Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group

Benjamin CAHEN
Université de Metz, UFR-MIM, Département de mathématiques
LMMAS, ISGMP-Bât. A
Ile du Saulcy 57045, Metz cedex 01, France
e-mail: cahen@univ-metz.fr

(Received January 8, 2013)

Abstract

Let G be a quasi-Hermitian Lie group with Lie algebra \mathfrak{g} and K be a compactly embedded subgroup of G. Let ξ_{0} be a regular element of \mathfrak{g}^{*} which is fixed by K. We give an explicit G-equivariant diffeomorphism from a complex domain onto the coadjoint orbit $\mathcal{O}\left(\xi_{0}\right)$ of ξ_{0}. This generalizes a result of $[\mathrm{B}$. Cahen, Berezin quantization and holomorphic representations, Rend. Sem. Mat. Univ. Padova, to appear] concerning the case where $\mathcal{O}\left(\xi_{0}\right)$ is associated with a unitary irreducible representation of G which is holomorphically induced from a unitary character of K. In particular, we consider the case $G=S U(p, q)$ and the case where G is the Jacobi group.

Key words: quasi-Hermitian Lie group, coadjoint orbit, stereographic projection, Berezin quantization, unitary holomorphic representation, unitary group, Jacobi group

2000 Mathematics Subject Classification: 32M10, 22E15, 22E10, 22E45, 32M05, 32M15, 81S10

1 Introduction

Let us first consider the following situation. Let $G=S U(1,1)$ and K be the torus of G consisting of matrices of the form $\operatorname{Diag}\left(e^{i \theta}, e^{-i \theta}\right)$ where $\theta \in \mathbb{R}$. The Lie algebra \mathfrak{g} of G has basis

$$
u_{1}=\frac{1}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad u_{2}=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad u_{3}=\frac{1}{2}\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right) .
$$

Let $\left(u_{1}^{*}, u_{2}^{*}, u_{3}^{*}\right)$ be the dual basis of \mathfrak{g}^{*}. For $r>0$, let $\xi_{0}=r u_{3}^{*}$. Then the orbit $\mathcal{O}\left(\xi_{0}\right)$ of ξ_{0} for the coadjoint action of G is the upper sheet $x_{3}>0$ of the two-sheet hyperboloid $\left\{\xi=x_{1} u_{1}^{*}+x_{2} u_{2}^{*}+x_{3} u_{3}^{*}:-x_{1}^{2}-x_{2}^{2}+x_{3}^{2}=r^{2}\right\}$. Since the stabilizer of ξ_{0} for the coadjoint action of G is K, we have $\mathcal{O}\left(\xi_{0}\right) \simeq G / K$. On the other hand, G / K is diffeomorphic to the unit disc $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. Then, by composition, we get a global chart $\psi: \mathbb{D} \rightarrow \mathcal{O}\left(\xi_{0}\right)$. Explicitly, we have

$$
\psi(z):=r\left(\frac{z+\bar{z}}{1-z \bar{z}} u_{1}^{*}+\frac{z-\bar{z}}{i(1-z \bar{z})} u_{2}^{*}+\frac{1+z \bar{z}}{1-z \bar{z}} u_{3}^{*}\right) .
$$

Note that ψ intertwines the natural action on G on \mathbb{D} (by fractional linear transforms) and the coadjoint action of G on $\mathcal{O}\left(\xi_{0}\right)$. Note also that ψ^{-1} is an analog of the stereographic projection from the two-sphere \mathbb{S}^{2} onto $\mathbb{C} \cup(\infty)$. Moreover, if we take $r=n / 2$ where n is an integer ≥ 2 then $\mathcal{O}\left(\xi_{0}\right)$ is associated with a holomorphic discrete series representation π_{n} of G by the KirillovKostant method of orbits [26], [27]. In that case, the differential $d \pi_{n}$ of π_{n} is related to ψ by the Berezin calculus S, that is, we have $S\left(d \pi_{n}(X)\right)(z)=$ $i\langle(\psi(z), X)$ for each $X \in \mathfrak{g}$ and each $z \in \mathbb{D}$ [12].

The goal of the present note is to extend the above considerations to a large setting. To this aim, we consider a quasi-Hermitian Lie group G and a compactly embedded subgroup $K \subset G$. In [20], we considered a unitary representation π of G which is holomorphically induced from a unitary character of K and we proved that the dequantization of $d \pi$ by means of the Berezin calculus provides an explicit diffeomorphism from a complex domain onto the coadjoint orbit of G associated with π (see also [16] and [18]). Here we show that, more generally, such a diffeomorphism can also be constructed for the coadjoint orbit $\mathcal{O}\left(\xi_{0}\right):=\operatorname{Ad}^{*}(G) \xi_{0}$ of an element $\xi_{0} \in \mathfrak{g}^{*}$ which is fixed by K and assumed to be regular (in a sense defined below). We call such an orbit $\mathcal{O}\left(\xi_{0}\right)$ a scalar orbit.

Note that similar parametrizations for coadjoint orbits of compact Lie groups can be found in [30] and [8]. For unitary groups, explicit expressions for generalized stereographic projections are given in [30].

Parametrizations of coadjoint orbits have many applications in deformation theory, harmonic analysis and mathematical physics. Let us mention some of them:

1. Construction of covariant star-products on coadjoint orbits [1], [11], [22];
2. Construction of some quantization maps, as adapted Weyl correspondences and Stratonovich-Weyl correspondences [13], [19];
3. Geometric quantization of coadjoint orbits [3], [21];
4. Contractions and restrictions of unitary irreducible representations associated with integral coadjoint orbits [15], [17], [23], [2], [14].

This note is organized as follows. Section 2 is devoted to generalities about quasi-Hermitian Lie groups. In Section 3 and Section 4, we review some results from [20]. In Section 5, we give a G-equivariant parametrization of a scalar
coadjoint orbit of a quasi-Hermitian Lie group G. In Section 6 , we consider the case of the unitary group $S U(p, q)$ and, in Section 7, the case of the (generalized) Jacobi group.

2 Generalities

The material of this section and of the first part of Section 3 is taken from the excellent book of K.-H. Neeb, [28], Chapter VIII and Chapter XII (see also [29], Chapter II and, for the Hermitian case, [25], Chapter VIII).

Let \mathfrak{g} be a real quasi-Hermitian Lie algebra [28, p. 241]. We assume that \mathfrak{g} is not compact. Let \mathfrak{g}^{c} be the complexification of \mathfrak{g} and let $Z=X+i Y \rightarrow$ $Z^{*}=-X+i Y$ be the corresponding involution. We fix a compactly embedded Cartan subalgebra $\mathfrak{h} \subset \mathfrak{k},\left[28\right.$, p. 241] and we denote by \mathfrak{h}^{c} the corresponding Cartan subalgebra of \mathfrak{g}^{c}. We write $\Delta:=\Delta\left(\mathfrak{g}^{c}, \mathfrak{h}^{c}\right)$ for the set of roots of \mathfrak{g}^{c} relative to \mathfrak{h}^{c} and $\mathfrak{g}^{c}=\mathfrak{h}^{c} \oplus \sum_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$ for the root space decomposition of \mathfrak{g}^{c}. Note that $\alpha(\mathfrak{h}) \subset i \mathbb{R}$ for each $\alpha \in \Delta\left[28\right.$, p. 233]. We write Δ_{k}, respectively Δ_{p}, for the set of compact, respectively non-compact, roots [28, p. 233-235]. Note that one has $\mathfrak{k}^{c}=\mathfrak{h}^{c} \oplus \sum_{\alpha \in \Delta_{k}} \mathfrak{g}_{\alpha}$ [28, p. 235]. We fix a positive adapted system $\Delta^{+}\left[28\right.$, p. 236] and we set $\Delta_{p}^{+}:=\Delta^{+} \cap \Delta_{p}$ and $\Delta_{k}^{+}:=\Delta^{+} \cap \Delta_{k}$, see [28, p. 241].

