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Abstract

Let G be a quasi-Hermitian Lie group with Lie algebra g and K be
a compactly embedded subgroup of G. Let ξ0 be a regular element of
g∗ which is fixed by K. We give an explicit G-equivariant diffeomor-
phism from a complex domain onto the coadjoint orbit O(ξ0) of ξ0. This
generalizes a result of [B. Cahen, Berezin quantization and holomorphic
representations, Rend. Sem. Mat. Univ. Padova, to appear] concerning
the case where O(ξ0) is associated with a unitary irreducible representa-
tion of G which is holomorphically induced from a unitary character of
K. In particular, we consider the case G = SU(p, q) and the case where
G is the Jacobi group.
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1 Introduction

Let us first consider the following situation. Let G = SU(1, 1) and K be the
torus of G consisting of matrices of the form Diag(eiθ, e−iθ) where θ ∈ R. The
Lie algebra g of G has basis

u1 =
1

2

(
0 −i
i 0

)
, u2 =

1

2

(
0 1
1 0

)
, u3 =

1

2

(−i 0
0 i

)
.
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Let (u∗1, u
∗
2, u

∗
3) be the dual basis of g∗. For r > 0, let ξ0 = ru∗3. Then the

orbit O(ξ0) of ξ0 for the coadjoint action of G is the upper sheet x3 > 0 of the
two-sheet hyperboloid {ξ = x1u

∗
1 + x2u

∗
2 + x3u

∗
3 : − x21 − x22 + x23 = r2}. Since

the stabilizer of ξ0 for the coadjoint action of G is K, we have O(ξ0) � G/K.
On the other hand, G/K is diffeomorphic to the unit disc D = {z ∈ C : |z| < 1}.
Then, by composition, we get a global chart ψ : D→ O(ξ0). Explicitly, we have

ψ(z) := r

(
z + z̄

1− zz̄ u
∗
1 +

z − z̄
i(1− zz̄)u

∗
2 +

1+ zz̄

1− zz̄ u
∗
3

)
.

Note that ψ intertwines the natural action on G on D (by fractional linear
transforms) and the coadjoint action of G on O(ξ0). Note also that ψ−1 is an
analog of the stereographic projection from the two-sphere S2 onto C ∪ (∞).
Moreover, if we take r = n/2 where n is an integer ≥ 2 then O(ξ0) is associ-
ated with a holomorphic discrete series representation πn of G by the Kirillov–
Kostant method of orbits [26], [27]. In that case, the differential dπn of πn
is related to ψ by the Berezin calculus S, that is, we have S(dπn(X))(z) =
i〈(ψ(z), X) for each X ∈ g and each z ∈ D [12].

The goal of the present note is to extend the above considerations to a
large setting. To this aim, we consider a quasi-Hermitian Lie group G and
a compactly embedded subgroup K ⊂ G. In [20], we considered a unitary
representation π of G which is holomorphically induced from a unitary character
of K and we proved that the dequantization of dπ by means of the Berezin
calculus provides an explicit diffeomorphism from a complex domain onto the
coadjoint orbit of G associated with π (see also [16] and [18]). Here we show
that, more generally, such a diffeomorphism can also be constructed for the
coadjoint orbit O(ξ0) := Ad∗(G) ξ0 of an element ξ0 ∈ g∗ which is fixed by K
and assumed to be regular (in a sense defined below). We call such an orbit
O(ξ0) a scalar orbit.

Note that similar parametrizations for coadjoint orbits of compact Lie groups
can be found in [30] and [8]. For unitary groups, explicit expressions for gener-
alized stereographic projections are given in [30].

Parametrizations of coadjoint orbits have many applications in deformation
theory, harmonic analysis and mathematical physics. Let us mention some of
them:

1. Construction of covariant star-products on coadjoint orbits [1], [11], [22];

2. Construction of some quantization maps, as adapted Weyl correspon-
dences and Stratonovich-Weyl correspondences [13], [19];

3. Geometric quantization of coadjoint orbits [3], [21];

4. Contractions and restrictions of unitary irreducible representations asso-
ciated with integral coadjoint orbits [15], [17], [23], [2], [14].

This note is organized as follows. Section 2 is devoted to generalities about
quasi-Hermitian Lie groups. In Section 3 and Section 4, we review some results
from [20]. In Section 5, we give a G-equivariant parametrization of a scalar
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coadjoint orbit of a quasi-Hermitian Lie group G. In Section 6, we consider the
case of the unitary group SU(p, q) and, in Section 7, the case of the (generalized)
Jacobi group.

