−, thus f(x)− ≥ (g(x−))−−, for any x ∈M . Therefore

(f(x−))− ≥ (g(x−−))−− ≥ (g(x))−− ≥ g(x),

thus α(f)(x) ≥ g(x), for any x ∈M . That means g ≤ α(f).
Conversely, let g ≤ α(f). Then f−(x) ≥ g(x), i.e. (f(x−))− ≥ g(x), and so

(f(x−))−− ≤ (g(x))−, for any x ∈M . Hence

(f(x−−))−− ≤ (g(x−))− = g−(x), and (f(x−−))−− ≥ (f(x))−− ≥ f(x).

That means β(g)(x) = g−(x) ≥ (f(x−−))−− ≥ f(x), for any x ∈ M , and thus
f ≤ β(g). �

The following theorem is now an immediate consequence.

Theorem 3.22 Let M be a normal residuated lattice.

(i) If f is an mi-operator on M and h = (f−)− is the corresponding wmi-
operator on M , then the induced sac-operators f− and h− are the same.

(ii) If g is an ac-operator on M and k = (g−)− is the corresponding sac-
operator on M , then the induced wmi-operators g− and k− are the same.
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4 Operators on residuated lattices with Glivenko
property

Definition 4.1 Let M be a residuated lattice. A nonempty subset F of M is
called a filter of M if the following conditions hold

(1) x, y ∈ F ⇒ x# y ∈ F ,

(2) x ∈ F , y ∈M , x ≤ y ⇒ y ∈ F .

A subset D of M is called a deductive system of M if

(3) 1 ∈ D,

(4) x, x→ y ∈ D ⇒ y ∈ D.

It is known that a nonempty subset of M is a filter of M if and only if it is
a deductive system of M .

By [11], filters of commutative residuated lattices are in a one-to-one corre-
spondence with their congruences. If F is a filter of a commutative residuated
lattice M , then for the corresponding congruence ΘF we have:

〈x, y〉 ∈ ΘF ⇐⇒ (x→ y) ∧ (y → x) ∈ F ⇐⇒ (x→ y)# (y → x) ∈ F
⇐⇒ x→ y, y → x ∈ F,

for each x, y ∈ M . In such a case, F = {x ∈M : 〈x, 1〉 ∈ ΘF }. For any filter F
of M we put M/F :=M/ΘF .

If M is a residuated lattice, denote D(M) = {x ∈ M : x−− = 1} the set of
dense elements in M .

We say that a residuated lattice M has Glivenko property [3] if for any
x, y ∈M

(x→ y)−− = x→ y−−.

Proposition 4.2 [3] A residuated lattice M has Glivenko property if and only
if M satisfies the identity

(x−− → x)−− = 1.

An element x of a residuated lattice M is called regular if x−− = x. Denote
by Reg(M) the set of all regular elements in M . If x, y ∈ Reg(M), put x∨∗ y :=
(x ∨ y)−−, x ∧∗ y := (x ∧ y)−−, x#∗ y := (x# y)−− and x⊕∗ y = (x ⊕ y)−−.

Theorem 4.3 [3] For any residuated lattice M the following conditions are
equivalent:

(i) M has Glivenko property;

(ii) (Reg(M);∨∗,∧∗,#∗,→, 0, 1) is an involutive residuated lattice and the
mapping −− : M → Reg(M) such that −− : x $→ x−− is a surjective ho-
momorphism of residuated lattices.
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Remark 4.4 If M is a normal residuated lattice and x, y ∈ Reg(M), then
x#∗ y = (x # y)−− = x−− # y−− = x# y. For an arbitrary residuated lattice
we have x⊕∗ y = x⊕ y.

Proposition 4.5 A residuated lattice M has Glivenko property if and only if
(x→ y)−− = x−− → y−− for any x, y ∈M .
Proof It follows from Proposition 2.1 (xii). �

Remark 4.6 Every R�-monoid has Glivenko property because by [12] it satis-
fies the identity (x→ y)−− = x−− → y−−.

Proposition 4.7 If M is a residuated lattice, then D(M) is a filter of M .

Proof Let x, y ∈ D(M), i.e. x−− = 1 = y−−. Then by Proposition 2.1,
(x# y)−− ≥ x−− # y−− = 1, hence (x # y)−− = 1, and so x# y ∈ D(M).

If x ∈ D(M), z ∈M and x ≤ z, then obviously z ∈ D(M). �

The following assertions concerning connections between D(M) and Reg(M)
are consequences of Theorem 4.3.

Theorem 4.8 If M is a residuated lattice with Glivenko property, then for any
x, y ∈ M we have 〈x, y〉 ∈ ΘD(M) if and only if x−− = y−−. Moreover, the
quotient residuated lattice M/D(M) is involutive.

Proof Let x, y ∈M . Then

〈x, y〉 ∈ ΘD(M) ⇐⇒ x→ y, y → x ∈ D(M)

⇐⇒ (x→ y)−− = 1 = (y → x)−− ⇐⇒ x−− → y−− = 1 = y−− → x−−

⇐⇒ x−− ≤ y−−, y−− ≤ x−− ⇐⇒ x−− = y−−.