Let G^{c} be a simply connected complex Lie group with Lie algebra \mathfrak{g}^{c} and $G \subset G^{c}$, respectively, $K \subset G^{c}$, the analytic subgroup corresponding to \mathfrak{g}, respectively, \mathfrak{k}. We also set $K^{c}=\exp \left(\mathfrak{k}^{c}\right) \subset G^{c}$ as in [28, p. 506].

Let $\mathfrak{p}^{+}=\sum_{\alpha \in \Delta_{p}^{+}} \mathfrak{g}_{\alpha}$ and $\mathfrak{p}^{-}=\sum_{\alpha \in \Delta_{p}^{+}} \mathfrak{g}_{-\alpha}$. Let P^{+}and P^{-}be the analytic subgroups of G^{c} with Lie algebras \mathfrak{p}^{+}and \mathfrak{p}^{-}. Then G is a group of the HarishChandra type [28, p. 507], that is, the following properties are satisfied:

1. $\mathfrak{g}^{c}=\mathfrak{p}^{+} \oplus \mathfrak{k}^{c} \oplus \mathfrak{p}^{-}$is a direct sum of vector spaces, $\left(\mathfrak{p}^{+}\right)^{*}=\mathfrak{p}^{-}$and $\left[\mathfrak{k}^{+}, \mathfrak{p}^{ \pm}\right] \subset \mathfrak{p}^{ \pm} ;$
2. The multiplication map $P^{+} K^{c} P^{-} \rightarrow G^{c},(z, k, y) \rightarrow z k y$ is a biholomorphic diffeomorphism onto its open image;
3. $G \subset P^{+} K^{c} P^{-}$and $G \cap K^{c} P^{-}=K$.

Moreover, there exists an open connected subset $\mathcal{D} \subset \mathfrak{p}^{+}$such that $G K^{c} P^{-}=$ $\exp (\mathcal{D}) K^{c} P^{-}\left[28\right.$, p. 497]. We denote by $\zeta: P^{+} K^{c} P^{-} \rightarrow P^{+}, \kappa: P^{+} K^{c} P^{-} \rightarrow$ K^{c} and $\eta: P^{+} K^{c} P^{-} \rightarrow P^{-}$the projections onto P^{+}, K^{c} - and P^{-}-components. For $Z \in \mathfrak{p}^{+}$and $g \in G^{c}$ with $g \exp Z \in P^{+} K^{c} P^{-}$, we define the element $g \cdot Z$ of \mathfrak{p}^{+}by $g \cdot Z:=\log \zeta(g \exp Z)$. Note that we have $\mathcal{D}=G \cdot 0$.

We also denote by $g \rightarrow g^{*}$ the involutive anti-automorphism of G^{c} which is obtained by exponentiating $X \rightarrow X^{*}$. We denote by $p_{\mathfrak{p}^{+}}$the projection of \mathfrak{g}^{c} onto \mathfrak{p}^{+}associated with the direct decomposition $\mathfrak{g}^{c}=\mathfrak{p}^{+} \oplus \mathfrak{k}^{c} \oplus \mathfrak{p}^{-}$.

3 Holomorphic representations

In this section, we consider the case of a coadjoint orbit associated with a scalar holomorphic discrete series representation of G.

We fix a unitary character χ of K. We also denote by χ the extension of χ to K^{c}. We set $K_{\chi}(Z, W)=\chi\left(\kappa\left(\exp W^{*} \exp Z\right)\right)^{-1}$ for $Z, W \in \mathcal{D}$ and $J_{\chi}(g, Z)=\chi(\kappa(g \exp Z))$ for $g \in G$ and $Z \in \mathcal{D}$. Let \mathcal{H}_{χ} be the Hilbert space of holomorphic functions on \mathcal{D} such that

$$
\|f\|_{\chi}^{2}:=\int_{\mathcal{D}}|f(Z)|^{2} K_{\chi}(Z, Z)^{-1} d \mu(Z)<+\infty
$$

Here μ denotes the G-invariant measure on \mathcal{D}, that is,

$$
d \mu(Z):=\chi_{0}\left(\kappa\left(\exp Z^{*} \exp Z\right)\right) d \mu_{L}(Z)
$$

where χ_{0} is the character on K^{c} defined by $\chi_{0}(k)=\operatorname{Det}_{\mathfrak{p}^{+}}(\operatorname{Ad} k)$ and $d \mu_{L}(Z)$ is a Lebesgue measure on $\mathcal{D}[28$, p. 538].

In this section, we assume that $\mathcal{H}_{\chi} \neq(0)$. Then \mathcal{H}_{χ} contains the polynomials [28, p. 546] and the formula

$$
\pi_{\chi}(g) f(Z)=J_{\chi}\left(g^{-1}, Z\right)^{-1} f\left(g^{-1} \cdot Z\right)
$$

defines a unitary representation of G on \mathcal{H}_{χ} which is a highest weight representation with highest weight $\lambda:=\left.d \chi\right|_{\mathfrak{h}}{ }^{c}[28$, p. 540].

We introduce the constant c_{χ} defined by

$$
c_{\chi}^{-1}=\int_{\mathcal{D}} K_{\chi}(Z, Z)^{-1} d \mu(Z)
$$

and we set $e_{Z}(W):=c_{\chi} K_{\chi}(W, Z)$. Then we have the reproducing property $f(Z)=\left\langle f, e_{Z}\right\rangle_{\chi}$ for each $f \in \mathcal{H}_{\chi}$ and each $Z \in \mathcal{D}\left[28\right.$, p. 540]. Here $\langle\cdot, \cdot\rangle_{\chi}$ denotes the inner product on \mathcal{H}_{χ}.

The Berezin calculus on \mathcal{D} is then defined as follows [4], [5], [21]. Consider an operator (not necessarily bounded) A on \mathcal{H}_{χ} whose domain contains e_{Z} for each $Z \in \mathcal{D}$. Then the Berezin symbol of A is the function $S_{\chi}(A)$ defined on \mathcal{D} by

$$
S_{\chi}(A)(Z):=\frac{\left\langle A e_{Z}, e_{Z}\right\rangle_{\chi}}{\left\langle e_{Z}, e_{Z}\right\rangle_{\chi}}
$$

It is known that each operator is determined by its Berezin symbol and that if an operator A has adjoint A^{*} then we have $S_{\chi}\left(A^{*}\right)=\overline{S_{\chi}(A)}$ [4], [21]. The Berezin calculus is G-equivariant with respect to π_{χ}, that is, we have the following property: for each operator A on \mathcal{H}_{χ} whose domain contains the coherent states e_{Z} for each $Z \in \mathcal{D}$ and each $g \in G$, the domain of $\pi_{\chi}\left(g^{-1}\right) A \pi_{\chi}(g)$ also contains e_{Z} for each $Z \in \mathcal{D}$ and we have

$$
\begin{equation*}
S_{\chi}\left(\pi_{\chi}(g)^{-1} A \pi_{\chi}(g)\right)(Z)=S_{\chi}(A)(g \cdot Z) \tag{3.1}
\end{equation*}
$$

for each $g \in G$ and $Z \in \mathcal{D}$.
Now, we consider the linear form ξ on \mathfrak{g}^{c} defined by $\xi=-i d \chi$ on \mathfrak{k}^{c} and $\xi=0$ on $\mathfrak{p}^{ \pm}$. Then we have $\xi(\mathfrak{g}) \subset \mathbb{R}$ and the restriction ξ_{0} of ξ to \mathfrak{g} is an element of \mathfrak{g}^{*}. Let $\mathcal{O}\left(\xi_{0}\right)$ be the orbit of ξ_{0} in \mathfrak{g}^{*} for the coadjoint action of G. In [20], we proved the following proposition (see also [17]).