2 Generalities

The material of this section and of the first part of Section 3 is taken from the
excellent book of K.-H. Neeb, [28], Chapter VIII and Chapter XII (see also [29],
Chapter II and, for the Hermitian case, [25], Chapter VIII ).

Let g be a real quasi-Hermitian Lie algebra [28, p. 241]. We assume that
g is not compact. Let gc be the complexification of g and let Z = X + iY →
Z∗ = −X + iY be the corresponding involution. We fix a compactly embedded
Cartan subalgebra h ⊂ k, [28, p. 241] and we denote by hc the corresponding
Cartan subalgebra of gc. We write Δ := Δ(gc, hc) for the set of roots of gc

relative to hc and gc = hc ⊕∑α∈Δ gα for the root space decomposition of gc.
Note that α(h) ⊂ iR for each α ∈ Δ [28, p. 233]. We write Δk, respectively Δp,
for the set of compact, respectively non-compact, roots [28, p. 233–235]. Note
that one has kc = hc⊕∑α∈Δk

gα [28, p. 235]. We fix a positive adapted system
Δ+ [28, p. 236] and we set Δ+

p := Δ+∩Δp and Δ+
k := Δ+∩Δk, see [28, p. 241].

Let Gc be a simply connected complex Lie group with Lie algebra gc and
G ⊂ Gc, respectively, K ⊂ Gc, the analytic subgroup corresponding to g,
respectively, k. We also set Kc = exp(kc) ⊂ Gc as in [28, p. 506].

Let p+ =
∑

α∈Δ+
p
gα and p− =

∑
α∈Δ+

p
g−α. Let P+ and P− be the analytic

subgroups of Gc with Lie algebras p+ and p−. Then G is a group of the Harish-
Chandra type [28, p. 507], that is, the following properties are satisfied:

1. gc = p+ ⊕ kc ⊕ p− is a direct sum of vector spaces, (p+)∗ = p− and
[k+, p±] ⊂ p±;

2. The multiplication map P+KcP− → Gc, (z, k, y) → zky is a biholomor-
phic diffeomorphism onto its open image;

3. G ⊂ P+KcP− and G ∩KcP− = K.

Moreover, there exists an open connected subsetD ⊂ p+ such thatGKcP− =
exp(D)KcP− [28, p. 497]. We denote by ζ : P+KcP− → P+, κ : P+KcP− →
Kc and η : P+KcP− → P− the projections onto P+-, Kc- and P−-components.
For Z ∈ p+ and g ∈ Gc with g expZ ∈ P+KcP−, we define the element g ·Z of
p+ by g · Z := log ζ(g expZ). Note that we have D = G · 0.

We also denote by g → g∗ the involutive anti-automorphism of Gc which is
obtained by exponentiating X → X∗. We denote by pp+ the projection of gc

onto p+ associated with the direct decomposition gc = p+ ⊕ kc ⊕ p−.

3 Holomorphic representations

In this section, we consider the case of a coadjoint orbit associated with a scalar
holomorphic discrete series representation of G.
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We fix a unitary character χ of K. We also denote by χ the extension
of χ to Kc. We set Kχ(Z,W ) = χ(κ(expW ∗ expZ))−1 for Z, W ∈ D and
Jχ(g, Z) = χ(κ(g expZ)) for g ∈ G and Z ∈ D. Let Hχ be the Hilbert space of
holomorphic functions on D such that

‖f‖2χ :=

∫
D
|f(Z)|2Kχ(Z,Z)

−1dμ(Z) < +∞

Here μ denotes the G-invariant measure on D, that is,

dμ(Z) := χ0(κ(expZ
∗ expZ)) dμL(Z)

where χ0 is the character on Kc defined by χ0(k) = Detp+(Ad k) and dμL(Z)
is a Lebesgue measure on D [28, p. 538].

In this section, we assume thatHχ �= (0). ThenHχ contains the polynomials
[28, p. 546] and the formula

πχ(g)f(Z) = Jχ(g
−1, Z)−1 f(g−1 · Z)

defines a unitary representation of G on Hχ which is a highest weight represen-
tation with highest weight λ := dχ|hc [28, p. 540].

We introduce the constant cχ defined by

c−1
χ =

∫
D
Kχ(Z,Z)

−1 dμ(Z).

and we set eZ(W ) := cχKχ(W,Z). Then we have the reproducing property
f(Z) = 〈f, eZ〉χ for each f ∈ Hχ and each Z ∈ D [28, p. 540]. Here 〈·, ·〉χ
denotes the inner product on Hχ.

