1

Let us first consider the following situation. Let G = SU(1,1) and K be the
torus of G' consisting of matrices of the form Diag(e?, e~%) where # € R. The
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Abstract

Let G be a quasi-Hermitian Lie group with Lie algebra g and K be
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Introduction

Lie algebra g of G has basis
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Let (uf,us,u}) be the dual basis of g*. For r > 0, let & = ruj. Then the
orbit O(&) of & for the coadjoint action of G is the upper sheet x3 > 0 of the
two-sheet hyperboloid {£ = xqu} + mouj + zsu}: — 23 — 23 + 2% = r?}. Since
the stabilizer of &y for the coadjoint action of G is K, we have O(&) ~ G/K.
On the other hand, G/ K is diffeomorphic to the unit disc D = {z € C: |z| < 1}.
Then, by composition, we get a global chart ¢: D — O(&y). Explicitly, we have

z24+ 2z z2—2Z 1+ 22z

V()= (1 e + i(1— zé)u2 + 1- zZu3) '

Note that ¢ intertwines the natural action on G on D (by fractional linear
transforms) and the coadjoint action of G on O(&y). Note also that ¢)~! is an
analog of the stereographic projection from the two-sphere S? onto C U (00).
Moreover, if we take r = n/2 where n is an integer > 2 then O(&) is associ-
ated with a holomorphic discrete series representation 7, of G by the Kirillov—
Kostant method of orbits [26], [27]. In that case, the differential dm, of m,
is related to ¢ by the Berezin calculus S, that is, we have S(dm,(X))(z) =
i{(p(2), X) for each X € g and each z € D [12].

The goal of the present note is to extend the above considerations to a
large setting. To this aim, we consider a quasi-Hermitian Lie group G and
a compactly embedded subgroup K C G. In [20], we considered a unitary
representation 7 of G which is holomorphically induced from a unitary character
of K and we proved that the dequantization of dm by means of the Berezin
calculus provides an explicit diffeomorphism from a complex domain onto the
coadjoint orbit of G associated with 7 (see also [16] and [18]). Here we show
that, more generally, such a diffeomorphism can also be constructed for the
coadjoint orbit O(&y) := Ad"(G) & of an element & € g* which is fixed by K
and assumed to be regular (in a sense defined below). We call such an orbit
0O(&) a scalar orbit.

Note that similar parametrizations for coadjoint orbits of compact Lie groups
can be found in [30] and [8]. For unitary groups, explicit expressions for gener-
alized stereographic projections are given in [30].

Parametrizations of coadjoint orbits have many applications in deformation
theory, harmonic analysis and mathematical physics. Let us mention some of
them:

1. Construction of covariant star-products on coadjoint orbits [1], [11], [22];

2. Construction of some quantization maps, as adapted Weyl correspon-
dences and Stratonovich-Weyl correspondences [13], [19];

3. Geometric quantization of coadjoint orbits [3], [21];
4. Contractions and restrictions of unitary irreducible representations asso-
ciated with integral coadjoint orbits [15], [17], [23], [2], [14].

This note is organized as follows. Section 2 is devoted to generalities about
quasi-Hermitian Lie groups. In Section 3 and Section 4, we review some results
from [20]. In Section 5, we give a G-equivariant parametrization of a scalar
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coadjoint orbit of a quasi-Hermitian Lie group G. In Section 6, we consider the
case of the unitary group SU(p, ¢) and, in Section 7, the case of the (generalized)
Jacobi group.

2 Generalities

The material of this section and of the first part of Section 3 is taken from the
excellent book of K.-H. Neeb, [28], Chapter VIII and Chapter XII (see also [29],
Chapter IT and, for the Hermitian case, [25], Chapter VIII ).