Proposition 3.1

1. For each $X \in \mathfrak{g}^{c}$ and each $Z \in \mathcal{D}$, we have

$$
S\left(d \pi_{\chi}(X)\right)(Z)=i\langle\psi(Z), X\rangle
$$

where $\psi(Z):=\operatorname{Ad}^{*}\left(\exp \left(-Z^{*}\right) \zeta\left(\exp Z^{*} \exp Z\right)\right) \xi_{0}$.
2. For each $g \in G$ and each $Z \in \mathcal{D}$, we have $\psi(g \cdot Z)=\operatorname{Ad}^{*}(g) \psi(Z)$.
3. The map ψ is a diffeomorphism from \mathcal{D} onto $\mathcal{O}\left(\xi_{0}\right)$.

Note that (2) immediately follows from the G-equivariance of the Berezin calculus. In the following section, we extend (2) and (3) to scalar coadjoint orbits.

4 Parametrization of scalar coadjoint orbits

If $\xi_{0} \in \mathfrak{g}^{*}$ is associated with a unitary character of K as in Section 3 then we have $\operatorname{Ad}^{*}(k) \xi_{0}=\xi_{0}$ for each $k \in K$ and, by Lemma 3.1 of [20], the Hermitian form $(Z, W) \rightarrow\left\langle\xi_{0},\left[Z, W^{*}\right]\right\rangle$ is not isotropic. This leads us to consider the elements $\xi_{0} \in \mathfrak{g}^{*}$ which are fixed by K and regular in the sense that the Hermitian form $(Z, W) \rightarrow\left\langle\xi_{0},\left[Z, W^{*}\right]\right\rangle$ is not isotropic. Such elements ξ_{0} are called scalar and we say that the coadjoint orbit $\mathcal{O}\left(\xi_{0}\right)$ of a scalar element ξ_{0} is a scalar orbit.

Lemma 4.1 Let $\xi_{0} \in \mathfrak{g}^{*}$ fixed by K. Let us also denote by ξ_{0} the linear extension of ξ_{0} to \mathfrak{g}^{c}.

1. We have $\left.\xi_{0}\right|_{\mathfrak{p}^{ \pm}} \equiv 0$;
2. Let $E_{1}, E_{2}, \ldots, E_{m}$ be a basis of \mathfrak{p}^{+}such that $E_{j} \in \mathfrak{g}_{\alpha_{j}}$ where $\alpha_{j} \in \Delta_{p}^{+}$ for $j=1,2, \ldots, m$. Then ξ_{0} is regular hence scalar if and only if we have $i\left\langle\xi_{0},\left[E_{j}^{*}, E_{j}\right]\right\rangle>0$ for each $j=1,2, \ldots$, m or $i\left\langle\xi_{0},\left[E_{j}^{*}, E_{j}\right]\right\rangle<0$ for each $j=1,2, \ldots, m$.

Proof (1) If $\xi_{0} \in \mathfrak{g}^{*}$ is fixed by K then one has ad* $U \xi_{0}=0$ for each $U \in \mathfrak{k}$ or, equivalently, $\left\langle\xi_{0},[U, X]\right\rangle=0$ for each $U \in \mathfrak{k}$ and $X \in \mathfrak{g}$. Then, taking $X=E_{j}$ where $j=1,2, \ldots, m$ and $U \in \mathfrak{g}_{\alpha_{j}}$ such that $\alpha_{j}(U) \neq 0$ we get $\left\langle\xi_{0}, E_{j}\right\rangle=0$ for each $j=1,2, \ldots, m$ hence the result.
(2) Let $Z=\sum_{j=1}^{m} z_{j} E_{j} \in \mathfrak{p}^{+}$. Then, by using (1), we get

$$
\left\langle\xi_{0},\left[Z^{*}, Z\right]\right\rangle=\sum_{j=1}^{m}\left\langle\xi_{0},\left[E_{j}^{*}, E_{j}\right]\right\rangle\left|z_{j}\right|^{2}
$$

where $i\left[E_{j}^{*}, E_{j}\right] \in \mathfrak{h}$ for each $j[28]$, p. 233. The result then follows.
In the rest of this section, we fix a scalar element $\xi_{0} \in \mathfrak{g}^{*}$. For $Z \in \mathcal{D}$, we set

$$
\psi(Z):=\operatorname{Ad}^{*}\left(\exp \left(-Z^{*}\right) \zeta\left(\exp Z^{*} \exp Z\right)\right) \xi_{0}
$$

Proposition 4.2 For each $g \in G$ and each $Z \in \mathcal{D}$, we have

$$
\psi(g \cdot Z)=\operatorname{Ad}^{*}(g) \psi(Z)
$$

Proof Let $g \in G$ and $Z \in \mathcal{D}$. We write $g \exp Z=z k y$ where $z \in P^{+}, k \in K^{c}$ and $y \in P^{-}$. Then, since $g^{*}=g^{-1}$, we have $\exp Z^{*} \exp Z=y^{*} k^{*} z^{*} z k y$. This implies that

$$
\zeta\left(\exp Z^{*} \exp Z\right)=y^{*} k^{*} \zeta\left(z^{*} z\right) k^{*-1}
$$

Thus, noting that $z=\exp (g \cdot Z)$, we get

$$
\begin{aligned}
& \exp \left(-(g \cdot Z)^{*}\right) \zeta\left(\exp (g \cdot Z)^{*} \exp (g \cdot Z)\right)=z^{*-1} \zeta\left(z^{*} z\right) \\
= & g \exp \left(-Z^{*}\right) y^{*} k^{*} \zeta\left(z^{*} z\right)=g \exp \left(-Z^{*}\right) \zeta\left(\exp Z^{*} \exp Z\right) k^{*} .
\end{aligned}
$$

Hence we obtain $\psi(g \cdot Z)=\operatorname{Ad}^{*}(g) \psi(Z)$.
Corollary 4.3 The stabilizer of ξ_{0} for the coadjoint action of G is K.
Proof First, we prove that for $Z \in \mathcal{D}$ the equality $\psi(Z)=\xi_{0}$ implies that $Z=0$. Assume that $\psi(Z)=\xi_{0}$. Then we have

$$
\operatorname{Ad}^{*}\left(\zeta\left(\exp Z^{*} \exp Z\right)\right) \xi_{0}=\operatorname{Ad}^{*}(\exp Z) \xi_{0}
$$

or, equivalently,

$$
\left\langle\xi_{0}, \operatorname{Ad}\left(\zeta\left(\exp Z^{*} \exp Z\right)^{-1}\right) X\right\rangle=\left\langle\xi_{0}, \operatorname{Ad}\left(\exp \left(-Z^{*}\right)\right) X\right\rangle
$$

for each $X \in \mathfrak{g}^{c}$. Thus, taking $X=Z$ and using (1) of Lemma 4.1, we get $\left\langle\xi_{0},\left[Z^{*}, Z\right]\right\rangle=0$ hence $Z=0$.

Now, consider $g \in G$ such that $\operatorname{Ad}^{*}(g) \xi_{0}=\xi_{0}$. Then, by Proposition 4.2, we have $\psi(g \cdot 0)=\xi_{0}$ and, by the assertion already proved, we get $g \cdot 0=\xi_{0}$. Hence we obtain $g \in K^{c} P^{-} \cap G=K$.