The Berezin calculus on D is then defined as follows [4], [5], [21]. Consider
an operator (not necessarily bounded) A on Hχ whose domain contains eZ for
each Z ∈ D. Then the Berezin symbol of A is the function Sχ(A) defined on D
by

Sχ(A)(Z) :=
〈AeZ , eZ〉χ
〈eZ , eZ〉χ .

It is known that each operator is determined by its Berezin symbol and
that if an operator A has adjoint A∗ then we have Sχ(A

∗) = Sχ(A) [4], [21].
The Berezin calculus is G-equivariant with respect to πχ, that is, we have the
following property: for each operator A on Hχ whose domain contains the
coherent states eZ for each Z ∈ D and each g ∈ G, the domain of πχ(g−1)Aπχ(g)
also contains eZ for each Z ∈ D and we have

Sχ(πχ(g)
−1Aπχ(g))(Z) = Sχ(A)(g · Z) (3.1)

for each g ∈ G and Z ∈ D.
Now, we consider the linear form ξ on gc defined by ξ = −idχ on kc and

ξ = 0 on p±. Then we have ξ(g) ⊂ R and the restriction ξ0 of ξ to g is an
element of g∗. Let O(ξ0) be the orbit of ξ0 in g∗ for the coadjoint action of G.
In [20], we proved the following proposition (see also [17]).
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Proposition 3.1

1. For each X ∈ gc and each Z ∈ D, we have

S(dπχ(X))(Z) = i〈ψ(Z), X〉

where ψ(Z) := Ad∗
(
exp(−Z∗) ζ(expZ∗ expZ)

)
ξ0.

2. For each g ∈ G and each Z ∈ D, we have ψ(g · Z) = Ad∗(g)ψ(Z).

3. The map ψ is a diffeomorphism from D onto O(ξ0).

Note that (2) immediately follows from the G-equivariance of the Berezin
calculus. In the following section, we extend (2) and (3) to scalar coadjoint
orbits.

4 Parametrization of scalar coadjoint orbits

If ξ0 ∈ g∗ is associated with a unitary character ofK as in Section 3 then we have
Ad∗(k)ξ0 = ξ0 for each k ∈ K and, by Lemma 3.1 of [20], the Hermitian form
(Z,W ) → 〈ξ0, [Z,W ∗]〉 is not isotropic. This leads us to consider the elements
ξ0 ∈ g∗ which are fixed by K and regular in the sense that the Hermitian form
(Z,W ) → 〈ξ0, [Z,W ∗]〉 is not isotropic. Such elements ξ0 are called scalar and
we say that the coadjoint orbit O(ξ0) of a scalar element ξ0 is a scalar orbit.

Lemma 4.1 Let ξ0 ∈ g∗ fixed by K. Let us also denote by ξ0 the linear exten-
sion of ξ0 to gc.

1. We have ξ0|p± ≡ 0;

2. Let E1, E2, . . . , Em be a basis of p+ such that Ej ∈ gαj where αj ∈ Δ+
p

for j = 1, 2, . . . ,m. Then ξ0 is regular hence scalar if and only if we have
i〈ξ0, [E∗

j , Ej ]〉 > 0 for each j = 1, 2, . . . ,m or i〈ξ0, [E∗
j , Ej ]〉 < 0 for each

j = 1, 2, . . . ,m.

Proof (1) If ξ0 ∈ g∗ is fixed by K then one has ad∗ U ξ0 = 0 for each U ∈ k or,
equivalently, 〈ξ0, [U,X ]〉 = 0 for each U ∈ k and X ∈ g. Then, taking X = Ej

where j = 1, 2, . . . ,m and U ∈ gαj such that αj(U) �= 0 we get 〈ξ0, Ej〉 = 0 for
each j = 1, 2, . . . ,m hence the result.

(2) Let Z =
∑m

j=1 zjEj ∈ p+. Then, by using (1), we get

〈ξ0, [Z∗, Z]〉 =
m∑
j=1

〈ξ0, [E∗
j , Ej ]〉|zj |2

where i[E∗
j , Ej ] ∈ h for each j [28], p. 233. The result then follows. �

In the rest of this section, we fix a scalar element ξ0 ∈ g∗. For Z ∈ D, we set

ψ(Z) := Ad∗
(
exp(−Z∗) ζ(expZ∗ expZ)

)
ξ0.
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Proposition 4.2 For each g ∈ G and each Z ∈ D, we have

ψ(g · Z) = Ad∗(g)ψ(Z).