Let g be a real quasi-Hermitian Lie algebra [28, p. 241]. We assume that
g is not compact. Let g¢ be the complexification of g and let Z = X +1Y —
Z* = —X + 1Y be the corresponding involution. We fix a compactly embedded
Cartan subalgebra h C &, [28, p. 241] and we denote by h° the corresponding
Cartan subalgebra of g¢. We write A := A(g® h°) for the set of roots of g°
relative to h° and g = h°* ®© > A 8a for the root space decomposition of g°.
Note that a(fh) C R for each o € A [28, p. 233]. We write Ay, respectively A,
for the set of compact, respectively non-compact, roots [28, p. 233-235]. Note
that one has €¢ = h¢ P ZaeAk do [28, p. 235]. We fix a positive adapted system
AT [28, p. 236] and we set A} := ATNA, and A := ATNAy, see 28, p. 241].

Let G¢ be a simply connected complex Lie group with Lie algebra g¢ and
G C G€, respectively, K C G°¢, the analytic subgroup corresponding to g,
respectively, €. We also set K¢ = exp(£°) C G° as in [28, p. 506].

Let p™ = ZaeA; go and p~ = ZaeA; g_o. Let P and P~ be the analytic
subgroups of G¢ with Lie algebras p™ and p~. Then G is a group of the Harish-
Chandra type [28, p. 507], that is, the following properties are satisfied:

1. g¢ = pT @t @ p~ is a direct sum of vector spaces, (p™)* = p~ and
e p*] Cpy

2. The multiplication map PTK¢P~ — G¢, (z,k,y) — zky is a biholomor-
phic diffeomorphism onto its open image;

3. GC PTKP~ and GNK°P™ =K.

Moreover, there exists an open connected subset D C p+ such that GK¢P~ =
exp(D)K°P~ [28, p. 497]. We denote by (: PTK°P~ — Pt k: PtK‘P~™ —
K¢andn: PTK¢P~ — P~ the projections onto P*-, K¢- and P~ -components.
For Z € p* and g € G¢ with gexp Z € PTK°P~, we define the element g- Z of
pT by g- Z :=log((gexp Z). Note that we have D = G - 0.

We also denote by g — ¢* the involutive anti-automorphism of G which is
obtained by exponentiating X — X™*. We denote by p,+ the projection of g°
onto pT associated with the direct decomposition g¢ = pT @ @ p~.

3 Holomorphic representations

In this section, we consider the case of a coadjoint orbit associated with a scalar
holomorphic discrete series representation of G.
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We fix a unitary character xy of K. We also denote by x the extension
of x to K¢. We set K,(Z,W) = x(rk(expW*expZ))~! for Z, W € D and
JIy(9,Z) = x(k(gexp Z)) for g € G and Z € D. Let H,, be the Hilbert space of
holomorphic functions on D such that

113 = [ 1F(2)F (2.2) au(2) < +oc
Here i denotes the G-invariant measure on D, that is,

du(Z) = xo(k(exp Z* exp Z)) dur(Z)

where xo is the character on K¢ defined by xo(k) = Det,+ (Ad k) and dur(Z)
is a Lebesgue measure on D [28, p. 538].

In this section, we assume that H, # (0). Then #, contains the polynomials
[28, p. 546] and the formula

() f(Z) =T (g " 2) " flg™" - 2)

defines a unitary representation of G on #,, which is a highest weight represen-
tation with highest weight A := dx|s- [28, p. 540].
We introduce the constant c, defined by

0;1:/ K\(Z,Z)" Y du(2).
D

and we set ez(W) := ¢, K, (W, Z). Then we have the reproducing property
f(Z) = (f,ez)y for each f € H, and each Z € D [28, p. 540]. Here (-, "),
denotes the inner product on H,,.

The Berezin calculus on D is then defined as follows [4], [5], [21]. Consider
an operator (not necessarily bounded) A on #H, whose domain contains ez for
each Z € D. Then the Berezin symbol of A is the function S, (A) defined on D
by

5,(4)(2) = (2

It is known that each operator is determined by its Berezin symbol and
that if an operator A has adjoint A* then we have S, (A*) = S, (A4) [4], [21].
The Berezin calculus is G-equivariant with respect to m,, that is, we have the
following property: for each operator A on H, whose domain contains the
coherent states e for each Z € D and each g € G, the domain of 7, (¢~ 1) Am, (g)
also contains ey for each Z € D and we have