Proposition 4.4 The map ψ is a diffeomorphism from \mathcal{D} onto $\mathcal{O}\left(\xi_{0}\right)$.
Proof Let $Z \in \mathcal{D}$. There exists $g \in G$ such that $g \cdot 0=Z$. Then, by Proposition 4.2, we have $\psi(Z)=\operatorname{Ad}^{*}(g) \xi_{0}$. This shows that ψ has values in $\mathcal{O}\left(\xi_{0}\right)$ and that ψ is surjective. Now, suppose that $\psi(Z)=\psi\left(Z^{\prime}\right)$ for some $Z, Z^{\prime} \in \mathcal{D}$. Let $g, g^{\prime} \in G$ such that $g \cdot 0=Z$ and $g^{\prime} \cdot 0=Z^{\prime}$. Then, by Proposition 4.2, we have $\operatorname{Ad}^{*}(g) \xi_{0}=\operatorname{Ad}^{*}\left(g^{\prime}\right) \xi_{0}$. Thus, by Corollary 4.3, we get $g^{-1} g^{\prime} \in K$ hence $Z=g \cdot 0=g^{\prime} \cdot 0=Z^{\prime}$. This proves that ψ is injective hence bijective.

Now, we show that ψ is regular. Using Proposition 4.2, we have just to verify that ψ is regular at $Z=0$. By differentiating the multiplication map from $P^{+} \times K^{c} \times P^{-}$onto $P^{+} K^{c} P^{-}$, we easily see that, for each $g \in G$ such that $g=z k y$ with $z \in P^{+}, k \in K^{c}$ and $y \in P^{-}$and each $X \in \mathfrak{g}^{c}$, we have

$$
d \zeta_{g}\left(X^{+}(g)\right)=\left(\operatorname{Ad}(z) p_{\mathfrak{p}^{+}}\left(\operatorname{Ad}\left(z^{-1}\right) X\right)\right)^{+}(z)
$$

Here, we have denoted by Y^{+}the right-invariant vector field generated by Y. From this, it follows that, for each $Y \in \mathfrak{p}^{+}$and each $X \in \mathfrak{g}^{c}$, we have

$$
\begin{equation*}
\left\langle(d \psi)_{0}(Y), X\right\rangle=\left\langle\xi_{0},\left[X, Y-Y^{*}\right]\right\rangle \tag{4.1}
\end{equation*}
$$

Now, assume that $(d \psi)_{0}(Y)=0$ for some $Y \in \mathfrak{p}^{+}$. By taking $X=Y$ in (4.1) we get $\left\langle\xi_{0},\left[Y, Y^{*}\right]\right\rangle=0$ hence $Y=0$.

Now, we construct a section of the action of G on \mathcal{D}, that is, a map $Z \rightarrow g_{Z}$ from \mathcal{D} to G such that $g_{Z} \cdot 0=Z$ for each $Z \in \mathcal{D}$ and we show that ψ can be recovered by using this section. Note that such sections are useful in practice, in particular to determine explicitly \mathcal{D}, see, for instance [28, p. 501].

Proposition 4.5 Let $Z \in \mathcal{D}$. There exists an element k_{Z} in K^{c} such that $k_{Z}^{*}=k_{Z}$ and $k_{Z}^{2}=\kappa\left(\exp Z^{*} \exp Z\right)^{-1}$. Each $g \in G$ such that $g \cdot 0=Z$ is then of the form $g=\exp \left(-Z^{*}\right) \zeta\left(\exp Z^{*} \exp Z\right) k_{Z}^{-1} h$ where $h \in K$. Consequently, the map $Z \rightarrow g_{Z}:=\exp \left(-Z^{*}\right) \zeta\left(\exp Z^{*} \exp Z\right) k_{Z}^{-1}$ is a section for the action of G on \mathcal{D}. In particular, by using the equality $\psi(Z)=\operatorname{Ad}^{*}\left(g_{Z}\right) \xi_{0}$, we recover the expression of ψ given above.

Proof Let $Z \in \mathcal{D}$ and $g \in G$ such that $g \cdot 0=Z$. Then we can write $g=(\exp Z) k y$ where $k \in K^{c}$ and $y \in P^{-}$. Thus we have

$$
g^{*} g=y^{*} k^{*}\left(\exp Z^{*} \exp Z\right) k y=e
$$

Consequently, passing to the K^{c}-component, we get $k^{*} \kappa\left(\exp Z^{*} \exp Z\right) k=e$. Now, using the polar decomposition $K^{c}=\exp (i \mathfrak{k}) K$ [28, p. 506], we can write $k=k_{Z} h$ where $k_{Z} \in \exp (i \mathfrak{k})$ and $h \in K$. Hence we obtain $k_{Z}^{2}=\kappa\left(\exp Z^{*} \exp Z\right)^{-1}$. Moreover, passing similarly to the P^{-}-component, we get $k^{-1} \eta\left(\exp Z^{*} \exp Z\right) k y=$ e hence $k y=\eta\left(\exp Z^{*} \exp Z\right)^{-1} k$. This gives

$$
\begin{gathered}
g=\exp Z \eta\left(\exp Z^{*} \exp Z\right)^{-1} k \\
=\exp \left(-Z^{*}\right)\left(\exp Z^{*} \exp Z\right) \eta\left(\exp Z^{*} \exp Z\right)^{-1} k_{Z} h \\
=\exp \left(-Z^{*}\right) \zeta\left(\exp Z^{*} \exp Z\right) k_{Z}^{-1} h
\end{gathered}
$$

This shows the second assertion of the proposition. Finally, writing

$$
\begin{gathered}
\psi(Z)=\operatorname{Ad}^{*}\left(g_{Z}\right) \xi_{0}=\operatorname{Ad}^{*}\left(\exp \left(-Z^{*}\right) \zeta\left(\exp Z^{*} \exp Z\right) k_{Z}^{-1}\right) \xi_{0} \\
=\operatorname{Ad}^{*}\left(\exp \left(-Z^{*}\right) \zeta\left(\exp Z^{*} \exp Z\right)\right) \xi_{0}
\end{gathered}
$$

we recover the expression of ψ.

5 Example 1: the unitary group $S U(p, q)$

In this section, we take $G=S U(p, q)$ and $K=S(U(p) \times U(q))$. Recall that K consists of the matrices

$$
\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right), \quad A \in U(p), D \in U(q), \quad \operatorname{Det}(A) \operatorname{Det}(D)=1
$$

For $X=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \mathfrak{g}^{c}$ we have $X^{*}=\left(\begin{array}{cc}-A^{\star} & C^{\star} \\ B^{\star} & -D^{\star}\end{array}\right)$ where \star denotes conjugatetransposition.

