Fekete-Szegö Problem for a New Class of Analytic Functions Defined by Using a Generalized Differential Operator

M. K. AOUF ${ }^{1}$, R. M. EL-ASHWAH ${ }^{2}$, A. A. M. HASSAN ${ }^{3 a}$, A. H. HASSAN ${ }^{3 b}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Mansoura University Mansoura 33516, Egypt
e-mail: mkaouf127@yahoo.com
${ }^{2}$ Department of Mathematics, Faculty of Science, Damietta University New Damietta 34517, Egypt
e-mail: r_elashwah@yahoo.com
${ }^{3}$ Department of Mathematics, Faculty of Science, Zagazig University Zagazig 44519, Egypt
${ }^{a} e$-mail: aam_hassan@yahoo.com
${ }^{b}$ e-mail: alaahassan1986@yahoo.com

(Received November 24, 2012)

Abstract

In this paper, we obtain Fekete-Szegö inequalities for a generalized class of analytic functions $f(z) \in \mathcal{A}$ for which $1+\frac{1}{b}\left(\frac{z\left(D_{\alpha, \beta, \lambda, \delta}^{n} f(z)\right)^{\prime}}{D_{\alpha, \beta, \lambda, \delta}^{n} f(z)}-1\right)$ $\left(\alpha, \beta, \lambda, \delta \geq 0 ; \beta>\alpha ; \lambda>\delta ; b \in \mathbb{C}^{*} ; n \in \mathbb{N}_{0} ; z \in U\right)$ lies in a region starlike with respect to 1 and is symmetric with respect to the real axis.

Key words: analytic, subordination, Fekete-Szegö problem
2000 Mathematics Subject Classification: 30C45

1 Introduction

Let \mathcal{A} denote the class of functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \quad(z \in U) \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $U=\{z: z \in \mathbb{C}$ and $|z|<1\}$. Further let S denote the family of functions of the form (1.1) which are univalent in U.

A classical theorem of Fekete-Szegö [7] states that, for $f(z) \in S$ given by (1.1) that

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{cl}
3-4 \mu, & \text { if } \mu \leq 0 \tag{1.2}\\
1+2 \exp \left(\frac{-2 \mu}{1-\mu}\right), & \text { if } 0 \leq \mu \leq 1 \\
4 \mu-3, & \text { if } \mu \geq 1
\end{array}\right.
$$

The result is sharp.
Given two functions $f(z)$ and $g(z)$, which are analytic in U with $f(0)=$ $g(0)$, the function $f(z)$ is said to be subordinate to $g(z)$ in U if there exists a function $w(z)$, analytic in U, such that $w(0)=0$ and $|w(z)|<1(z \in U)$ and $f(z)=g(w(z))(z \in U)$. We denote this subordination by $f(z) \prec g(z)$ in U (see [13]).

Let $\varphi(z)$ be an analytic function with positive real part on U, which satisfies $\varphi(0)=1$ and $\varphi^{\prime}(0)>0$, and which maps the unit disc U onto a region starlike with respect to 1 and symmetric with respect to the real axis. Let $S^{*}(\varphi)$ be the class of functions $f(z) \in S$ for which

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec \varphi(z) \quad(z \in U) \tag{1.3}
\end{equation*}
$$

and $C(\varphi)$ be the class of functions $f(z) \in S$ for which

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \varphi(z) \quad(z \in U) \tag{1.4}
\end{equation*}
$$

The classes of $S^{*}(\varphi)$ and $C(\varphi)$ were introduced and studied by Ma and Minda [12]. The familiar class $S^{*}(\alpha)$ of starlike functions of order α and the class $C(\alpha)$ of convex functions of order $\alpha(0 \leq \alpha<1)$ are the special cases of $S^{*}(\varphi)$ and $C(\varphi)$, respectively, when

$$
\varphi(z)=\frac{1+(1-2 \alpha) z}{1-z} \quad(0 \leq \alpha<1)
$$

Ma and Minda [12] have obtained the Fekete-Szegö problem for the functions in the class $C(\varphi)$. For a function $f(z) \in \mathcal{S}$, Ramadan and Darus [18] introduced the generalized differential operator $D_{\alpha, \beta, \lambda, \delta}^{n}$ as following:

$$
\begin{gather*}
D_{\alpha, \beta, \lambda, \delta}^{0} f(z)=f(z) \\
D_{\alpha, \beta, \lambda, \delta}^{1} f(z)=[1-(\lambda-\delta)(\beta-\alpha)] f(z)+(\lambda-\delta)(\beta-\alpha) z f^{\prime}(z) \\
=z+\sum_{k=2}^{\infty}[(\lambda-\delta)(\beta-\alpha)(k-1)+1] a_{k} z^{k} \\
D_{\alpha, \beta, \lambda, \delta}^{n} f(z)=D_{\alpha, \beta, \lambda, \delta}^{1}\left(D_{\alpha, \beta, \lambda, \delta}^{n-1} f(z)\right) \\
D_{\alpha, \beta, \lambda, \delta}^{n} f(z)=z+\sum_{k=2}^{\infty}[(\lambda-\delta)(\beta-\alpha)(k-1)+1]^{n} a_{k} z^{k} \tag{1.5}\\
\left(\alpha, \beta, \lambda, \delta \geq 0 ; \delta \geq 0 ; \beta>\alpha ; \lambda>\delta ; n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \mathbb{N}=\{1,2,3, \ldots\}\right)
\end{gather*}
$$