Sy (m (9) Tt AT (9))(Z) = Sy (A)(g - Z) (3.1)
for each g € G and Z € D.
Now, we consider the linear form ¢ on g° defined by £ = —idyx on £ and

€ = 0 on p*. Then we have £(g) C R and the restriction & of £ to g is an
element of g*. Let O(&y) be the orbit of & in g* for the coadjoint action of G.
In [20], we proved the following proposition (see also [17]).
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Proposition 3.1
1. For each X € g° and each Z € D, we have

S(dm (X)(2) = i(p(Z), X)

where {(Z) := Ad*(exp(—Z*) ((exp Z* exp Z)) &.
2. For each g € G and each Z € D, we have ¥(g - Z) = Ad*(g) ¥(Z).
3. The map ¥ is a diffeomorphism from D onto O(&).

Note that (2) immediately follows from the G-equivariance of the Berezin
calculus. In the following section, we extend (2) and (3) to scalar coadjoint
orbits.

4 Parametrization of scalar coadjoint orbits

If 50 € g* is associated with a unitary character of K as in Section 3 then we have
d*(k)&y = & for each k € K and, by Lemma 3.1 of [20], the Hermitian form
( W) — (&0, [Z, W*]) is not isotropic. This leads us to consider the elements
&o € g* which are fixed by K and regular in the sense that the Hermitian form
(Z, W) — (&, [Z,W*]) is not isotropic. Such elements & are called scalar and
we say that the coadjoint orbit O(&p) of a scalar element & is a scalar orbit.

Lemma 4.1 Let & € g* fized by K. Let us also denote by &y the linear exten-
sion of & to g°.

1. We have &|y+ = 0;

2. Let E1, By, ..., Eny be a basis of pt such that E; € go, where o € Af
for 7=1,2,....m. Then & is reqular hence scalar if and only if we have
(o, [E] ]) > 0 for each j = 1,2,...,m or i(&, [E}, E;]) <0 for each

7 =1, 2, ..., m.

Proof (1)If & € g* is fixed by K then one has ad™ U &, = 0 for each U € ¢ or,
equivalently, (£o, [U, X]) = 0 for each U € ¢ and X € g. Then, taking X = E;
where j = 1,2,...,m and U € g,; such that a;(U) # 0 we get (£, E;) = 0 for
each j = 1,2,...,m hence the result.

(2) Let Z = 37", 2;E; € p*. Then, by using (1), we get

m

<€07 Z* 507 |Z]|

j=1

where i[EY, E;] € b for each j [28], p. 233. The result then follows. O

In the rest of this section, we fix a scalar element &, € g*. For Z € D, we set

U(Z) := Ad* (exp(—Z"*) ((exp Z* exp Z)) &.
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Proposition 4.2 For each g € G and each Z € D, we have
P(g-Z) = Ad*(g) ¥(Z).

Proof Let g<c G and Z € D. We write gexp Z = zky where z € PT, k € K¢
and y € P~. Then, since ¢* = g~!, we have exp Z*exp Z = y*k*z*zky. This
implies that

ClexpZ*expZ) = y*k*((z*z)k*fl.

Thus, noting that z = exp(g - Z), we get

exp(—(g- Z2)*) C(exp(g- Z) explg - Z)) = 2" 1((2"2)
= gexp(—Z")y"k*((2"z) = gexp(—Z") ((exp Z" exp Z)k".

Hence we obtain (g - Z) = Ad*(g) ¥(Z). O
Corollary 4.3 The stabilizer of & for the coadjoint action of G is K.

Proof First, we prove that for Z € D the equality ¥(Z) = £ implies that
Z = 0. Assume that ¥(Z) = &. Then we have

Ad*(¢(exp Z* exp Z)) & = Ad"(exp Z) &
or, equivalently,
(€0, Ad(C(exp Z* exp Z) 1) X) = (€0, Ad(exp(—Z7)) X).

for each X € g°. Thus, taking X = Z and using (1) of Lemma 4.1, we get
(€0,[Z2*,Z]) = 0 hence Z = 0.