Let \mathfrak{h} be the abelian subalgebra of \mathfrak{k} consisting of the matrices

$$
\left(\begin{array}{cc}
i a I_{p} & 0 \\
0 & i b I_{q}
\end{array}\right), \quad a, b \in \mathbb{R}, \quad p a+b q=0
$$

Then \mathfrak{h}^{c} consists of all matrices $X=\operatorname{Diag}\left(x_{1}, x_{2}, \ldots, x_{p+q}\right), x_{k} \in \mathbb{C}$, such that $\sum_{k=1}^{p+q} x_{k}=0$. The set of roots of \mathfrak{h}^{c} on \mathfrak{g}^{c} is $\lambda_{i}-\lambda_{j}$ for $1 \leq i \neq j \leq p+q$ where $\lambda_{i}(X)=x_{i}$ for $X \in \mathfrak{h}^{c}$ as above. The set of compact roots is $\lambda_{i}-\lambda_{j}$ for $1 \leq i \neq j \leq p$ and $p+1 \leq i \neq j \leq p+q$. We take the set of positive roots Δ^{+} to be $\lambda_{i}-\lambda_{j}$ for $1 \leq i<j \leq p+q$. Then we have

$$
P^{+}=\left\{\left(\begin{array}{cc}
I_{p} & Z \\
0 & I_{q}
\end{array}\right): Z \in M_{p q}(\mathbb{C})\right\}, \quad P^{-}=\left\{\left(\begin{array}{cc}
I_{p} & 0 \\
Y & I_{q}
\end{array}\right): Y \in M_{q p}(\mathbb{C})\right\} .
$$

In the rest of this section, we identify \mathfrak{p}^{+}to $M_{p q}(\mathbb{C})$ by means of the map $Z \rightarrow\left(\begin{array}{cc}0 & Z \\ 0 & 0\end{array}\right)$.

The $P^{+} K^{c} P^{-}$-decomposition of a matrix $g \in G^{c}$ is given by

$$
g=\left(\begin{array}{cc}
A & B \tag{5.1}\\
C & D
\end{array}\right)=\left(\begin{array}{cc}
I_{p} & B D^{-1} \\
0 & I_{q}
\end{array}\right)\left(\begin{array}{cc}
A-B D^{-1} C & 0 \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
I_{p} & 0 \\
D^{-1} C & I_{q}
\end{array}\right) .
$$

Note that a matrix $g \in G^{c}$ have such a decomposition if and only if $\operatorname{Det}(D) \neq 0$. In particular we verify that $G \subset P^{+} K^{c} P^{-}$. Moreover, the action of G^{c} on \mathcal{D} is then given by

$$
g \cdot Z=(A Z+B)(C Z+D)^{-1}, \quad g=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)
$$

Note that $g \cdot 0=B D^{-1}=Z$ satisfies $I_{p}-Z Z^{\star}>0[28]$. From this we see that

$$
\mathcal{D}=\left\{Z \in M_{p q}(\mathbb{C}): I_{p}-Z Z^{\star}>0\right\} .
$$

The Killing form β on \mathfrak{g}^{c} is defined by $\beta(X, Y):=2(p+q) \operatorname{Tr}(X Y)$ [31, p. 295]. We identify G-equivariantly \mathfrak{g}^{*} with \mathfrak{g} by means of β. We easily verify that the set of all elements of \mathfrak{g} fixed by K is \mathfrak{h}. Each $\xi_{0} \in \mathfrak{h}$ can be written as

$$
\xi_{0}=i \lambda\left(\begin{array}{cc}
-q I_{p} & 0 \\
0 & p I_{q}
\end{array}\right)
$$

where $\lambda \in \mathbb{R}$. Then we have $\left\langle\xi_{0},\left[Z^{*}, Z\right]\right\rangle=-2 i \lambda(p+q)^{2} \operatorname{Tr}\left(Z Z^{\star}\right)$ for each $Z \in \mathcal{D}$. This shows that ξ_{0} is regular if and only if $\lambda \neq 0$. In that case, we can compute the section $Z \rightarrow g_{Z}$ hence $\psi(Z)$ as follows. For $Z \in \mathcal{D}$, we have

$$
\exp Z^{*} \exp Z=\left(\begin{array}{cc}
I_{p} & Z \\
-Z^{\star} & I_{q}-Z^{\star} Z
\end{array}\right)
$$

Then, by (5.1), we get

$$
\begin{gathered}
\kappa\left(\exp Z^{*} \exp Z\right)=\left(\begin{array}{cc}
\left(I_{p}-Z Z^{\star}\right)^{-1} & 0 \\
0 & I_{q}-Z^{\star} Z
\end{array}\right) \\
\zeta\left(\exp Z^{*} \exp Z\right)=\left(\begin{array}{cc}
I_{p} & Z\left(I_{q}-Z^{\star} Z\right)^{-1} \\
0 & I_{q}
\end{array}\right)
\end{gathered}
$$

and we can take

$$
k_{Z}=\left(\begin{array}{cc}
\left(I_{p}-Z Z^{\star}\right)^{1 / 2} & 0 \\
0 & \left(I_{q}-Z^{\star} Z\right)^{-1 / 2}
\end{array}\right)
$$

Thus we have

$$
g_{Z}=\exp \left(-Z^{*}\right) \zeta\left(\exp Z^{*} \exp Z\right) k_{Z}^{-1}=\left(\begin{array}{cc}
\left(I_{p}-Z Z^{\star}\right)^{-1 / 2} & Z\left(I_{q}-Z^{\star} Z\right)^{-1 / 2} \\
Z^{\star}\left(I_{p}-Z Z^{\star}\right)^{-1 / 2} & \left(I_{q}-Z^{\star} Z\right)^{-1 / 2}
\end{array}\right)
$$

Hence we obtain

$$
\psi(Z)=i \lambda\left(\begin{array}{cc}
\left(I_{p}-Z Z^{\star}\right)^{-1}\left(-p Z Z^{\star}-q I_{p}\right) & (p+q) Z\left(I_{q}-Z^{\star} Z\right)^{-1} \\
-(p+q)\left(I_{q}-Z^{\star} Z\right)^{-1} Z^{\star} & \left(p I_{q}+q Z^{\star} Z\right)\left(I_{q}-Z^{\star} Z\right)^{-1}
\end{array}\right) .
$$

6 Example 2: the Jacobi group

The Jacobi group is the semi-direct product of the $(2 n+1)$-dimensional real Heisenberg group by the symplectic group $S p(n, \mathbb{R})$. This group plays an important role in different areas of Mathematics and Physics, see [10] and [6]. In particular, the Jacobi group appears as an important example of non-reductive Lie group of Harish-Chandra type [29], [28] and its holomorphic unitary representations were studied in [28], [9], [10], [6] and [7].

Consider the symplectic form ω on $\mathbb{C}^{2 n} \times \mathbb{C}^{2 n}$ defined by

$$
\omega\left((z, w),\left(z^{\prime}, w^{\prime}\right)\right)=\frac{i}{2} \sum_{k=1}^{n}\left(z_{k} w_{k}^{\prime}-z_{k}^{\prime} w_{k}\right)
$$

for $z, w, z^{\prime}, w^{\prime} \in \mathbb{C}^{n}$. The $(2 n+1)$-dimensional real Heisenberg group is

$$
H:=\left\{((z, \bar{z}), c): z \in \mathbb{C}^{n}, c \in \mathbb{R}\right\}
$$

endowed with the multiplication

$$
\begin{equation*}
((z, \bar{z}), c) \cdot\left(\left(z^{\prime}, \bar{z}^{\prime}\right), c^{\prime}\right)=\left(\left(z+z^{\prime}, \bar{z}+\bar{z}^{\prime}\right), c+c^{\prime}+\frac{1}{2} \omega\left((z, \bar{z}),\left(z^{\prime}, \bar{z}^{\prime}\right)\right)\right) \tag{6.1}
\end{equation*}
$$

Then the complexification H^{c} of H is

$$
H^{c}:=\left\{((z, w), c): z, w \in \mathbb{C}^{n}, c \in \mathbb{C}\right\}
$$

and the multiplication of H^{c} is obtained by replacing (z, \bar{z}) by (z, w) and $\left(z^{\prime}, \bar{z}^{\prime}\right)$ by $\left(z^{\prime}, w^{\prime}\right)$ in (6.1). We denote by \mathfrak{h} and \mathfrak{h}^{c} the Lie algebras of H and H^{c}.