Proof Let g ∈ G and Z ∈ D. We write g expZ = zky where z ∈ P+, k ∈ Kc

and y ∈ P−. Then, since g∗ = g−1, we have expZ∗ expZ = y∗k∗z∗zky. This
implies that

ζ(expZ∗ expZ) = y∗k∗ζ(z∗z)k∗−1.

Thus, noting that z = exp(g · Z), we get

exp(−(g · Z)∗) ζ(exp(g · Z)∗ exp(g · Z)) = z∗−1ζ(z∗z)

= g exp(−Z∗)y∗k∗ζ(z∗z) = g exp(−Z∗) ζ(expZ∗ expZ)k∗.

Hence we obtain ψ(g · Z) = Ad∗(g)ψ(Z). �

Corollary 4.3 The stabilizer of ξ0 for the coadjoint action of G is K.

Proof First, we prove that for Z ∈ D the equality ψ(Z) = ξ0 implies that
Z = 0. Assume that ψ(Z) = ξ0. Then we have

Ad∗
(
ζ(expZ∗ expZ)

)
ξ0 = Ad∗(expZ) ξ0

or, equivalently,

〈ξ0,Ad(ζ(expZ∗ expZ)−1)X〉 = 〈ξ0,Ad(exp(−Z∗))X〉.

for each X ∈ gc. Thus, taking X = Z and using (1) of Lemma 4.1, we get
〈ξ0, [Z∗, Z]〉 = 0 hence Z = 0.

Now, consider g ∈ G such that Ad∗(g)ξ0 = ξ0. Then, by Proposition 4.2, we
have ψ(g · 0) = ξ0 and, by the assertion already proved, we get g · 0 = ξ0. Hence
we obtain g ∈ KcP− ∩G = K. �

Proposition 4.4 The map ψ is a diffeomorphism from D onto O(ξ0).

Proof Let Z ∈ D. There exists g ∈ G such that g·0 = Z. Then, by Proposition
4.2, we have ψ(Z) = Ad∗(g)ξ0. This shows that ψ has values in O(ξ0) and that
ψ is surjective. Now, suppose that ψ(Z) = ψ(Z ′) for some Z, Z ′ ∈ D. Let
g, g′ ∈ G such that g · 0 = Z and g′ · 0 = Z ′. Then, by Proposition 4.2, we
have Ad∗(g)ξ0 = Ad∗(g′)ξ0. Thus, by Corollary 4.3, we get g−1g′ ∈ K hence
Z = g · 0 = g′ · 0 = Z ′. This proves that ψ is injective hence bijective.

Now, we show that ψ is regular. Using Proposition 4.2, we have just to
verify that ψ is regular at Z = 0. By differentiating the multiplication map
from P+ × Kc × P− onto P+KcP−, we easily see that, for each g ∈ G such
that g = zky with z ∈ P+, k ∈ Kc and y ∈ P− and each X ∈ gc, we have

dζg(X
+(g)) = (Ad(z) pp+(Ad(z−1)X))+(z).
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Here, we have denoted by Y + the right-invariant vector field generated by Y .
From this, it follows that, for each Y ∈ p+ and each X ∈ gc, we have

〈(dψ)0(Y ), X〉 = 〈ξ0, [X,Y − Y ∗]〉. (4.1)

Now, assume that (dψ)0(Y ) = 0 for some Y ∈ p+. By taking X = Y in (4.1)
we get 〈ξ0, [Y, Y ∗]〉 = 0 hence Y = 0. �

Now, we construct a section of the action of G on D, that is, a map Z → gZ
from D to G such that gZ · 0 = Z for each Z ∈ D and we show that ψ can be
recovered by using this section. Note that such sections are useful in practice,
in particular to determine explicitly D, see, for instance [28, p. 501].

Proposition 4.5 Let Z ∈ D. There exists an element kZ in Kc such that
k∗Z = kZ and k2Z = κ(expZ∗ expZ)−1. Each g ∈ G such that g · 0 = Z is then
of the form g = exp(−Z∗) ζ(expZ∗ expZ)k−1

Z h where h ∈ K. Consequently,
the map Z → gZ := exp(−Z∗) ζ(expZ∗ expZ)k−1

Z is a section for the action of
G on D. In particular, by using the equality ψ(Z) = Ad∗(gZ)ξ0, we recover the
expression of ψ given above.