Now, consider g € G such that Ad*(g)éy = &. Then, by Proposition 4.2, we
have (g -0) = & and, by the assertion already proved, we get g-0 = £;. Hence
we obtain g € K°P™ NG = K. O

Proposition 4.4 The map 1 is a diffeomorphism from D onto O(&).

Proof Let Z € D. There exists g € GG such that g-0 = Z. Then, by Proposition
4.2, we have ¥(Z) = Ad"(g)&. This shows that 1) has values in O(&y) and that
¥ is surjective. Now, suppose that ¢(Z) = ¢(Z') for some Z, Z' € D. Let
9,9 € G such that ¢g-0 = Z and ¢’ - 0 = Z’. Then, by Proposition 4.2, we
have Ad*(g)éy = Ad*(¢’)&. Thus, by Corollary 4.3, we get g~ 'g’ € K hence
Z =g-0=¢ -0=Z'. This proves that v is injective hence bijective.

Now, we show that ¢ is regular. Using Proposition 4.2, we have just to
verify that v is regular at Z = 0. By differentiating the multiplication map
from PT x K¢ x P~ onto PTK°P~, we easily see that, for each g € G such
that g = zky with 2 € PT, k € K¢ and y € P~ and each X € g¢, we have

dy(X(9)) = (Ad(2) pp+ (Ad(271) X)) ¥ (2).
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Here, we have denoted by YT the right-invariant vector field generated by Y.
From this, it follows that, for each Y € p™ and each X € g°, we have

((dy)o(Y), X) = (&0, [X, Y = Y7)). (4.1)
Now, assume that (di))o(Y) = 0 for some Y € pt. By taking X =Y in (4.1)
we get (&, [Y,Y*]) = 0 hence Y = 0. O

Now, we construct a section of the action of G on D, that is, a map Z — gz
from D to G such that gz - 0 = Z for each Z € D and we show that ¢ can be
recovered by using this section. Note that such sections are useful in practice,
in particular to determine explicitly D, see, for instance [28, p. 501].

Proposition 4.5 Let Z € D. There exists an element kz in K¢ such that
k¥ =kz and k% = k(exp Z*exp Z)~'. Each g € G such that g-0 = Z is then
of the form g = exp(—Z*) {(exp Z* exp Z)kglh where h € K. Consequently,
the map Z — gz := exp(—2Z*) {(exp Z* exp Z)kg1 is a section for the action of
G on D. In particular, by using the equality (Z) = Ad*(gz)&o, we recover the
expression of ¥ given above.

Proof Let Z € D and g € G such that g -0 = Z. Then we can write
g = (exp Z)ky where k € K¢ and y € P~. Thus we have

g g =y k™ (exp Z" exp Z)ky = e.

Consequently, passing to the K¢-component, we get k*k(exp Z*exp Z)k = e.
Now, using the polar decomposition K¢ = exp(it) K [28, p. 506], we can write
k = kzh where kz € exp(it) and h € K. Hence we obtain k% = k(exp Z*exp Z) L.
Moreover, passing similarly to the P~-component, we get k~1n(exp Z* exp Z)ky =
e hence ky = n(exp Z* exp Z)~'k. This gives
g =expZn(exp Z*exp Z) 'k
= exp(—Z*)(exp Z* exp Z)n(exp Z* exp Z) " kzh
= exp(—Z*) ((exp Z* exp Z)k ;' h.

This shows the second assertion of the proposition. Finally, writing

W(Z) = Ad*(gz)& = Ad" (exp(—Z") {(exp Z™ exp Z)kgl)ﬁo
= Ad™(exp(—Z") ((exp Z* exp Z))&o,

we recover the expression of . O

5 Example 1: the unitary group SU(p,q)

In this section, we take G = SU(p, q) and K = S(U(p) x U(q)). Recall that K
consists of the matrices

<61 g) ,  AcU(p), DeU(g), Det(4)Det(D)=1.
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For X = (é [B)) € g° we have X* = (7ny EB*) where x denotes conjugate-
transposition.
Let b be the abelian subalgebra of € consisting of the matrices

tal, 0 _
( 0 iqu)’ a,beR, pa+bg=0.
Then h° consists of all matrices X = Diag(z1, 2, ..., Tp+q), Tk € C, such that