Now consider the group $S:=S p(n, \mathbb{C}) \cap S U(n, n) \simeq S p(n, \mathbb{R})$ [28, p. 501], [24, p. 175]. Then S consists of all matrices

$$
h=\left(\begin{array}{ll}
P & Q \\
\bar{Q} & \bar{P}
\end{array}\right), \quad P, Q \in M_{n}(\mathbb{C}), \quad P P^{\star}-Q Q^{\star}=I_{n}, \quad P Q^{t}=Q P^{t}
$$

and $S^{c}=S p(n, \mathbb{C})$.
The group S acts on H by $h \cdot((z, \bar{z}), c)=h(z, \bar{z})=P z+Q \bar{z}$ where the elements of \mathbb{C}^{n} and $\mathbb{C}^{n} \times \mathbb{C}^{n}$ are considered as column vectors. Then we can form the semi-direct product $G:=H \rtimes S$ called the Jacobi group. The elements of G can be written as $((z, \bar{z}), c, h)$ where $z \in \mathbb{C}^{n}, c \in \mathbb{R}$ and $h \in S$. The multiplication of G is thus given by
$((z, \bar{z}), c, h) \cdot\left(\left(z^{\prime}, \bar{z}^{\prime}\right), c^{\prime}, h^{\prime}\right)=\left((z, \bar{z})+h\left(z^{\prime}, \bar{z}^{\prime}\right), c+c^{\prime}+\frac{1}{2} \omega\left((z, \bar{z}), h\left(z^{\prime}, \bar{z}^{\prime}\right)\right), h h^{\prime}\right)$.
The complexification G^{c} of G is then the semi-direct product $G^{c}=H^{c} \rtimes S p(n, \mathbb{C})$ and the multiplication of G^{c} is obtained by replacing \bar{z} and \bar{z}^{\prime} by w and w^{\prime} in the preceding formula. We denote by $\mathfrak{s}, \mathfrak{s}^{c}, \mathfrak{g}$ and \mathfrak{g}^{c} the Lie algebras of S, S^{c}, G and G^{c}. The Lie bracket of \mathfrak{g}^{c} is given by
$\left[((z, w), c, A),\left(\left(z^{\prime}, w^{\prime}\right), c^{\prime}, A^{\prime}\right)\right]=\left(A\left(z^{\prime}, w^{\prime}\right)-A^{\prime}(z, w), \omega\left((z, w),\left(z^{\prime}, w^{\prime}\right)\right),\left[A, A^{\prime}\right]\right)$.
We easily verify that

$$
\text { if } X=\left((z, w), c,\left(\begin{array}{cc}
A & B \\
C & -A^{t}
\end{array}\right)\right) \in \mathfrak{g}^{c} \text { then } X^{*}=\left((-\bar{w},-\bar{z}),-\bar{c},\binom{\bar{A}^{t}-\bar{C}}{-\bar{B}-\bar{A}}\right) .
$$

We take K to be the subgroup of G consisting of all elements $\left((0,0), c,\left(\begin{array}{ll}P & 0 \\ 0 & P\end{array}\right)\right)$ where $c \in \mathbb{R}$ and $P \in U(n)$. Then the Lie algebra \mathfrak{k} of K is a maximal compactly embedded subalgebra of \mathfrak{g} and the subalgebra \mathfrak{t} of \mathfrak{k} consisting of elements of the form $((0,0), c, A)$ where A is diagonal is a compactly embedded Cartan subalgebra of \mathfrak{g} [28, p. 250]. Choosing an adapted positive system of non-compact positive roots relative to \mathfrak{t} as in [28, p. 249], we get

$$
\mathfrak{p}^{+}=\left\{a(z, Z):=\left((z, 0), 0,\left(\begin{array}{cc}
0 & Z \\
0 & 0
\end{array}\right)\right): z \in \mathbb{C}^{n}, Z \in M_{n}(\mathbb{C}), Z^{t}=Z\right\}
$$

and

$$
\mathfrak{p}^{-}=\left\{\left((0, w), 0,\left(\begin{array}{cc}
0 & 0 \\
W & 0
\end{array}\right)\right): w \in \mathbb{C}^{n}, W \in M_{n}(\mathbb{C}), W^{t}=W\right\}
$$

Then we obtain

$$
P^{+}=\left\{\left((z, 0), 0,\left(\begin{array}{cc}
I_{n} & Z \\
0 & I_{n}
\end{array}\right)\right): z \in \mathbb{C}^{n}, Z \in M_{n}(\mathbb{C}), Z^{t}=Z\right\}
$$

and

$$
P^{-}=\left\{\left((0, w), 0,\left(\begin{array}{cc}
I_{n} & 0 \\
W & I_{n}
\end{array}\right)\right): w \in \mathbb{C}^{n}, W \in M_{n}(\mathbb{C}), W^{t}=W\right\}
$$

Thus we easily verify that $g=\left(\left(z_{0}, w_{0}\right), c_{0},\left(\begin{array}{ll}A \\ C & B \\ D\end{array}\right)\right) \in G^{c}$ has a $P^{+} K^{c} P^{-}$decomposition

$$
g=\left((z, 0), 0,\left(\begin{array}{cc}
I_{n} & Z \\
0 & I_{n}
\end{array}\right)\right) \cdot\left((0,0), c,\left(\begin{array}{cc}
P & 0 \\
0 & \left(P^{t}\right)^{-1}
\end{array}\right)\right) \cdot\left((0, w), 0,\left(\begin{array}{cc}
I_{n} & 0 \\
W & I_{n}
\end{array}\right)\right)
$$

if and only if $\operatorname{Det}(D) \neq 0$ and, in this case, we have $z=z_{0}-B D^{-1} w_{0}$, $Z=B D^{-1}, w=D^{-1} w_{0}, W=D^{-1} C, P=A-B D^{-1} C=\left(D^{t}\right)^{-1}$ and $c=c_{0}-(1 / 4) i\left(z_{0}-B D^{-1} w_{0}\right)^{t} w_{0}$. From this, we deduce that the action of $g=\left(\left(z_{0}, w_{0}\right), c_{0},\left(\begin{array}{cc}A & B \\ C\end{array}\right)\right) \in G^{c}$ on $a(z, Z) \in \mathfrak{p}^{+}$is given by $g \cdot a(z, Z)=a\left(z^{\prime}, Z^{\prime}\right)$ where $Z^{\prime}=(A Z+B)(C Z+D)^{-1}$ and

$$
z^{\prime}=z_{0}+A z-(A Z+B)(C Z+D)^{-1}\left(w_{0}+C z\right)
$$

This implies that

$$
\mathcal{D}=G \cdot 0=\left\{a(z, Z) \in \mathfrak{p}^{+}: I_{n}-Z \bar{Z}>0\right\} .
$$

Now we aim to compute the coadjoint action of G^{c}. This can be done as follows. First, we compute the adjoint action of G^{c}. Let $g=\left(v_{0}, c_{0}, h_{0}\right) \in G^{c}$ where $v_{0} \in \mathbb{C}^{2 n}, c_{0} \in \mathbb{C}$ and $h_{0} \in S^{c}=S p(n, \mathbb{C})$ and $X=(w, c, U) \in \mathfrak{g}^{c}$ where $w \in \mathbb{C}^{2 n}, c \in \mathbb{C}$ and $U \in \mathfrak{s}^{c}$. We set $\exp (t X)=(w(t), c(t), \exp (t U))$. Then, since the derivatives of $w(t)$ and $c(t)$ at $t=0$ are w and c, we find that

$$
\begin{gathered}
\operatorname{Ad}(g) X=\left.\frac{d}{d t}\left(g \exp (t X) g^{-1}\right)\right|_{t=0} \\
=\left(h_{0} w-\left(\operatorname{Ad}\left(h_{0}\right) U\right) v_{0}, c+\omega\left(v_{0}, h_{0} w\right)-\frac{1}{2} \omega\left(v_{0},\left(\operatorname{Ad}\left(h_{0}\right) U\right) v_{0}\right), \operatorname{Ad}\left(h_{0}\right) U\right)
\end{gathered}
$$