Proof Let Z ∈ D and g ∈ G such that g · 0 = Z. Then we can write
g = (expZ)ky where k ∈ Kc and y ∈ P−. Thus we have

g∗g = y∗k∗(expZ∗ expZ)ky = e.

Consequently, passing to the Kc-component, we get k∗κ(expZ∗ expZ)k = e.
Now, using the polar decomposition Kc = exp(ik)K [28, p. 506], we can write
k = kZh where kZ ∈ exp(ik) and h ∈ K. Hence we obtain k2Z = κ(expZ∗ expZ)−1.
Moreover, passing similarly to the P−-component, we get k−1η(expZ∗ expZ)ky =
e hence ky = η(expZ∗ expZ)−1k. This gives

g = expZη(expZ∗ expZ)−1k

= exp(−Z∗)(expZ∗ expZ)η(expZ∗ expZ)−1kZh

= exp(−Z∗) ζ(expZ∗ expZ)k−1
Z h.

This shows the second assertion of the proposition. Finally, writing

ψ(Z) = Ad∗(gZ)ξ0 = Ad∗(exp(−Z∗) ζ(expZ∗ expZ)k−1
Z )ξ0

= Ad∗(exp(−Z∗) ζ(expZ∗ expZ))ξ0,

we recover the expression of ψ. �

5 Example 1: the unitary group SU(p, q)

In this section, we take G = SU(p, q) and K = S(U(p)× U(q)). Recall that K
consists of the matrices(

A 0
0 D

)
, A ∈ U(p), D ∈ U(q), Det(A)Det(D) = 1.
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For X =
(
A B
C D

) ∈ gc we have X∗ =
(−A� C�

B� −D�

)
where � denotes conjugate-

transposition.
Let h be the abelian subalgebra of k consisting of the matrices(

iaIp 0
0 ibIq

)
, a, b ∈ R, pa+ bq = 0.

Then hc consists of all matrices X = Diag(x1, x2, . . . , xp+q), xk ∈ C, such that∑p+q
k=1 xk = 0. The set of roots of hc on gc is λi − λj for 1 ≤ i �= j ≤ p + q

where λi(X) = xi for X ∈ hc as above. The set of compact roots is λi − λj for
1 ≤ i �= j ≤ p and p+ 1 ≤ i �= j ≤ p+ q. We take the set of positive roots Δ+

to be λi − λj for 1 ≤ i < j ≤ p+ q. Then we have

P+ =

{(
Ip Z
0 Iq

)
: Z ∈Mpq(C)

}
, P− =

{(
Ip 0
Y Iq

)
: Y ∈Mqp(C)

}
.

In the rest of this section, we identify p+ to Mpq(C) by means of the map
Z → (

0 Z
0 0

)
.

The P+KcP−-decomposition of a matrix g ∈ Gc is given by

g =

(
A B
C D

)
=

(
Ip BD

−1

0 Iq

)(
A−BD−1C 0

0 D

)(
Ip 0

D−1C Iq

)
. (5.1)

Note that a matrix g ∈ Gc have such a decomposition if and only if Det(D) �= 0.
In particular we verify that G ⊂ P+KcP−. Moreover, the action of Gc on D is
then given by

g · Z = (AZ +B)(CZ +D)−1, g =

(
A B
C D

)
Note that g · 0 = BD−1 = Z satisfies Ip − ZZ� > 0 [28]. From this we see that

D = {Z ∈Mpq(C) : Ip − ZZ� > 0}.

The Killing form β on gc is defined by β(X,Y ) := 2(p + q)Tr(XY ) [31,
p. 295]. We identify G-equivariantly g∗ with g by means of β. We easily verify
that the set of all elements of g fixed by K is h. Each ξ0 ∈ h can be written as

ξ0 = iλ

(−qIp 0
0 pIq

)
where λ ∈ R. Then we have 〈ξ0, [Z∗, Z]〉 = −2iλ(p + q)2 Tr(ZZ�) for each
Z ∈ D. This shows that ξ0 is regular if and only if λ �= 0. In that case, we can
compute the section Z → gZ hence ψ(Z) as follows. For Z ∈ D, we have

expZ∗ expZ =

(
Ip Z
−Z� Iq − Z�Z

)
.
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Then, by (5.1), we get

κ(expZ∗ expZ) =
(
(Ip − ZZ�)−1 0

0 Iq − Z�Z

)
,

ζ(expZ∗ expZ) =
(
Ip Z(Iq − Z�Z)−1

0 Iq

)
and we can take

kZ =

(
(Ip − ZZ�)1/2 0

0 (Iq − Z�Z)−1/2

)
.