PT92r = 0. The set of roots of h° on g is \; — \j for 1 < i # j <p+gq
where \;(X) = z; for X € h¢ as above. The set of compact roots is A; — A; for
1<i#j<pandp+1<i+#j<p+q. We take the set of positive roots A™
tobe A\; — A for 1 <i < j < p+q. Then we have

P+{<% IZq):ZEMpq((C)}, P{Gﬁ I(l):YEqu((C)}.

In the rest of this section, we identify p* to M,,(C) by means of the map
Z(87).

The P K¢P~-decomposition of a matrix g € G¢ is given by

_(AB\ (I, BD'\ (A—BD"'C 0 I, 0 (5.1
9=\cp)~\o 1 0 p)\p-tci,) 1)

Note that a matrix g € G° have such a decomposition if and only if Det(D) # 0.
In particular we verify that G ¢ PTK°P~. Moreover, the action of G¢ on D is
then given by

g-Z=(AZ+B)CZ+D)", g= (é g)

Note that g- 0= BD~! = Z satisfies I, — ZZ* > 0 [28]. From this we see that
D ={Z € M,y (C): I, — ZZ* > 0}.
The Killing form 8 on g¢ is defined by S(X,Y) := 2(p + ¢) Tr(XY") [31,

p. 295]. We identify G-equivariantly g* with g by means of 3. We easily verify
that the set of all elements of g fixed by K is h. Each &, € h can be written as

iy —ql, 0O
60 - 7’)\ < 0 pIq>

where A € R. Then we have (&, [Z*,Z]) = —2i\(p + q)? Tr(ZZ*) for each
Z € D. This shows that £ is regular if and only if A # 0. In that case, we can
compute the section Z — gz hence ¢(Z) as follows. For Z € D, we have

. 1, A
expZtexpZ = <_§* 7 —Z*Z)'
q
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Then, by (5.1), we get

. (I, —ZZz%)71 0
k(exp Z*exp Z) = < 0 I,-2°2)

7% —1
q

and we can take

o — (I, — ZZ*)1/? 0
Z- 0 (I, —2*2)~Y?)"

Thus we have

o * (I, — 22°) 2 Z(1,— 2*2) V2
gZ*eXp( Z )C(eXpZ eXpZ)k <Z*(I —ZZ*) 1/2 (Iq_Z*Z)—1/2 .

Hence we obtain

i (U =22 (-p22" —al,)  (p+a)2(1, - 2°Z)"
“ZUA( Wty 222 (ol 4 422V, - 2°2) )

6 Example 2: the Jacobi group

The Jacobi group is the semi-direct product of the (2n + 1)-dimensional real
Heisenberg group by the symplectic group Sp(n,R). This group plays an im-
portant role in different areas of Mathematics and Physics, see [10] and [6]. In
particular, the Jacobi group appears as an important example of non-reductive
Lie group of Harish-Chandra type [29], [28] and its holomorphic unitary repre-
sentations were studied in [28], [9], [10], [6] and [7].

Consider the symplectic form w on C?* x C?" defined by

n
i
w((z,w), (2 = Z 21 W), — ZpWE)-
k=1

[\)

for z,w,z’,w’ € C™. The (2n + 1)-dimensional real Heisenberg group is
H:={((2,2),c): ze C",c € R}
endowed with the multiplication
((z,2),¢) - ((z/,2),d) = ((z+ 2,2+ ), c+ ¢ + 3w((z,2), (¥, Z))).  (6.1)
Then the complexification H¢ of H is
H¢ :={((z,w),c): z,we C" ceC}

and the multiplication of H¢ is obtained by replacing (z, z) by (z,w) and (2’, z’)
by (z/,w’) in (6.1). We denote by h and h° the Lie algebras of H and H°.
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Now cousider the group S := Sp(n,C) N SU(n,n) ~ Sp(n,R) [28, p. 501],
[24, p. 175]. Then S consists of all matrices

h= <g %) , P.Qe M,(C), PP*"—QQ*=1, PQ =QP
and S¢ = Sp(n,C).

