Common Fixed Point Theorems in a Complete 2-metric Space

Debashis DEY ${ }^{1 *}$, Mantu SAHA ${ }^{2}$
${ }^{1}$ Koshigram Union Institution, Koshigram-713150, Burdwan
West Bengal, India
e-mail: debashisdey@yahoo.com
${ }^{2}$ Department of Mathematics, The University of Burdwan, Burdwan-713104, West Bengal, India
e-mail: mantusaha@yahoo.com

(Received November 25, 2012)

Abstract

In the present paper, we establish a common fixed point theorem for four self-mappings of a complete 2 -metric space using the weak commutativity condition and A-contraction type condition and then extend the theorem for a class of mappings.

Key words: fixed point, common fixed point, 2-metric space, completeness
2000 Mathematics Subject Classification: 47H10, 54 H 25

1 Introduction

In 1981, D. Delbosco [4] gave an unified approach for different contractive mappings to prove the fixed point theorem by considering the set \mathcal{F} of all continuous functions $g:[0,+\infty)^{3} \rightarrow[0, \infty)$ satisfying the following conditions:

$$
\begin{aligned}
& \text { (g-1): } g(1,1,1)=h<1 \\
& (\mathrm{~g}-2): \text { if } u, v \in[0, \infty) \text { are such that } u \leq g(v, v, u) \text { or, } u \leq g(v, u, v) \text { or, } \\
& \\
& \\
& u \leq g(u, v, v) ; \text { then } u \leq h v .
\end{aligned}
$$

Recently Akram et al. [1] have modified the above concept slightly and introduced a general class of contractions called A-contraction which is a proper superclass of Kannan's contraction [8], Bianchini's contraction [2] and Reich's contraction [11].

[^0]
1.1 A-contraction

Let a nonempty set A consisting of all functions $\alpha: R_{+}^{3} \rightarrow R_{+}$satisfying
(i) α is continuous on the set R_{+}^{3} of all triplets of nonnegative reals(with respect to the Euclidean metric on R^{3}).
(ii) $a \leq k b$ for some $k \in[0,1)$ whenever $a \leq \alpha(a, b, b)$ or $a \leq \alpha(b, a, b)$ or $a \leq \alpha(b, b, a)$, for all a, b.

Definition 1.1 A self map T on a metric space X is said to be A-contraction if it satisfies the condition:

$$
\begin{equation*}
d(T x, T y) \leq \alpha(d(x, y), d(x, T x), d(y, T y)) \tag{1.1}
\end{equation*}
$$

for all $x, y \in X$ and some $\alpha \in A$.
Here we prove a common fixed point theorem for two pairs of weakly commuting mappings using the idea of A-contraction and then extend the theorem for a family of self-mappings in a 2 -metric space. Before proving our main theorem we need to state some preliminary ideas and definitions of weakly commuting mappings in a 2 -metric space.

2 Preliminaries

In sixties, S. Gähler ([6]-[7]) introduced the concept of 2-metric space. Since then a number of mathematician have been investigating the different aspects of fixed point theory in the setting of 2-metric space.

2.1 2-metric space

Let X be a non empty set. A real valued nonnegative function d on $X \times X \times X$ is said to be a 2 -metric on X if
(I) given distinct elements x, y of X, there exists an element z of X such that $d(x, y, z) \neq 0$
(II) $d(x, y, z)=0$ when at least two of x, y, z are equal,
(III) $d(x, y, z)=d(x, z, y)=d(y, z, x)$ for all x, y, z in X, and
(IV) $d(x, y, z) \leq d(x, y, w)+d(x, w, z)+d(w, y, z)$ for all x, y, z, w in X.

When d is a 2 -metric on X, then the ordered pair (X, d) is called a 2 -metric space.

A sequence $\left\{x_{n}\right\}$ in X is said to be a Cauchy sequence if for each $u \in X$, $\lim d\left(x_{n}, x_{m}, u\right)=0$ as $n, m \rightarrow \infty$.

A sequence $\left\{x_{n}\right\}$ in X is convergent to an element $x \in X$ if for each $u \in X$, $\lim _{n \rightarrow \infty} d\left(x_{n}, x, u\right)=0$

A complete 2-metric space is one in which every Cauchy sequence in X converges to an element of X.