On the other hand, let us denote by $\xi=(u, d, \varphi)$, where $u \in \mathbb{C}^{2 n}, d \in \mathbb{C}$ and $\varphi \in\left(\mathfrak{s}^{c}\right)^{*}$, the element of $\left(\mathfrak{g}^{c}\right)^{*}$ defined by

$$
\langle\xi,(w, c, U)\rangle=\omega(u, w)+d c+\langle\varphi, U\rangle .
$$

Moreover, for $u, v \in \mathbb{C}^{2 n}$, we denote by $v \times u$ the element of $\left(\mathfrak{s}^{c}\right)^{*}$ defined by $\langle v \times u, U\rangle:=\omega(u, U v)$ for $U \in \mathfrak{s}^{c}$.

Let $\xi=(u, d, \varphi) \in\left(\mathfrak{g}^{c}\right)^{*}$ and $g=\left(v_{0}, c_{0}, h_{0}\right) \in G^{c}$. Then, by using the relation $\left\langle\operatorname{Ad}^{*}(g) \xi, X\right\rangle=\left\langle\xi, \operatorname{Ad}\left(g^{-1}\right) X\right\rangle$ for $X \in \mathfrak{g}^{c}$, we obtain

$$
\operatorname{Ad}^{*}(g) \xi=\left(h_{0} u-d v_{0}, d, \operatorname{Ad}^{*}\left(h_{0}\right) \varphi+v_{0} \times\left(h_{0} u-\frac{d}{2} v_{0}\right)\right)
$$

By restriction, we also get the formula for the coadjoint action of G. Now, we are in position to determine the scalar elements of $\left(\mathfrak{g}^{c}\right)^{*}$.

Proposition 6.1

1. The elements ξ_{0} of \mathfrak{g}^{*} fixed by K are the elements of the form $\left(0, d, \varphi_{\lambda}\right)$ where $d, \lambda \in \mathbb{R}$ and $\varphi_{\lambda} \in \mathfrak{s}^{*}$ is defined by $\left\langle\varphi_{\lambda},\left(\begin{array}{c}A \\ C\end{array} \underset{D}{B}\right)\right\rangle=i \lambda \operatorname{Tr}(A)$.
2. Let $\xi_{0}=\left(0, d, \varphi_{\lambda}\right)$ as above. Then ξ_{0} is regular hence scalar if and only if $\lambda d \neq 0$.

Proof (1) Let $\xi_{0}=\left(\left(u_{0}, \bar{u}_{0}\right), d, \varphi\right) \in \mathfrak{g}^{*}$ where $u_{0} \in \mathbb{C}^{n}, d \in \mathbb{R}$ and $\varphi \in \mathfrak{s}^{*}$. Assume that ξ_{0} is fixed by K. Then for each $k=\left(\left(u_{0}, \bar{u}_{0}\right), c_{0},\left(\begin{array}{cc}P & 0 \\ 0 & P\end{array}\right)\right) \in K$ with $u_{0} \in \mathbb{C}^{n}, c_{0} \in \mathbb{R}$ and $P \in U(n)$, we have

$$
\operatorname{Ad}^{*}(k) \xi_{0}=\left(\left(P u_{0}, \bar{P} \bar{u}_{0}\right), d, \operatorname{Ad}^{*}\left(\begin{array}{cc}
P & 0 \\
0 & \bar{P}
\end{array}\right) \varphi\right)=\left(\left(u_{0}, \bar{u}_{0}\right), d, \varphi\right)
$$

This gives $P u_{0}=u_{0}$ for each $P \in U(n)$ hence $u_{0}=0$ and $\operatorname{Ad}^{*}\left(k_{0}\right) \varphi=\varphi$ for each k_{0} in the subgroup K_{0} of S consisting of the matrices of the form $\left(\begin{array}{c}P \\ 0 \\ 0\end{array}\right)$ where $P \in U(n)$. Then, denoting by \mathfrak{k}_{0} the Lie algebra of K_{0}, we have $\langle\varphi,[U, X]\rangle=0$ for each $U \in \mathfrak{k}_{0}$ and each $X \in \mathfrak{s}$. This implies that φ is zero on $\left[\mathfrak{k}_{0}, \mathfrak{k}_{0}\right]$ and also on the elements of \mathfrak{s} of the form $\left(\begin{array}{cc}0 & Q \\ \bar{Q} & 0\end{array}\right)$. Then φ is completely determined by its value on the element $\left(\begin{array}{cc}i I_{n} & 0 \\ 0 & -i I_{n}\end{array}\right)$ which generates the center of \mathfrak{k}_{0}, hence the result.
(2) Let ξ_{0} as above. Then we have $\left\langle\xi_{0},\left[a(z, Z)^{*}, a(z, Z)\right]\right\rangle=d|z|^{2}+i \lambda \operatorname{Tr}(Z \bar{Z})$. The result follows.

In the rest of this section, we fix a scalar element $\xi_{0}=\left(0, d, \varphi_{\lambda}\right)$ of \mathfrak{g}^{*} as above and we compute $\psi(a(z, Z))$ for $a(z, Z) \in \mathcal{D}$. In order to make the expression of $\psi(a(z, Z))$ more explicit, we introduce the following notation. For $\varphi \in \mathfrak{s}^{*}$, let $\theta(\varphi)$ the unique element of \mathfrak{s} such that $\langle\varphi, X\rangle=\operatorname{Tr}(\theta(\varphi) X)$ for each $X \in \mathfrak{s}$. In particular, one has $\theta\left(\varphi_{\lambda}\right)=\frac{\lambda}{2}\left(\begin{array}{cc}i I_{n} & 0 \\ 0 & -i I_{n}\end{array}\right)$. Moreover, for $u=(x, \bar{x}) \in \mathbb{C}^{2 n}$ and $u=(y, \bar{y}) \in \mathbb{C}^{2 n}$ we have

$$
\theta(v \times u)=\frac{1}{2}\left(\begin{array}{ll}
-i y \bar{x}^{t} & i y x^{t} \\
-i \bar{y} \bar{x}^{t} & i \bar{y} x^{t}
\end{array}\right) .
$$

Note also that θ intertwines Ad^{*} and Ad .
Proposition 6.2 The map $\psi: \mathcal{D} \rightarrow \mathcal{O}\left(\xi_{0}\right)$ is given by

$$
\psi(a(y, Z))=\left(-d\left(y_{1}, \bar{y}_{1}\right), d, \varphi(y, Z)\right)
$$

where $y_{1}=\left(I_{n}-Z \bar{Z}\right)^{-1}(y+Z \bar{y})$ and

$$
\varphi(y, Z):=\operatorname{Ad}^{*}\left(\begin{array}{cc}
\left(I_{n}-Z \bar{Z}\right)^{-1 / 2} & \left(I_{n}-Z \bar{Z}\right)^{-1 / 2} Z \\
\left(I_{n}-\bar{Z} Z\right)^{-1 / 2} \bar{Z} & \left(I_{n}-\bar{Z} Z\right)^{-1 / 2}
\end{array}\right) \varphi_{\lambda}-\frac{d}{2}\left(y_{1}, \bar{y}_{1}\right) \times\left(y_{1}, \bar{y}_{1}\right) .
$$