The group S acts on H by h - ((z,2),¢) = h(z,Z) = Pz + QZ where the
elements of C™ and C™ x C™ are considered as column vectors. Then we can
form the semi-direct product G := H x S called the Jacobi group. The elements
of G can be written as ((z,Z),c,h) where z € C", ¢ € R and h € S. The
multiplication of G is thus given by

((z,2),¢e,h)- (2, 2),c,0) = ((2,2) + h(2,Z),c+ + %w((z, z),h(2',2")), hh").

The complexification G¢ of G is then the semi-direct product G¢ = H¢x Sp(n, C)
and the multiplication of G¢ is obtained by replacing z and z’ by w and w’ in
the preceding formula. We denote by s, s, g and g° the Lie algebras of S, 5S¢,
G and G°. The Lie bracket of g€ is given by

[((z,w), ¢, A), (2, w'), ¢, A)] = (A(Z', w') = A'(z,w), w((z, w), (2, w)), [4, A]).

We easily verify that
if X = ((z,w),c, (é _]it )) € g¢ then X* = ((—w, —Z),—¢, (_Af :g))

We take K to be the subgroup of G consisting of all elements ((0, 0), ¢, ( IS % ))

where ¢ € Rand P € U(n). Then the Lie algebra £ of K is a maximal compactly
embedded subalgebra of g and the subalgebra t of ¢ consisting of elements of
the form ((0,0), ¢, A) where A is diagonal is a compactly embedded Cartan sub-
algebra of g [28, p. 250]. Choosing an adapted positive system of non-compact
positive roots relative to t as in [28, p. 249], we get

pt = {a(z,Z) — ((2,0),0, (8 g)) .2 €C",Z € M,(C), 2" = z}

and

P = {((o,w),o, (VOV 8)) cwe T W e My(C), W = W}.

Then we obtain

pt = {<(z,0),0, (% i)):zGC",ZEMn((C),Zt Z}

and

P = {<(0,w),0, G; g)):wGC”,WGMn(C),Wt W}.
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Thus we easily verify that g = ((zo,wo),co, (é g)) € G¢ has a PTK°P~-
decomposition

e 5 2) (096 31 (o (5)

if and only if Det(D) # 0 and, in this case, we have z = zyg — BD 1wy,
Z =BD ', w=D"w, W =D'C, P=A—BD'C = (D)~ and
c = co— (1/4)i(z0 — BD twp)twg. From this, we deduce that the action of
9= ((z0,w0),c0, (A B)) € G on a(z,Z) € p™ is given by g-a(z, Z) = a(z', Z’)
where Z' = (AZ + B)(CZ + D)1 and

2 =204+ Az — (AZ + B)(CZ + D) ! (wo + C2).
This implies that
D=G-0={a(z,2)ept: I, - ZZ > 0}.

Now we aim to compute the coadjoint action of G¢. This can be done as
follows. First, we compute the adjoint action of G¢. Let g = (vo, o, ho) € G¢
where vy € C?", ¢ € C and hy € S¢ = Sp(n,C) and X = (w,c,U) € g°¢ where
w € C™, cec Cand U € 5°. We set exp(tX) = (w(t),c(t),exp(tU)). Then,
since the derivatives of w(t) and c¢(¢) at t = 0 are w and ¢, we find that

Ad(g)X = %(g exp(tX)g™")le=o
= (how — (Ad(ho)U)Uo, c+ w(’Uo, how) - %w(vo, (Ad(ho)U)vo), Ad(ho)U) .

On the other hand, let us denote by & = (u,d, ), where u € C?", d € C and
@ € (5°)7, the element of (g¢)* defined by

&, (w,c,U)) =w(u,w) + dc+ (p,U).

Moreover, for u,v € C?"*, we denote by v X u the element of (5¢)* defined by
(v xu,U) :=w(u,Uv) for U € s°.