In 1984, M. D. Khan [9] in his doctoral thesis, defined weakly commuting mappings in a 2 -metric space as follows.

Definition 2.1 Let S and T be two mappings from a 2-metric space (X, d) into itself. Then a pair of mappings (S, T) is said to be weakly commuting on x, if $d(S T x, T S x, u) \leq d(T x, S x, u)$ for all $u \in X$.

Note that a commuting pair (S, T) on a 2-metric space (X, d) is weakly commuting, but the converse is not true (see [10]). On the otherhand Cho-Khan-Singh [3] have proved some common fixed point theorems for weakly commuting selfmappings in a 2 -metric space. Here we shall prove some common fixed point theorems in 2-metric space in a more generalised conditions.

3 Main results

Theorem 3.1 Let I, J, S and T be four self mappings of a complete 2-metric space (X, d) satisfying

$$
\begin{equation*}
I(X) \subset T(X) \quad \text { and } \quad J(X) \subset S(X) \tag{3.1}
\end{equation*}
$$

For $\alpha \in A$ and for all $x, y, u \in X$

$$
\begin{equation*}
d(I x, J y, u) \leq \alpha(d(S x, T y, u), d(S x, I x, u), d(T y, J y, u)) \tag{3.2}
\end{equation*}
$$

If one of I, J, S and T is continuous and if I and J weakly commute with S and T respectively, then I, J, S and T have a unique common fixed point z in X.

Proof Let x_{0} be an arbitrary element of X. We define $I x_{2 n+1}=y_{2 n+2}$, $T x_{2 n}=y_{2 n}$ and $J x_{2 n}=y_{2 n+1}, S x_{2 n+1}=y_{2 n+1} ; n=1,2, \ldots$ Taking $x=x_{2 n+1}$ and $y=x_{2 n}$ in (3.2) we have

$$
\begin{gathered}
d\left(I x_{2 n+1}, J x_{2 n}, u\right) \leq \\
\leq \alpha\left(d\left(S x_{2 n+1}, T x_{2 n}, u\right), d\left(S x_{2 n+1}, I x_{2 n+1}, u\right), d\left(T x_{2 n}, J x_{2 n}, u\right)\right)
\end{gathered}
$$

or,

$$
d\left(y_{2 n+2}, y_{2 n+1}, u\right) \leq \alpha\left(d\left(y_{2 n+1}, y_{2 n}, u\right), d\left(y_{2 n+1}, y_{2 n+2}, u\right), d\left(y_{2 n}, y_{2 n+1}, u\right)\right)
$$

So by axiom (ii) of function α,

$$
\begin{equation*}
d\left(y_{2 n+1}, y_{2 n+2}, u\right) \leq k . d\left(y_{2 n}, y_{2 n+1}, u\right) \quad \text { where } k \in[0,1) \tag{3.3}
\end{equation*}
$$

Similarly by putting $x=x_{2 n-1}$ and $y=x_{2 n}$ in (3.2) we get

$$
\begin{gathered}
d\left(I x_{2 n-1}, J x_{2 n}, u\right) \leq \\
\leq \alpha\left(d\left(S x_{2 n-1}, T x_{2 n}, u\right), d\left(S x_{2 n-1}, I x_{2 n-1}, u\right), d\left(T x_{2 n}, J x_{2 n}, u\right)\right)
\end{gathered}
$$

or,

$$
d\left(y_{2 n}, y_{2 n+1}, u\right) \leq \alpha\left(d\left(y_{2 n-1}, y_{2 n}, u\right), d\left(y_{2 n-1}, y_{2 n}, u\right), d\left(y_{2 n}, y_{2 n+1}, u\right)\right)
$$

So by axiom (ii) of function α,

$$
\begin{equation*}
d\left(y_{2 n}, y_{2 n+1}, u\right) \leq k . d\left(y_{2 n-1}, y_{2 n}, u\right) \quad \text { where } k \in[0,1) \tag{3.4}
\end{equation*}
$$