Moreover, we have

$$
\begin{gathered}
\theta(\varphi(y, Z))=-\frac{d}{4}\left(\begin{array}{cc}
-i y_{1} \bar{y}_{1}^{t} & i y_{1} y_{1}^{t} \\
-i \bar{y}_{1} \bar{y}_{1}^{t} & i \bar{y}_{1} y_{1}^{t}
\end{array}\right)+\frac{\lambda}{2} i \\
\times\left(\begin{array}{c}
\left(I_{n}+Z \bar{Z}\right)\left(I_{n}-Z \bar{Z}\right)^{-1 / 2}\left(I_{n}-\bar{Z} Z\right)^{-1 / 2} \\
2 \bar{Z}\left(I_{n}-Z \bar{Z}\right)^{-1 / 2}\left(I_{n}-\bar{Z} Z\right)^{-1 / 2} \\
-\left(I_{n}+\bar{Z} Z\right)^{-1 / 2}\left(I_{n}-Z \bar{Z}\right)^{-1 / 2}\left(I_{n}-\bar{Z} Z\right)^{-1 / 2}\left(I_{n}-Z \bar{Z}\right)^{-1 / 2}
\end{array}\right) .
\end{gathered}
$$

Proof $\operatorname{For}(y, Z) \in \mathbb{C}^{n} \times M_{n}(\mathbb{C})$ such that $a(y, Z) \in \mathcal{D}$ we set

$$
g(y, Z):=\left(\left(y_{1}, \bar{y}_{1}\right), 0,\left(\begin{array}{cc}
\left(I_{n}-Z \bar{Z}\right)^{-1 / 2} & \left(I_{n}-Z \bar{Z}\right)^{-1 / 2} Z \\
\left(I_{n}-\bar{Z} Z\right)^{-1 / 2} \bar{Z} & \left(I_{n}-\bar{Z} Z\right)^{-1 / 2}
\end{array}\right)\right) \in G
$$

where $y_{1}=\left(I_{n}-Z \bar{Z}\right)^{-1}(y+Z \bar{y})$. Then the map $a(y, Z) \rightarrow g(y, Z)$ is a section for the action of G on \mathcal{D} and we have $\psi(a(y, Z))=\operatorname{Ad}^{*}(g(y, Z)) \xi_{0}$ (in fact, we use here this section since the expression of the section given by Proposition 4.5 is too complicated in this case). Thus, by using the formula for the coadjoint action of G and the above considerations on θ, we easily obtain the desired result.

References

[1] Arnal, D.. Cortet, J.-C.: Nilpotent Fourier transform and applications. Lett. Math. Phys. 9 (1985), 25-34.
[2] Bar-Moshe, D.: A method for weight multiplicity computation based on Berezin quantization. SIGMA 5 (2009), 091, 1-12.
[3] Bar-Moshe, D., Marinov, M. S.: Realization of compact Lie algebras in Kähler manifolds. J. Phys. A: Math. Gen. 27 (1994), 6287-6298.
[4] Berezin, F. A.: Quantization. Math. USSR Izv. 8, 5 (1974), 1109-1165.
[5] Berezin, F. A.: Quantization in complex symmetric domains. Math. USSR Izv. 9, 2 (1975), 341-379.
[6] Berceanu, S.: A holomorphic representation of the Jacobi algebra. Rev. Math. Phys. 18 (2006), 163-199.
[7] Berceanu, S., Gheorghe, A.: On the geometry of Siegel-Jacobi domains. Int. J. Geom. Methods Mod. Phys. 8 (2011), 1783-1798.
[8] Bernatska, J., Holod, P.: Geometry and topology of coadjoint orbits of semisimple Lie groups. Mladenov I. M., de León M. (eds) Proceedings of the 9th international conference on 'Geometry, Integrability and Quantization', June 8-13, 2007, Varna, Bulgarian Academy of Sciences, Sofia, 2008, 146-166.
[9] Berndt, R., Böcherer, S.: Jacobi forms and discrete series representations of the Jacobi group. Math. Z. 204 (1990), 13-44.
[10] Berndt, R., Schmidt, R.: Elements of the Representation Theory of the Jacobi Group. Progress in Mathematics 163, Birkhäuser Verlag, Basel, 1988.
[11] Cahen, B.: Deformation program for principal series representations. Lett. Math. Phys. 36 (1996), 65-75.
[12] Cahen, B.: Contraction de $S U(1,1)$ vers le groupe de Heisenberg. In: Mathematical works, Part XV, Séminaire de Mathématique Université du Luxembourg, Luxembourg, (2004), 19-43.
[13] Cahen, B.: Weyl quantization for semidirect products. Diff. Geom. Appl. 25 (2007), 177-190.
[14] Cahen, B.: Multiplicities of compact Lie group representations via Berezin quantization. Mat. Vesnik 60 (2008), 295-309.
[15] Cahen, B.: Contraction of compact semisimple Lie groups via Berezin quantization. Illinois J. Math. 53, 1 (2009), 265-288.
[16] Cahen, B.: Berezin quantization on generalized flag manifolds. Math. Scand. 105 (2009), 66-84.
[17] Cahen, B.: Contraction of discrete series via Berezin quantization. J. Lie Theory 19 (2009), 291-310.
[18] Cahen, B.: Berezin quantization for discrete series. Beiträge Algebra Geom. 51 (2010), 301-311.
[19] Cahen, B.: Stratonovich-Weyl correspondence for discrete series representations. Arch. Math. (Brno) 47 (2011), 41-58.
[20] Cahen, B.: Berezin quantization and holomorphic representations. Rend. Sem. Mat. Univ. Padova, to appear.
[21] Cahen, M., Gutt, S., Rawnsley, J.: Quantization on Kähler manifolds I, Geometric interpretation of Berezin quantization. J. Geom. Phys. 7 (1990), 45-62.
[22] Cahen, M., Gutt, S., Rawnsley, J.: Quantization on Kähler manifolds III. Lett. Math. Phys. 30 (1994), 291-305.
[23] Cotton, P., Dooley, A. H.: Contraction of an adapted functional calculus. J. Lie Theory 7 (1997), 147-164.
[24] Folland, B.: Harmonic Analysis in Phase Space., Princeton Univ. Press, Princeton, 1989.
[25] Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Graduate Studies in Mathematics 34, American Mathematical Society, Providence, Rhode Island, 2001.
[26] Kirillov, A. A.: Lectures on the Orbit Method, Graduate Studies in Mathematics. 64, American Mathematical Society, Providence, Rhode Island, 2004.
[27] Kostant, B.: Quantization and unitary representations. In: Modern Analysis and Applications, Lecture Notes in Mathematics 170, Springer-Verlag, Berlin, Heidelberg, New York, (1970), 87-207.
[28] Neeb, K-H.: Holomorphy and Convexity in Lie Theory. de Gruyter Expositions in Mathematics 28, Walter de Gruyter, Berlin, New York, 2000.
[29] Satake, I: Algebraic Structures of Symmetric Domains. Iwanami Sho-ten, Tokyo and Princeton Univ. Press, Princeton, NJ, 1971.
[30] Skrypnik, T. V.: Coadjoint orbits of compact Lie groups and generalized stereographic projection. Ukr. Math. J. 51 (1999), 1939-1944.
[31] Varadarajan, V. S.: Lie groups, Lie Algebras and Their Representations. Graduate Texts in Mathematics 102, Springer-Verlag, Berlin, 1984.