Remark 1 (i) Taking $\alpha=0$, then operator $D_{0, \beta, \lambda, \delta}^{n}=D_{\beta, \lambda, \delta}^{n}$, was introduced and studied by Darus and Ibrahim [6];
(ii) Taking $\alpha=\delta=0$ and $\beta=1$, then operator $D_{0,1, \lambda, 0}^{n}=D_{\lambda}^{n}$, was introduced and studied by Al-Oboudi [1];
(iii) Taking $\alpha=\delta=0$ and $\lambda=\beta=1$, then operator $D_{0,1,1,0}^{n}=D^{n}$, was introduced and studied by Salagean [20].

Using the generalized operator $D_{\alpha, \beta, \lambda, \delta}^{n}$ we introduce a new class of analytic functions as following:

Definition 1 For $b \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$, the class $G_{\alpha, \beta, \lambda, \delta}^{n, b}(\varphi)$ consists of all functions $f(z) \in \mathcal{A}$ satisfying the following subordination:

$$
\begin{gather*}
1+\frac{1}{b}\left(\frac{z\left(D_{\alpha, \beta, \lambda, \delta}^{n} f(z)\right)^{\prime}}{D_{\alpha, \beta, \lambda, \delta}^{n} f(z)}-1\right) \prec \varphi(z), \tag{1.6}\\
\left(\alpha, \beta, \lambda, \delta \geq 0 ; \beta>\alpha ; \lambda>\delta ; n \in \mathbb{N}_{0} ; z \in U\right) .
\end{gather*}
$$

Specializing the parameters $\alpha, \beta, \lambda, \delta, n, b$ and $\varphi(z)$, we obtain the following subclasses studied by various authors:
(i) $G_{\alpha, \beta, \lambda, \delta}^{n, 1}(\varphi)=M_{\alpha, \beta, \lambda, \delta}^{n}(\varphi)$ (see Ramadan and Darus [18]);
(ii) $G_{0,1,1,0}^{n, b}(\varphi)=H_{n, b}(\varphi)$ (see Aouf and Silverman [4]);
(iii) $G_{0,1,1,0}^{0, b}(\varphi)=S_{b}^{*}(\varphi)$ and $G_{0,1,1,0}^{1, b}(\varphi)=C_{b}(\varphi)$
(see Ravichandran et al. [19]);
(iv) $G_{0,1,1,0}^{n, b}\left(\frac{1+z}{1-z}\right)=S^{n}(b)$ (see Aouf et al. [2]);
(v) $G_{0,1,1,0}^{0, b}\left(\frac{1+z}{1-z}\right)=S(b)$ (see Nasr and Aouf [17] see also Aouf et al. [3]);
(vi) $G_{0,1,1,0}^{1, b}\left(\frac{1+z}{1-z}\right)=C(b)$ (see Nasr and Aouf [14] see also Aouf et al. [3]);
(vii) $G_{0,1,1,0}^{0,(1-\rho) \cos \eta e^{-i \eta}}\left(\frac{1+z}{1-z}\right)=S^{\eta}(\rho)\left(|\eta|<\frac{\pi}{2}, 0 \leq \rho<1\right)$
(see Libera [10] see also Keogh and Merkes [9]);
(viii) $G_{0,1,1,0}^{1,(1-\rho) \cos \eta e^{-i \eta}}\left(\frac{1+z}{1-z}\right)=C^{\eta}(\rho)\left(|\eta|<\frac{\pi}{2}, 0 \leq \rho<1\right)$ (see Chichra [5]).

Also we note that for additional choices of parameters we have the following new subclasses of \mathcal{A} :
(i)

$$
\begin{gathered}
G_{\alpha, \beta, \lambda, \delta}^{n, b}\left(\frac{1+A z}{1+B z}\right)=S_{\alpha, \beta, \lambda, \delta}^{n, b}(A, B) \\
=\left\{f(z) \in \mathcal{A}: 1+\frac{1}{b}\left(\frac{z\left(D_{\alpha, \beta, \lambda, \delta}^{n} f(z)\right)^{\prime}}{D_{\alpha, \beta, \lambda, \delta}^{n} f(z)}-1\right) \prec \frac{1+A z}{1+B z}\right. \\
\left.\left(-1 \leq B<A \leq 1 ; \alpha, \beta, \lambda, \delta \geq 0 ; \beta>\alpha ; \lambda>\delta ; n \in \mathbb{N}_{0} ; z \in U\right)\right\}
\end{gathered}
$$

(ii)

$$
\begin{gathered}
G_{\alpha, \beta, \lambda, \delta}^{n, b}\left(\frac{1+(1-2 \rho) z}{1-z}\right)=S_{\alpha, \beta, \lambda, \delta}^{n, b}(\rho) \\
=\left\{f(z) \in \mathcal{A}: \operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z\left(D_{\alpha, \beta, \lambda, \delta}^{n} f(z)\right)^{\prime}}{D_{\alpha, \beta, \lambda, \delta}^{n} f(z)}-1\right)\right\}>\rho\right. \\
\left.\left(\alpha, \beta, \lambda, \delta \geq 0 ; \beta>\alpha ; \lambda>\delta ; 0 \leq \rho<1 ; n \in \mathbb{N}_{0} ; z \in U\right)\right\}
\end{gathered}
$$