So by (3.3) and (3.4) we get

$$
d\left(y_{2 n+1}, y_{2 n+2}, u\right) \leq k \cdot d\left(y_{2 n}, y_{2 n+1}, u\right) \leq k^{2} \cdot d\left(y_{2 n-1}, y_{2 n}, u\right) .
$$

Proceeding in this way

$$
d\left(y_{2 n+1}, y_{2 n+2}, u\right) \leq k^{2 n+1} \cdot d\left(y_{0}, y_{1}, u\right)
$$

and

$$
d\left(y_{2 n}, y_{2 n+1}, u\right) \leq k^{2 n} \cdot d\left(y_{0}, y_{1}, u\right)
$$

So in general

$$
\begin{equation*}
d\left(y_{n}, y_{n+1}, u\right) \leq k^{n} \cdot d\left(y_{0}, y_{1}, u\right) \tag{3.5}
\end{equation*}
$$

Then using property (IV) of 2-metric space we get

$$
\begin{align*}
d\left(y_{n}, y_{n+2}, u\right) & \leq d\left(y_{n}, y_{n+2}, y_{n+1}\right)+d\left(y_{n}, y_{n+1}, u\right)+d\left(y_{n+1}, y_{n+2}, u\right) \\
& \leq d\left(y_{n}, y_{n+2}, y_{n+1}\right)+\sum_{r=0}^{1} d\left(y_{n+r}, y_{n+r+1}, u\right) \tag{3.6}
\end{align*}
$$

Here we consider two possible cases to show that $d\left(y_{n}, y_{n+2}, y_{n+1}\right)=0$.
Case I. $n=$ even $=2 m$ (say)
Therefore

$$
\begin{aligned}
d\left(y_{n}, y_{n+2}, y_{n+1}\right)= & d\left(y_{2 m}, y_{2 m+2}, y_{2 m+1}\right) \\
= & d\left(y_{2 m+2}, y_{2 m+1}, y_{2 m}\right) \\
= & d\left(I x_{2 m+1}, J x_{2 m}, y_{2 m}\right) \\
\leq & \alpha\left(d\left(S x_{2 m+1}, T x_{2 m}, y_{2 m}\right), d\left(S x_{2 m+1}, I x_{2 m+1}, y_{2 m}\right),\right. \\
& \left.d\left(T x_{2 m}, J x_{2 m}, y_{2 m}\right)\right) \\
= & \alpha\left(d\left(y_{2 m+1}, y_{2 m}, y_{2 m}\right), d\left(y_{2 m+1}, y_{2 m+2}, y_{2 m}\right)\right. \\
& \left.d\left(y_{2 m}, y_{2 m+1}, y_{2 m}\right)\right) \\
= & \alpha\left(0, d\left(y_{2 m+1}, y_{2 m+2}, y_{2 m}\right), 0\right) .
\end{aligned}
$$

So by axiom (ii) of function α,

$$
d\left(y_{n}, y_{n+2}, y_{n+1}\right)=d\left(y_{2 m}, y_{2 m+2}, y_{2 m+1}\right) \leq k \cdot 0=0 \quad \text { where } k \in[0,1)
$$

which implies $d\left(y_{n}, y_{n+2}, y_{n+1}\right)=0$.

Case II. $n=$ odd $=2 m+1$ (say)

Therefore

$$
\begin{aligned}
d\left(y_{n}, y_{n+2}, y_{n+1}\right)= & d\left(y_{2 m+1}, y_{2 m+3}, y_{2 m+2}\right) \\
= & d\left(y_{2 m+3}, y_{2 m+2}, y_{2 m+1}\right) \\
= & d\left(J x_{2 m+2}, I x_{2 m+1}, y_{2 m+1}\right) \\
\leq & \alpha\left(d\left(S x_{2 m+1}, T x_{2 m+2}, y_{2 m+1}\right)\right. \\
& \left.d\left(S x_{2 m+1}, I x_{2 m+1}, y_{2 m+1}\right), d\left(T x_{2 m+2}, J x_{2 m+2}, y_{2 m+1}\right)\right) \\
= & \alpha\left(d\left(y_{2 m+1}, y_{2 m+2}, y_{2 m+1}\right), d\left(y_{2 m+1}, y_{2 m+2}, y_{2 m+1}\right)\right. \\
& \left.d\left(y_{2 m+2}, y_{2 m+3}, y_{2 m+1}\right)\right) \\
= & \alpha\left(0,0, d\left(y_{2 m+2}, y_{2 m+3}, y_{2 m+1}\right)\right) .
\end{aligned}
$$