Therefore, (x/D(M))−− = x−−/D(M) = x/D(M). �

Theorem 4.9 If M is a residuated lattice with Glivenko property, then the
residuated lattices Reg(M) and M/D(M) are isomorphic.

Remark 4.10 It is obvious that the mappings ϕ : Reg(M) → M/D(M) and
ψ : M/D(M) → Reg(M) such that ϕ : x $→ x/D(M) and ψ : y/D(M) $→ y−−

are mutually inverse isomorphisms between Reg(M) and M/D(M).

Theorem 4.11 Let M be a normal residuated lattice with Glivenko property, f
an mi-operator (resp. an ac-operator) onM and f∗ : M/D(M)→M/D(M) the
mapping such that f∗(x/D(M)) = f(x−−)/D(M). Then f∗ is an mi-operator
(resp. an ac-operator) on M/D(M).

Proof Let f be an mi-operator on M and x, y ∈ M be elements such that
x/D(M) = y/D(M). Then

f∗(x/D(M)) = f(x−−)/D(M) = f(y−−)/D(M) = f∗(y)/D(M).
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Therefore f∗ is defined correctly. We will verify that it is an mi-operator.

(1) f∗(x/D(M))# f∗(y/D(M)) = f(x−−)/D(M)# f(y−−)/D(M)

= (f(x−− # y−−))/D(M) = f((x# y)−−)/D(M) = f∗((x# y)/D(M))

= f∗((x/D(M)) # (y/D(M))).

(2) f∗(x/D(M)) = f(x−−)/D(M) ≤ x−−/D(M) = x/D(M).

(3) f∗(f∗(x/D(M))) = f∗(f(x−−)/D(M)) = f((f(x−−))−−)/D(M)

≤ (f(x−−))−−/D(M) = f(x−−)/D(M) = f∗(x/D(M)).

Conversely,

(f(x−−))−−/D(M) ≥ f(x−−)/D(M)

=⇒ f((f(x−−))−−)/D(M) ≥ f(f(x−−))/D(M) = f(x−−)/D(M)

=⇒ f∗(f∗(x/D(M))) ≥ f∗(x/D(M)).

Hence, f∗(f∗(x/D(M))) = f∗(x/D(M)).

(4) f∗(1/D(M)) = f(1−−)/D(M) = f(1)/D(M) = 1/D(M).

(5) x/D(M) ≤ y/D(M) =⇒ x−−/D(M) ≤ y−−/D(M)

=⇒ f(x−−)/D(M) ≤ f(y−−)/D(M) =⇒ f∗(x/D(M)) ≤ f∗(y/D(M)).

Similarly for ac-operators on M . �

Theorem 4.12 If M is a normal residuated lattice with Glivenko property and
f is an mi-operator (resp. an ac-operator) onM , then the mapping f# such that
f#(x) = f(x)−− for any x ∈ Reg(M) is an mi-operator (resp. an ac-operator)
on the residuated lattice Reg(M).

Proof If x ∈ Reg(M), then also f(x)−− ∈ Reg(M). The assertion is hence
a direct consequence of the preceeding theorem because the mapping ψ from
Remark 4.10 is an isomorphism of residuated lattices. �

Theorem 4.13 Let M be a normal residuated lattice with Glivenko property.
If g : Reg(M)→ Reg(M) is an mi-operator on the involutive residuated lattice
Reg(M), then the mapping g+ : M → M such that g+(x) := g(x−−) for any
x ∈M , is a wmi-operator on M .

Proof Let g be an mi-operator on Reg(M) and g+(x) = g(x−−) for any
x ∈M .

(1) g+(x#y) = g((x#y)−−) = g(x−−#y−−) = g(x−−#∗ y−−) = g(x−−)#∗
g(y−−) = g(x−−)# g(y−−) = g+(x)# g+(y).

(2) g+(x) = g(x−−) ≤ x−−.
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(3) g+(g+(x)) = g((g+(x))−−) = g((g(x−−))−−) = g(g(x−−)) = g(x−−) =
g+(x).

(4) g+(1) = g(1−−) = g(1) = 1.

(5) x ≤ y ⇒ g+(x) = g(x−−) ≤ g(y−−) = g+(y).

Hence g is an mi-operator on M . �

Theorem 4.14 Let M be a residuated lattice with Glivenko property. If
h : Reg(M)→ Reg(M) is an ac-operator on Reg(M), then the mapping

ĥ(x) = h(x−−)

for any x ∈M , is an sac-operator on M .

Proof

1. ĥ(x⊕ y) = h((x ⊕ y)−−) = h(x−− ⊕ y−−) = h(x−− ⊕∗ y−−)

= h(x−−)⊕∗ h(y−−) = h(x−−)⊕ h(y−−) = ĥ(x) ⊕ ĥ(y).

2. ĥ(x) = h(x−−) ≥ x−−.
3.–5. Similarly as in the proof of Theorem 4.13. �
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[6] Dvurečenskij, A., Rach̊unek, J.: Probabilistic averaging in bounded commutative resid-
uated �-monoids. Discrete Math. 306 (2006), 1317–1326.

[7] Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous
t-norms. Fuzzy Sets Syst. 124 (2001), 271–288.

[8] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Elsevier, Amsterdam, 2007.
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