(iii)

$$
\begin{gathered}
G_{\alpha, \beta, \lambda, \delta}^{n,(1-\rho) \cos \eta e^{-i \eta}}(\varphi)=S_{\alpha, \beta, \lambda, \delta}^{n, \rho, \eta}(\varphi) \\
=\left\{f(z) \in \mathcal{A}: \frac{e^{i \eta z\left(D_{\alpha, \beta, \lambda, \delta}^{n} f(z)\right)^{\prime}}}{D_{\alpha, \beta, \lambda, \delta}^{n} f(z)}-\rho \cos \eta-i \sin \eta\right. \\
(1-\rho) \cos \eta \\
\\
\left.\left(|\eta|<\frac{\pi}{2} ; \alpha, \beta, \lambda, \delta \geq 0 ; \beta>\alpha ; \lambda>\delta ; 0 \leq \rho<1 ; n \in \mathbb{N}_{0} ; z \in U\right)\right\} .
\end{gathered}
$$

In this paper, we obtain the Fekete-Szegö inequalities for functions in the class $G_{\alpha, \beta, \lambda, \delta}^{n, b}(\varphi)$.

2 Fekete-Szegö problem

Unless otherwise mentioned, we assume in the reminder of this paper that $\alpha, \beta, \lambda, \delta \geq 0, \beta>\alpha, \lambda>\delta, b \in \mathbb{C}^{*}$ and $z \in U$.

To prove our results, we shall need the following lemmas:
Lemma 1 [12] If $p(z)=1+c_{1} z+c_{2} z^{2}+\ldots(z \in U)$ is a function with positive real part in U and μ is a complex number, then

$$
\begin{equation*}
\left|c_{2}-\mu c_{1}^{2}\right| \leq 2 \max \{1 ;|2 \mu-1|\} \tag{2.1}
\end{equation*}
$$

The result is sharp for the functions given by

$$
\begin{equation*}
p(z)=\frac{1+z^{2}}{1-z^{2}} \quad \text { and } \quad p(z)=\frac{1+z}{1-z} \quad(z \in U) \tag{2.2}
\end{equation*}
$$

Lemma 2 [12] If $p_{1}(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ is a function with positive real part in U, then

$$
\left|c_{2}-\nu c_{1}^{2}\right| \leq\left\{\begin{array}{cl}
-4 \nu+2, & \text { if } \nu \leq 0 \\
2, & \text { if } 0 \leq \nu \leq 1 \\
4 \nu-2, & \text { if } \nu \geq 1
\end{array}\right.
$$

When $\nu<0$ or $\nu>1$, the equality holds if and only if

$$
p_{1}(z)=\frac{1+z}{1-z}
$$

or one of its rotations. If $0<\nu<1$, then the equality holds if and only if

$$
p_{1}(z)=\frac{1+z^{2}}{1-z^{2}}
$$

or one of its rotations. If $\nu=0$, the equality holds if and only if

$$
p_{1}(z)=\left(\frac{1}{2}+\frac{1}{2} \gamma\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{1}{2} \gamma\right) \frac{1-z}{1+z} \quad(0 \leq \gamma \leq 1)
$$

or one of its rotations. If $\nu=1$, the equality holds if and only if

$$
\frac{1}{p_{1}(z)}=\left(\frac{1}{2}+\frac{1}{2} \gamma\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{1}{2} \gamma\right) \frac{1-z}{1+z} \quad(0 \leq \gamma \leq 1)
$$

Also the above upper bound is sharp and it can be improved as follows when $0<\nu<1$:

$$
\left|c_{2}-\nu c_{1}^{2}\right|+\nu\left|c_{1}\right|^{2} \leq 2 \quad\left(0<\nu<\frac{1}{2}\right)
$$

and

$$
\left|c_{2}-\nu c_{1}^{2}\right|+(1-\nu)\left|c_{1}\right|^{2} \leq 2 \quad\left(\frac{1}{2}<\nu<1\right)
$$

Using Lemma 1 , we have the following theorem:
Theorem 1 Let $\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\ldots$, where $\varphi(z) \in \mathcal{A}$ and $\varphi^{\prime}(0)>0$. If $f(z)$ given by (1.1) belongs to the class $G_{\alpha, \beta, \lambda, \delta}^{n, b}(\varphi)$ and if μ is a complex number, then

$$
\begin{gather*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|b| B_{1}}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}} \\
\times \max \left\{1,\left|\frac{B_{2}}{B_{1}}+\left(1-\frac{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}} \mu\right) b B_{1}\right|\right\} . \tag{2.3}
\end{gather*}
$$

The result is sharp.