Thus we have

gZ = exp(−Z∗)ζ(expZ∗ expZ)k−1
Z =

(
(Ip − ZZ�)−1/2 Z(Iq − Z�Z)−1/2

Z�(Ip − ZZ�)−1/2 (Iq − Z�Z)−1/2

)
.

Hence we obtain

ψ(Z) = iλ

(
(Ip − ZZ�)−1(−pZZ� − qIp) (p+ q)Z(Iq − Z�Z)−1

−(p+ q)(Iq − Z�Z)−1Z� (pIq + qZ�Z)(Iq − Z�Z)−1

)
.

6 Example 2: the Jacobi group

The Jacobi group is the semi-direct product of the (2n + 1)-dimensional real
Heisenberg group by the symplectic group Sp(n,R). This group plays an im-
portant role in different areas of Mathematics and Physics, see [10] and [6]. In
particular, the Jacobi group appears as an important example of non-reductive
Lie group of Harish-Chandra type [29], [28] and its holomorphic unitary repre-
sentations were studied in [28], [9], [10], [6] and [7].

Consider the symplectic form ω on C2n × C2n defined by

ω((z, w), (z′, w′)) =
i

2

n∑
k=1

(zkw
′
k − z′kwk).

for z, w, z′, w′ ∈ Cn. The (2n+ 1)-dimensional real Heisenberg group is

H := {((z, z̄), c) : z ∈ Cn, c ∈ R}
endowed with the multiplication

((z, z̄), c) · ((z′, z̄′), c′) = ((z + z′, z̄ + z̄′), c+ c′ + 1
2ω((z, z̄), (z

′, z̄′))). (6.1)

Then the complexification Hc of H is

Hc := {((z, w), c) : z, w ∈ Cn, c ∈ C}
and the multiplication of Hc is obtained by replacing (z, z̄) by (z, w) and (z′, z̄′)
by (z′, w′) in (6.1). We denote by h and hc the Lie algebras of H and Hc.
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Now consider the group S := Sp(n,C) ∩ SU(n, n) � Sp(n,R) [28, p. 501],
[24, p. 175]. Then S consists of all matrices

h =

(
P Q
Q̄ P̄

)
, P,Q ∈Mn(C), PP � −QQ� = In, PQt = QP t

and Sc = Sp(n,C).
The group S acts on H by h · ((z, z̄), c) = h(z, z̄) = Pz + Qz̄ where the

elements of Cn and Cn × Cn are considered as column vectors. Then we can
form the semi-direct product G := H�S called the Jacobi group. The elements
of G can be written as ((z, z̄), c, h) where z ∈ Cn, c ∈ R and h ∈ S. The
multiplication of G is thus given by

((z, z̄), c, h) · ((z′, z̄′), c′, h′) = ((z, z̄)+ h(z′, z̄′), c+ c′+ 1
2ω((z, z̄), h(z

′, z̄′)), hh′).

The complexificationGc of G is then the semi-direct productGc = Hc�Sp(n,C)
and the multiplication of Gc is obtained by replacing z̄ and z̄′ by w and w′ in
the preceding formula. We denote by s, sc, g and gc the Lie algebras of S, Sc,
G and Gc. The Lie bracket of gc is given by

[((z, w), c, A), ((z′, w′), c′, A′)] = (A(z′, w′)−A′(z, w), ω((z, w), (z′, w′)), [A,A′]).

We easily verify that

if X =
(
(z, w), c,

(
A B
C −At

)) ∈ gc then X∗ =
(
(−w̄,−z̄),−c̄, ( Āt −C̄

−B̄ −Ā

))
.

We takeK to be the subgroup ofG consisting of all elements
(
(0, 0), c,

(
P 0
0 P̄

))
where c ∈ R and P ∈ U(n). Then the Lie algebra k of K is a maximal compactly
embedded subalgebra of g and the subalgebra t of k consisting of elements of
the form ((0, 0), c, A) where A is diagonal is a compactly embedded Cartan sub-
algebra of g [28, p. 250]. Choosing an adapted positive system of non-compact
positive roots relative to t as in [28, p. 249], we get

p+ =

{
a(z, Z) :=

(
(z, 0), 0,

(
0 Z
0 0

))
: z ∈ Cn, Z ∈Mn(C), Z

t = Z

}
and

p− =

{(
(0, w), 0,

(
0 0
W 0

))
: w ∈ Cn,W ∈Mn(C),W

t =W

}
.