Let &€ = (u,d, ) € (g°)* and g = (vo,co,h0) € G°. Then, by using the
relation (Ad*(g)¢, X) = (¢,Ad(g71)X) for X € g¢, we obtain

Ad*(9)¢ = (hou — dvo, d, Ad* (ho) + vo X (hou — o))

By restriction, we also get the formula for the coadjoint action of G. Now, we
are in position to determine the scalar elements of (g¢)*.

Proposition 6.1
1. The elements & of g* fized by K are the elements of the form (0,d, py)
where d, A € R and ¢y € s* is defined by (px, (& B)) = ixTr(A).

2. Let & = (0,d, o)) as above. Then & is regular hence scalar if and only if
Ad # 0.
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Proof (1) Let & = ((uo,uo0),d, ) € g* where up € C", d € R and ¢ € s*.
Assume that &g is fixed by K. Then for each k = ((uo, o), Co, (1; 1%)) € K with
ug € C", ¢p € R and P € U(n), we have

Ad*<k)€0 = ((PUO,Pﬂo),d, Ad*(lg I%)(p) = ((UO,’ﬁo),d, 90)'

This gives Pug = ug for each P € U(n) hence uo = 0 and Ad* (ko)¢ = » for each
ko in the subgroup Ky of S consisting of the matrices of the form (Ig 105) where
P € U(n). Then, denoting by £ the Lie algebra of Ky, we have (¢, [U, X]) =0
for each U € ¢y and each X € s. This implies that ¢ is zero on [£y, €] and also
on the elements of s of the form (% g) Then ¢ is completely determined by
its value on the element ( Z{)" ﬂQIn ) which generates the center of £y, hence the
result.

(2) Let & as above. Then we have (£, [a(z, Z2)*,a(z, Z2)]) = d|z|*+iATr(ZZ).
The result follows. O

In the rest of this section, we fix a scalar element §;, = (0, d, p») of g* as above
and we compute ¥ (a(z, Z)) for a(z,Z) € D. In order to make the expression of
¥(a(z, Z)) more explicit, we introduce the following notation. For ¢ € s*, let
0(¢) the unique element of s such that (p, X) = Tr(6(¢)X) for each X € 5. In
particular, one has 0(py) = 5 (i _?In ). Moreover, for u = (z,z) € C*" and

2
u = (y,y) € C*>" we have

1 /—iuzt iurt
9(v><u):§< 1Yyx zy:z:).

—igxt iyt
Note also that 6 intertwines Ad* and Ad.
Proposition 6.2 The map ¢: D — O(&) is given by
Y(aly, Z)) = (—d(y1,51),d, o(y, Z))
where y1 = (I, — ZZ)"Y(y + Z¥y) and

o (T —=Z2)7V? (I, - Z22)"V?Z d. _
oy, Z) == Ad <(In _ ZZ)—1/2Z (I, — Zz)—1/2 P 2@1»91) X (y1,71)-

Moreover, we have
d (—iygi gy | A
0 , L)) =—— i B Bl IR
(ply, 2)) = -7 (zylyi inyi) 2
(In+ Z2Z)(I,— ZZ)"Y2(I,,— ZZ)~'/? —2Z(I,,— ZZ)"Y/?(I,,— Z2Z)~'/?
22(I,— Z2Z)" Y2 (1, — Z2)"Y? —(I,+2Z)I,— Z22Z)"Y?*(I,— ZZ)" /%)

Proof For (y,Z) € C" x M,(C) such that a(y, Z) € D we set

_ I, —Z2)"'? (I, - Z2)"'%*Z
9y, Z) = ((yl,yl),Q ((-([n _ Zz))—1/22 <<In _ ZZ))—1/2 )) G
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where y1 = (I, — ZZ)~'(y + Zy). Then the map a(y, Z) — g(y, Z) is a section
for the action of G on D and we have ¥ (a(y, Z)) = Ad*(g(y, Z))&o (in fact, we
use here this section since the expression of the section given by Proposition 4.5
is too complicated in this case). Thus, by using the formula for the coadjoint
action of G and the above considerations on 6, we easily obtain the desired

result. O
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