Proof If $f(z) \in G_{\alpha, \beta, \lambda, \delta}^{n, b}(\varphi)$, then there exists a Schwarz function $w(z)$ which is analytic in U with $w(0)=0$ and $|w(z)|<1$ in U and such that

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z\left(D_{\alpha, \beta, \lambda, \delta}^{n} f(z)\right)^{\prime}}{D_{\alpha, \beta, \lambda, \delta}^{n} f(z)}-1\right)=\varphi(w(z)) \tag{2.4}
\end{equation*}
$$

Define the function $p_{1}(z)$ by

$$
\begin{equation*}
p_{1}(z)=\frac{1+w(z)}{1-w(z)}=1+c_{1} z+c_{2} z^{2}+\ldots \tag{2.5}
\end{equation*}
$$

Since $w(z)$ is a Schwarz function, we see that $\operatorname{Re}\left\{p_{1}(z)\right\}>0$ and $p_{1}(0)=1$. Define the function $p(z)$ by:

$$
\begin{equation*}
p(z)=1+\frac{1}{b}\left(\frac{z\left(D_{\alpha, \beta, \lambda, \delta}^{n} f(z)\right)^{\prime}}{D_{\alpha, \beta, \lambda, \delta}^{n} f(z)}-1\right)=1+b_{1} z+b_{2} z^{2}+\ldots \tag{2.6}
\end{equation*}
$$

In view of the equations (2.4), (2.5) and (2.6), we have

$$
\begin{align*}
& p(z)=\varphi\left(\frac{p_{1}(z)-1}{p_{1}(z)+1}\right)=\varphi\left(\frac{c_{1} z+c_{2} z^{2}+\ldots}{2+c_{1} z+c_{2} z^{2}+\ldots}\right) \\
& =\varphi\left(\frac{1}{2} c_{1} z+\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\ldots\right) \\
& =1+\frac{1}{2} B_{1} c_{1} z+\left[\frac{1}{2} B_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} c_{1}^{2}\right] z^{2}+\ldots \tag{2.7}
\end{align*}
$$

Thus

$$
\begin{equation*}
b_{1}=\frac{1}{2} B_{1} c_{1} \quad \text { and } \quad b_{2}=\frac{1}{2} B_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} c_{1}^{2} \tag{2.8}
\end{equation*}
$$

Since

$$
\begin{aligned}
& 1+\frac{1}{b}\left(\frac{z\left(D_{\alpha, \beta, \lambda, \delta}^{n} f(z)\right)^{\prime}}{D_{\alpha, \beta, \lambda, \delta}^{n} f(z)}-1\right)=1+\left\{\frac{1}{b}\left([(\lambda-\delta)(\beta-\alpha)+1]^{n} a_{2}\right)\right\} z \\
+ & \left\{\frac{1}{b}\left(2[2(\lambda-\delta)(\beta-\alpha)+1]^{n} a_{3}-[(\lambda-\delta)(\beta-\alpha)+1]^{2 n} a_{2}^{2}\right)\right\} z^{2}+\ldots
\end{aligned}
$$

Then from (2.6) and (2.8), we obtain

$$
\begin{equation*}
a_{2}=\frac{b B_{1} c_{1}}{2[(\lambda-\delta)(\beta-\alpha)+1]^{n}} \tag{2.9}
\end{equation*}
$$

and
$a_{3}=\frac{b B_{1} c_{2}}{4[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}+\frac{c_{1}^{2}}{8[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}\left[b^{2} B_{1}^{2}-b\left(B_{1}-B_{2}\right)\right]$.

Therefore, we have

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{b B_{1}}{4[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}\left[c_{2}-\nu c_{1}^{2}\right] \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\nu=\frac{1}{2}\left[1-\frac{B_{2}}{B_{1}}+\left(\frac{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}} \mu-1\right) b B_{1}\right] . \tag{2.12}
\end{equation*}
$$

Our result now follows by an application of Lemma 1. The result is sharp for the function $f(z)$ given by

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z\left(D_{\alpha, \beta, \lambda, \delta}^{n} f(z)\right)^{\prime}}{D_{\alpha, \beta, \lambda, \delta}^{n} f(z)}-1\right)=\varphi\left(z^{2}\right) \tag{2.13}
\end{equation*}
$$

or

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z\left(D_{\alpha, \beta, \lambda, \delta}^{n} f(z)\right)^{\prime}}{D_{\alpha, \beta, \lambda, \delta}^{n} f(z)}-1\right)=\varphi(z) . \tag{2.14}
\end{equation*}
$$

This completes the proof of Theorem 1.
Remark 2 (i) Taking $n=0$ in Theorem 1, we improve the result obtained by Ravichandran et al. [19, Theorem 4.1];
(ii) Taking $\alpha=\delta=0, \beta=\lambda=1, b=(1-\rho) \cos \eta e^{-i \eta}\left(|\eta|<\frac{\pi}{2}, 0 \leq \rho<1\right)$ and $\varphi(z)=\frac{1+z}{1-z}$ (equivalently $B_{1}=B_{2}=2$) in Theorem 1, we obtain the result obtained by Goyal and Kumar [8, Corollary 2.10];
(iii) Taking $b=(1-\rho) \cos \eta e^{-i \eta}\left(|\eta|<\frac{\pi}{2}, 0 \leq \rho<1\right), n=0$ and $\varphi(z)=\frac{1+z}{1-z}$ in Theorem 1, we obtain the result obtained by Keogh and Merkes [9, Thm 1];
(iv) Taking $\alpha=\delta=0$ and $\beta=\lambda=1$ in Theorem 1, we obtain the result obtained by Aouf and Silverman [4, Theorem 1].