Then we obtain

P+ =

{(
(z, 0), 0,

(
In Z
0 In

))
: z ∈ Cn, Z ∈Mn(C), Z

t = Z

}
and

P− =

{(
(0, w), 0,

(
In 0
W In

))
: w ∈ Cn,W ∈Mn(C),W

t =W

}
.
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Thus we easily verify that g =
(
(z0, w0), c0,

(
A B
C D

)) ∈ Gc has a P+KcP−-
decomposition

g =

(
(z, 0), 0,

(
In Z
0 In

))
·
(
(0, 0), c,

(
P 0
0 (P t)−1

))
·
(
(0, w), 0,

(
In 0
W In

))
if and only if Det(D) �= 0 and, in this case, we have z = z0 − BD−1w0,
Z = BD−1, w = D−1w0, W = D−1C, P = A − BD−1C = (Dt)−1 and
c = c0 − (1/4)i(z0 − BD−1w0)

tw0. From this, we deduce that the action of
g =

(
(z0, w0), c0,

(
A B
C D

)) ∈ Gc on a(z, Z) ∈ p+ is given by g · a(z, Z) = a(z′, Z ′)
where Z ′ = (AZ +B)(CZ +D)−1 and

z′ = z0 +Az − (AZ +B)(CZ +D)−1(w0 + Cz).

This implies that

D = G · 0 = {a(z, Z) ∈ p+ : In − ZZ̄ > 0}.
Now we aim to compute the coadjoint action of Gc. This can be done as

follows. First, we compute the adjoint action of Gc. Let g = (v0, c0, h0) ∈ Gc

where v0 ∈ C2n, c0 ∈ C and h0 ∈ Sc = Sp(n,C) and X = (w, c, U) ∈ gc where
w ∈ C2n, c ∈ C and U ∈ sc. We set exp(tX) = (w(t), c(t), exp(tU)). Then,
since the derivatives of w(t) and c(t) at t = 0 are w and c, we find that

Ad(g)X =
d

dt
(g exp(tX)g−1)|t=0

=
(
h0w − (Ad(h0)U)v0, c+ ω(v0, h0w) − 1

2ω(v0, (Ad(h0)U)v0),Ad(h0)U
)
.

On the other hand, let us denote by ξ = (u, d, ϕ), where u ∈ C2n, d ∈ C and
ϕ ∈ (sc)

∗, the element of (gc)∗ defined by

〈ξ, (w, c, U)〉 = ω(u,w) + dc+ 〈ϕ,U〉.
Moreover, for u, v ∈ C2n, we denote by v × u the element of (sc)∗ defined by
〈v × u, U〉 := ω(u, Uv) for U ∈ sc.

Let ξ = (u, d, ϕ) ∈ (gc)∗ and g = (v0, c0, h0) ∈ Gc. Then, by using the
relation 〈Ad∗(g)ξ,X〉 = 〈ξ,Ad(g−1)X〉 for X ∈ gc, we obtain

Ad∗(g)ξ =
(
h0u− dv0, d,Ad∗(h0)ϕ+ v0 × (h0u− d

2v0)
)

By restriction, we also get the formula for the coadjoint action of G. Now, we
are in position to determine the scalar elements of (gc)∗.

Proposition 6.1

1. The elements ξ0 of g∗ fixed by K are the elements of the form (0, d, ϕλ)
where d, λ ∈ R and ϕλ ∈ s∗ is defined by 〈ϕλ,

(
A B
C D

)〉 = iλTr(A).

2. Let ξ0 = (0, d, ϕλ) as above. Then ξ0 is regular hence scalar if and only if
λd �= 0.



46 Benjamin Cahen

Proof (1) Let ξ0 = ((u0, ū0), d, ϕ) ∈ g∗ where u0 ∈ Cn, d ∈ R and ϕ ∈ s∗.
Assume that ξ0 is fixed by K. Then for each k =

(
(u0, ū0), c0,

(
P 0
0 P̄

)) ∈ K with
u0 ∈ Cn, c0 ∈ R and P ∈ U(n), we have

Ad∗(k)ξ0 =
(
(Pu0, P̄ ū0), d,Ad

∗( P 0
0 P̄

)
ϕ
)
= ((u0, ū0), d, ϕ).