Also by specializing the parameters in Theorem 1, we obtain the following new sharp results.

Putting $b=1$ in Theorem 1, we obtain the following corollary:
Corollary 1 If $f(z)$ given by (1.1) belongs to the class $M_{\alpha, \beta, \lambda, \delta}^{n}(\varphi)$, then for any complex number μ, we have

$$
\begin{gather*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}} \\
\times \max \left\{1,\left|\frac{B_{2}}{B_{1}}+\left(1-\frac{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}} \mu\right) B_{1}\right|\right\} . \tag{2.15}
\end{gather*}
$$

The result is sharp.

Putting $\varphi(z)=\frac{1+A z}{1-B z}(-1 \leq B<A \leq 1)$ (or equivalently, $B_{1}=A-B$ and $\left.B_{2}=-B(A-B)\right)$ in Theorem 1, we obtain the following corollary:

Corollary 2 If $f(z)$ given by (1.1) belongs to the class $S_{\alpha, \beta, \lambda, \delta}^{n, b}(A, B)$, then for any complex number μ, we have

$$
\begin{gather*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{(A-B)|b|}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}} \\
\times \max \left\{1,\left|\left(1-\frac{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}} \mu\right)(A-B) b-B\right|\right\} \tag{2.16}
\end{gather*}
$$

The result is sharp.
Putting $\varphi(z)=\frac{1+(1-2 \rho) z}{1-z}(0 \leq \rho<1)$ in Theorem 1, we obtain the following corollary:
Corollary 3 If $f(z)$ given by (1.1) belongs to the class $S_{\alpha, \beta, \lambda, \delta}^{n, b}(\rho)$, then for any complex number μ, we have

$$
\begin{gather*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{(1-\rho)|b|}{[2(\lambda-\delta)(\beta-\alpha)+1]^{n}} \\
\times \max \left\{1,\left|2\left(1-\frac{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}} \mu\right)(1-\rho) b+1\right|\right\} \tag{2.17}
\end{gather*}
$$

The result is sharp.
Putting $b=(1-\rho) \cos \eta e^{-i \eta}\left(|\eta|<\frac{\pi}{2}, 0 \leq \rho<1\right)$ in Theorem 1, we obtain the following corollary:
Corollary 4 If $f(z)$ given by (1.1) belongs to the class $S_{\alpha, \beta, \lambda, \delta}^{n, \rho, \eta}(\varphi)$, then for any complex number μ, we have

$$
\begin{gather*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}(1-\rho) \cos \eta}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}} \\
\times \max \left\{1,\left|\frac{B_{2}}{B_{1}} e^{i \eta}+\left(1-\frac{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}} \mu\right)(1-\rho) B_{1} \cos \eta\right|\right\} . \tag{2.18}
\end{gather*}
$$

The result is sharp.
Putting $\alpha=\delta=0, \beta=\lambda=1$ and $\varphi(z)=\frac{1+z}{1-z}$ in Theorem 1, we obtain the result of Aouf et al. [2, Theorem 3, with $m=1$]:

Corollary 5 If $f(z)$ given by (1.1) belongs to the class $S^{n}(b)$, then for any complex number μ, we have

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|b|}{3^{n}} \max \left\{1,\left|1+2\left(1-2\left(\frac{3}{4}\right)^{n} \mu\right) b\right|\right\} \tag{2.19}
\end{equation*}
$$

The result is sharp.

Putting $n=0$ and $\varphi(z)=\frac{1+z}{1-z}$ in Theorem 1, we obtain the result of and Nasr and Aouf [17, Theorem 2] see also Nasr and Aouf [16, Theorem 1, with $m=1]$:

Corollary 6 If $f(z)$ given by (1.1) belongs to the class $S(b)$, then for any complex number μ, we have

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq|b| \max \{1,|1+2(1-2 \mu) b|\} \tag{2.20}
\end{equation*}
$$

The result is sharp.
Putting $\alpha=\delta=0, \beta=\lambda=1, n=1$ and $\varphi(z)=\frac{1+z}{1-z}$ in Theorem 1, we obtain the result of Nasr and Aouf [15, Theorem 1, with $m=1$] see also Nasr and Aouf [14]:

Corollary 7 If $f(z)$ given by (1.1) belongs to the class $C(b)$, then for any complex number μ, we have

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{3}|b| \max \left\{1,\left|1+2\left(1-\frac{3}{2} \mu\right) b\right|\right\} \tag{2.21}
\end{equation*}
$$

The result is sharp.
Putting $\alpha=\delta=0, \beta=\lambda=1, n=0, b=(1-\rho) \cos \eta e^{-i \eta}\left(|\eta|<\frac{\pi}{2}\right.$, $0 \leq \rho<1$) and $\varphi(z)=\frac{1+z}{1-z}$ in Theorem 1, we obtain the result of Keogh and Merkes [9, Theorem 1]:

Corollary 8 If $f(z)$ given by (1.1) belongs to the class $S^{\eta}(\rho)$, then for any complex number μ, we have

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq(1-\rho) \cos \eta \max \left\{1,\left|2(2 \mu-1)(1-\rho) \cos \eta-e^{i \eta}\right|\right\} . \tag{2.22}
\end{equation*}
$$

The result is sharp.
Putting $\alpha=\delta=0, \beta=\lambda=1, n=1, b=(1-\rho) \cos \eta e^{-i \eta}\left(|\eta|<\frac{\pi}{2}\right.$, $0 \leq \rho<1)$ and $\varphi(z)=\frac{1+z}{1-z}$ in Theorem 1, we obtain the result of Libera and M. Ziegler [11, Lemma 1, with $\rho=0$] see also Chichra [5]:

Corollary 9 If $f(z)$ given by (1.1) belongs to the class $C^{\eta}(\rho)$, then for any complex number μ, we have

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{3}(1-\rho) \cos \eta \max \left\{1,\left|2\left(\frac{3}{2} \mu-1\right)(1-\rho) \cos \eta-e^{i \eta}\right|\right\} \tag{2.23}
\end{equation*}
$$

The result is sharp.
Using Lemma 2, we have the following theorem:

Theorem 2 Let $\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\ldots\left(b>0 ; B_{i}>0 ; i \in \mathbb{N}\right)$. Also let

$$
\sigma_{1}=\frac{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}\left(B_{2}-B_{1}+b B_{1}^{2}\right)}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n} b B_{1}^{2}}
$$

and

$$
\sigma_{2}=\frac{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}\left(B_{2}+B_{1}+b B_{1}^{2}\right)}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n} b B_{1}^{2}}
$$

If $f(z)$ is given by (1.1) belongs to the class $G_{\alpha, \beta, \lambda, \delta}^{n, b}(\varphi)$, then we have the following sharp results:
(i) If $\mu \leq \sigma_{1}$, then

$$
\begin{gather*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{b}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}} \\
\times\left\{B_{2}-\left(2 \frac{[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}} \mu-1\right) b B_{1}^{2}\right\} \tag{2.24}
\end{gather*}
$$

(ii) If $\sigma_{1} \leq \mu \leq \sigma_{2}$, then

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{b B_{1}}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}} \tag{2.25}
\end{equation*}
$$

(iii) If $\mu \geq \sigma_{2}$, then

$$
\begin{gather*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{b}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}} \\
\times\left\{-B_{2}+\left(2 \frac{[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}} \mu-1\right) b B_{1}^{2}\right\} \tag{2.26}
\end{gather*}
$$

Proof For $f(z) \in G_{\alpha, \beta, \lambda, \delta}^{n, b}(\varphi), p(z)$ given by (2.6) and $p_{1}(z)$ given by (2.5), then a_{2} and a_{3} are given as same as in Theorem 1. Also

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{b B_{1}}{4[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}\left[c_{2}-\nu c_{1}^{2}\right] \tag{2.27}
\end{equation*}
$$

where

$$
\begin{equation*}
\nu=\frac{1}{2}\left[1-\frac{B_{2}}{B_{1}}+\left(\frac{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}} \mu-1\right) b B_{1}\right] \tag{2.28}
\end{equation*}
$$

First, if $\mu \leq \sigma_{1}$, then we have $\nu \leq 0$, then by applying Lemma 2 to equality (2.27), we have

$$
\begin{gathered}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \\
\leq \frac{b}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}\left\{B_{2}-\left(2 \frac{[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}} \mu-1\right) b B_{1}^{2}\right\}
\end{gathered}
$$

which is evidently inequality (2.24) of Theorem 2.
If $\mu=\sigma_{1}$, then we have $\nu=0$, therefore equality holds if and only if

$$
p_{1}(z)=\left(\frac{1+\gamma}{2}\right) \frac{1+z}{1-z}+\left(\frac{1-\gamma}{2}\right) \frac{1-z}{1+z} \quad(0 \leq \gamma \leq 1 ; z \in U)
$$

Next, if $\sigma_{1} \leq \mu \leq \sigma_{2}$, we note that

$$
\begin{equation*}
\max \left\{\frac{1}{2}\left[1-\frac{B_{2}}{B_{1}}+\left(\frac{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}} \mu-1\right) b B_{1}\right]\right\} \leq 1 \tag{2.29}
\end{equation*}
$$

then applying Lemma 2 to equality (2.27), we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{b B_{1}}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}
$$

which is evidently inequality (2.25) of Theorem 2.
If $\sigma_{1}<\mu<\sigma_{2}$, then we have

$$
p_{1}(z)=\frac{1+z^{2}}{1-z^{2}}
$$

Finally, If $\mu \geq \sigma_{2}$, then we have $\nu \geq 1$, therefore by applying Lemma 2 to (2.27), we have

$$
\begin{gathered}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \\
\leq \frac{b}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}\left\{-B_{2}+\left(2 \frac{[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}} \mu-1\right) b B_{1}^{2}\right\}
\end{gathered}
$$

which is evidently inequality (2.26) of Theorem 2.
If $\mu=\sigma_{2}$, then we have $\nu=1$, therefore equality holds if and only if

$$
\frac{1}{p_{1}(z)}=\left(\frac{1+\gamma}{2}\right) \frac{1+z}{1-z}+\left(\frac{1-\gamma}{2}\right) \frac{1-z}{1+z} \quad(0 \leq \gamma \leq 1 ; z \in U)
$$

To show that the bounds are sharp, we define the functions $K_{\varphi}^{s}(s \geq 2)$ by