This gives Pu0 = u0 for each P ∈ U(n) hence u0 = 0 and Ad∗(k0)ϕ = ϕ for each
k0 in the subgroup K0 of S consisting of the matrices of the form

(
P 0
0 P̄

)
where

P ∈ U(n). Then, denoting by k0 the Lie algebra of K0, we have 〈ϕ, [U,X ]〉 = 0
for each U ∈ k0 and each X ∈ s. This implies that ϕ is zero on [k0, k0] and also
on the elements of s of the form

( 0 Q
Q̄ 0

)
. Then ϕ is completely determined by

its value on the element
(
iIn 0
0 −iIn

)
which generates the center of k0, hence the

result.
(2) Let ξ0 as above. Then we have 〈ξ0, [a(z, Z)∗, a(z, Z)]〉 = d|z|2+iλTr(ZZ̄).

The result follows. �

In the rest of this section, we fix a scalar element ξ0 = (0, d, ϕλ) of g∗ as above
and we compute ψ(a(z, Z)) for a(z, Z) ∈ D. In order to make the expression of
ψ(a(z, Z)) more explicit, we introduce the following notation. For ϕ ∈ s∗, let
θ(ϕ) the unique element of s such that 〈ϕ,X〉 = Tr(θ(ϕ)X) for each X ∈ s. In
particular, one has θ(ϕλ) = λ

2

(
iIn 0
0 −iIn

)
. Moreover, for u = (x, x̄) ∈ C2n and

u = (y, ȳ) ∈ C2n we have

θ(v × u) = 1

2

(−iyx̄t iyxt
−iȳx̄t iȳxt

)
.

Note also that θ intertwines Ad∗ and Ad.

Proposition 6.2 The map ψ : D → O(ξ0) is given by

ψ(a(y, Z)) =
(−d(y1, ȳ1), d, ϕ(y, Z))

where y1 = (In − ZZ̄)−1(y + Zȳ) and

ϕ(y, Z) := Ad∗
(

(In − ZZ̄)−1/2 (In − ZZ̄)−1/2Z

(In − Z̄Z)−1/2Z̄ (In − Z̄Z)−1/2

)
ϕλ − d

2
(y1, ȳ1)× (y1, ȳ1).

Moreover, we have

θ(ϕ(y, Z)) = −d
4

(−iy1ȳt1 iy1y
t
1

−iȳ1ȳt1 iȳ1y
t
1

)
+
λ

2
i

×
(
(In+ ZZ̄)(In− ZZ̄)−1/2(In− Z̄Z)−1/2 −2Z(In− Z̄Z)−1/2(In− ZZ̄)−1/2

2Z̄(In− ZZ̄)−1/2(In− Z̄Z)−1/2 −(In+ Z̄Z)(In− Z̄Z)−1/2(In− ZZ̄)−1/2

)
.

Proof For (y, Z) ∈ Cn ×Mn(C) such that a(y, Z) ∈ D we set

g(y, Z) :=
(
(y1, ȳ1), 0,

(
(In − ZZ̄)−1/2 (In − ZZ̄)−1/2Z

(In − Z̄Z)−1/2Z̄ (In − Z̄Z)−1/2

))
∈ G
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where y1 = (In − ZZ̄)−1(y + Zȳ). Then the map a(y, Z)→ g(y, Z) is a section
for the action of G on D and we have ψ(a(y, Z)) = Ad∗(g(y, Z))ξ0 (in fact, we
use here this section since the expression of the section given by Proposition 4.5
is too complicated in this case). Thus, by using the formula for the coadjoint
action of G and the above considerations on θ, we easily obtain the desired
result. �
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(2004), 19–43.

[13] Cahen, B.: Weyl quantization for semidirect products. Diff. Geom. Appl. 25 (2007),
177–190.

[14] Cahen, B.: Multiplicities of compact Lie group representations via Berezin quantization.
Mat. Vesnik 60 (2008), 295–309.

[15] Cahen, B.: Contraction of compact semisimple Lie groups via Berezin quantization.
Illinois J. Math. 53, 1 (2009), 265–288.

[16] Cahen, B.: Berezin quantization on generalized flag manifolds. Math. Scand. 105 (2009),
66–84.

[17] Cahen, B.: Contraction of discrete series via Berezin quantization. J. Lie Theory 19
(2009), 291–310.

[18] Cahen, B.: Berezin quantization for discrete series. Beiträge Algebra Geom. 51 (2010),
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