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z\left(D_{\alpha, \beta, \lambda, \delta}^{n} K_{\varphi}^{s}(z)\right)^{\prime}}{D_{\alpha, \beta, \lambda, \delta}^{n} K_{\varphi}^{s}(z)}-1\right)=\varphi\left(z^{s-1}\right), \quad K_{\varphi}^{s}(0)=0=K_{\varphi}^{\prime s}(0)-1 \tag{2.30}
\end{equation*}
$$

and the functions F_{t} and $G_{t}(0 \leq t \leq 1)$ by

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z\left(D_{\alpha, \beta, \lambda, \delta}^{n} F_{t}(z)\right)^{\prime}}{D_{\alpha, \beta, \lambda, \delta}^{n} F_{t}(z)}-1\right)=\varphi\left(\frac{z(z+t)}{1+t z}\right), \quad F_{t}(0)=0=F_{t}^{\prime}(0)-1 \tag{2.31}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z\left(D_{\alpha, \beta, \lambda, \delta}^{n} G_{t}(z)\right)^{\prime}}{D_{\alpha, \beta, \lambda, \delta}^{n} G_{t}(z)}-1\right)=\varphi\left(-\frac{z(z+t)}{1+t z}\right), \quad G_{t}(0)=0=G_{t}^{\prime}(0)-1 \tag{2.32}
\end{equation*}
$$

Cleary the functions K_{φ}^{s}, F_{t} and $G_{t} \in G_{\alpha, \beta, \lambda, \delta}^{n, b}(\varphi)$. Also we write $K_{\varphi}=K_{\varphi}^{2}$.
If $\mu<\sigma_{1}$ or $\mu>\sigma_{2}$, then the equality holds if and only if f is K_{φ} or one of its rotations. When $\sigma_{1}<\mu<\sigma_{2}$, then the equality holds if f is K_{φ}^{3} or one of its rotations. If $\mu=\sigma_{1}$, then the equality holds if and only if f is F_{t} or one of its rotations. If $\mu=\sigma_{2}$, then the equality holds if and only if f is G_{t} or one of its rotations.

Remark 3 (i) Taking $b=1$ in Theorem 2, we improve the result obtained by Ramadan and Darus [18, Theorem 1];
(ii) Taking $\alpha=\delta=0$ and $\beta=\lambda=1$ in Theorem 2, we obtain the result obtained by Goyal and Kumar [8, Corollary 2.7] and Aouf and Silverman [4, Theorem 2].

Also, using Lemma 2 we have the following theorem:
Theorem 3 For $\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\ldots\left(b>0 ; B_{i}>0 ; i \in \mathbb{N}\right)$ and $f(z)$ given by (1.1) belongs to the class $G_{\alpha, \beta, \lambda, \delta}^{n, b}(\varphi)$ and $\sigma_{1} \leq \mu \leq \sigma_{2}$, then in view of Lemma 2, Theorem 2 can be improved. Let

$$
\sigma_{3}=\frac{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}\left(B_{2}+b B_{1}^{2}\right)}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n} b B_{1}^{2}}
$$

(i) If $\sigma_{1} \leq \mu \leq \sigma_{3}$, then

$$
\begin{gather*}
\left|a_{3}-\mu a_{2}^{2}\right|+\frac{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n} b B_{1}} \\
\times\left\{1-\frac{B_{2}}{B_{1}}+\left(2 \frac{[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}}-1\right) b B_{1}\right\}\left|a_{2}\right|^{2} \\
\leq \frac{b B_{1}}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}} \tag{2.33}
\end{gather*}
$$

(ii) If $\sigma_{3} \leq \mu \leq \sigma_{2}$, then

$$
\begin{gather*}
\left|a_{3}-\mu a_{2}^{2}\right|+\frac{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n} b B_{1}} \\
\times\left\{1+\frac{B_{2}}{B_{1}}-\left(2 \frac{[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}} \mu-1\right) b B_{1}\right\}\left|a_{2}\right|^{2} \\
\leq \frac{b B_{1}}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}} . \tag{2.34}
\end{gather*}
$$

Proof For the values of $\sigma_{1} \leq \mu \leq \sigma_{3}$, we have

$$
\begin{gather*}
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\mu-\sigma_{1}\right)\left|a_{2}\right|^{2}=\frac{b B_{1}}{4[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}\left|c_{2}-\nu c_{1}^{2}\right| \\
+\left(\mu-\frac{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}\left(B_{2}-B_{1}+b B_{1}^{2}\right)}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n} b B_{1}^{2}}\right) \frac{b^{2} B_{1}^{2}}{4[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}}\left|c_{1}\right|^{2} \\
=\frac{b B_{1}}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}\left\{\frac{1}{2}\left(\left|c_{2}-\nu c_{1}^{2}\right|+\nu\left|c_{1}\right|^{2}\right)\right\} \tag{2.35}
\end{gather*}
$$

Now apply Lemma 2 to equality (2.35), then we have

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\mu-\sigma_{1}\right)\left|a_{2}\right|^{2} \leq \frac{b B_{1}}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}
$$

which is evidently inequality (2.33) of Theorem 3.
Next, for the values of $\sigma_{3} \leq \mu \leq \sigma_{2}$, we have

$$
\begin{gather*}
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\sigma_{2}-\mu\right)\left|a_{2}\right|^{2}=\frac{b B_{1}}{4[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}\left|c_{2}-\nu c_{1}^{2}\right| \\
+\left(\frac{[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}\left(B_{2}+B_{1}+b B_{1}^{2}\right)}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n} b B_{1}^{2}}-\mu\right) \frac{b^{2} B_{1}^{2}}{4[(\lambda-\delta)(\beta-\alpha)+1]^{2 n}}\left|c_{1}\right|^{2} \\
=\frac{b B_{1}}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}\left\{\frac{1}{2}\left(\left|c_{2}-\nu c_{1}^{2}\right|+(1-\nu)\left|c_{1}\right|^{2}\right)\right\} . \tag{2.36}
\end{gather*}
$$

Now apply Lemma 2 to equality (2.36), then we have

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\sigma_{2}-\mu\right)\left|a_{2}\right|^{2} \leq \frac{b B_{1}}{2[2(\lambda-\delta)(\beta-\alpha)+1]^{n}}
$$

which is evidently inequality (2.34). This completes the proof of Theorem 3.
Remark 4 (i) taking $\alpha=\delta=0$ and $\beta=\lambda=1$ in Theorem 3, we improve the result obtained by Goyal and Kumar [8, Remark 2.8];
(ii) taking $b=1$ in Theorem 3, we improve the result obtained by Ramadan and Darus [18, Remark 2].

Acknowledgements The authors thank the referees for their valuable suggestions which led to improvement of this paper.

References

[1] Al-Oboudi, F. M.: On univalent functions defined by a generalized Salagean operator. Int. J. Math. Math. Sci. 27 (2004), 1429-1436.
[2] Aouf, M. K., Darwish, H. E., Attiya, A. A.: On a class of certain analytic functions of complex order. Indian J. Pure Appl. Math. 32, 10 (2001), 1443-1452.
[3] Aouf, M. K., Owa, S., Obradović, M.: Certain classes of analytic functions of complex order and type beta. Rend. Mat. Appl. (7) 11, 4 (1991), 691-714.
[4] Aouf, M. K., Silverman, H.: Fekete-Szegö inequality for n-starlike functions of complex order. Adv. Math. Sci. J. (2008), 1-12.
[5] Chichra, P. N.: Regular functions $f(z)$ for which $z f^{\prime}(z)$ is α-spirallike. Proc. Amer. Math. Soc. 49 (1975), 151-160.
[6] Darus, M., Ibrahim, R. W.: On subclasses for generalized operators of complex order. Far East J. Math. Sci. 33, 3 (2009), 299-308.
[7] Fekete, M., Szegö, G.: Eine bemerkung uber ungerade schlichte funktionen. J. London Math. Soc. 8 (1933), 85-89.
[8] Goyal, S. P., Kumar, S.: Fekete-Szegö problem for a class of complex order related to Salagean operator. Bull. Math. Anal. Appl. 3, 4 (2011), 240-246.
[9] Keogh, F. R., Merkes, E. P.: A coefficient inequality for certain classes of analytic functions. Proc. Amer. Math. Soc. 20, 1 (1969), 8-12.
[10] Libera, R. J.: Univalent α-spiral functions. Canad. J. Math. 19 (1967), 449-456.
[11] Libera, R. J., Ziegler, M.: Regular functions $f(z)$ for which $z f^{\prime}(z)$ is α-spiral. Trans. Amer. Math. Soc. 166 (1972), 361-370.
[12] Ma, W., Minda, D.: A unified treatment of some special classes of univalent functions. In: Li Z., Ren F., Lang L., Zhang S. (eds.): Proceedings of the conference on complex analysis, Int. Press. Conf. Proc. Lect. Notes Anal. Tianjin, China, 1 (1994), 157-169.
[13] Miller, S. S., Mocanu, P. T.: Differential Subordinations: Theory and Applications. Series on Monographs and Textbooks in Pure and Appl. Math. 255, Marcel Dekker, Inc., New York, 2000.
[14] Nasr, M. A., Aouf, M. K.: On convex functions of complex order. Bull. Fac. Sci. Mansoura Univ. 9 (1982), 565-582.
[15] Nasr, M. A., Aouf, M. K.: Bounded convex functions of complex order. Bull. Fac. Sci. Mansoura Univ. 10 (1983), 513-527.
[16] Nasr, M. A., Aouf, M. K.: Bounded starlike functions of complex order. Proc. Indian Acad. Sci. (Math. Sci.) 92 (1983), 97-102.
[17] Nasr, M. A., Aouf, M. K.: Starlike function of complex order. J. Natur. Sci. Math. 25 (1985), 1-12.
[18] Ramadan, S. F., Darus, M.: On the Fekete Szegö inequality for a class of analytic functions defined by using generalized differential operator. Acta Univ. Apulensis 26 (2011), 167-178.
[19] Ravichandran, V., Polatoglu, Y., Bolcal, M., Sen, A.: Certain subclasses of starlike and convex functions of complex order. Hacettepe J. Math. Stat. 34 (2005), 9-15.
[20] Salagean, G. S.: Subclasses of univalent functions. Lecture Notes in Math. 1013 (1983), Springer-Verlag, Berlin, 362-372.