Then by axiom (ii) of function α,

$$
d\left(y_{n}, y_{n+2}, y_{n+1}\right)=d\left(y_{2 m+1}, y_{2 m+3}, y_{2 m+2}\right) \leq k \cdot 0=0 \quad \text { where } k \in[0,1)
$$

So in either cases $d\left(y_{n}, y_{n+2}, y_{n+1}\right)=0$. Therefore from (3.6) we have

$$
d\left(y_{n}, y_{n+2}, u\right) \leq \sum_{r=0}^{1} d\left(y_{n+r}, y_{n+r+1}, u\right)
$$

Proceeding in the same fashion we have for any $p>0$,

$$
d\left(y_{n}, y_{n+p}, u\right) \leq \sum_{r=0}^{p-1} d\left(y_{n+r}, y_{n+r+1}, u\right) .
$$

Then by (3.5) we get

$$
d\left(y_{n}, y_{n+p}, u\right) \leq \frac{k^{n}}{1-k} d\left(y_{0}, y_{1}, u\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty, p>0 \text { and } k \in[0,1)
$$

Hence $\left\{y_{n}\right\}$ is a Cauchy sequence. Then by completeness of $X,\left\{y_{n}\right\}$ converges to a point $z \in X$ i.e. $y_{n} \rightarrow z \in X$ as $n \rightarrow \infty$. Since $\left\{y_{n}\right\}$ is a Cauchy sequence and taking limit as $n \rightarrow \infty$, we get $I x_{2 n}=T x_{2 n+1} \rightarrow z, J x_{2 n-1}=S x_{2 n} \rightarrow z$ and also $J x_{2 n+1} \rightarrow z$.

Next suppose that S is continuous. Then $\left\{S I x_{2 n}\right\}$ converges to $S z$. Then by property (IV) of 2 -metric space, we have

$$
\begin{gathered}
d\left(I S x_{2 n}, S z, u\right) \leq d\left(I S x_{2 n}, S z, S I x_{2 n}\right)+d\left(I S x_{2 n}, S I x_{2 n}, u\right)+d\left(S I x_{2 n}, S z, u\right) \\
\quad \leq d\left(I S x_{2 n}, S z, S I x_{2 n}\right)+d\left(S x_{2 n}, I x_{2 n}, u\right)+d\left(S I x_{2 n}, S z, u\right)
\end{gathered}
$$

since I and S weakly commute.
Letting $n \rightarrow \infty$, it follows that $\left\{I S x_{2 n}\right\}$ converges to $S z$. Again by using (3.2) we have

$$
\begin{gathered}
d\left(I S x_{2 n}, J x_{2 n+1}, u\right) \leq \\
\leq \alpha\left(d\left(S^{2} x_{2 n}, T x_{2 n+1}, u\right), d\left(S^{2} x_{2 n}, I S x_{2 n}, u\right), d\left(T x_{2 n+1}, J x_{2 n+1}, u\right)\right)
\end{gathered}
$$

Since α is continuous, taking limit as $n \rightarrow \infty$ we get

$$
d(S z, z, u) \leq \alpha(d(S z, z, u), d(S z, S z, u), d(z, z, u))
$$

implies

$$
d(S z, z, u) \leq \alpha(d(S z, z, u), 0,0)
$$

So by axiom (ii) of function α,

$$
\begin{equation*}
d(S z, z, u) \leq k \cdot 0=0 \quad \text { which gives } S z=z \tag{3.7}
\end{equation*}
$$

Again using the inequality (3.2) we have

$$
d\left(I z, J x_{2 n+1}, u\right) \leq \alpha\left(d\left(S z, T x_{2 n+1}, u\right), d(S z, I z, u), d\left(T x_{2 n+1}, J x_{2 n+1}, u\right)\right)
$$

Passing limit as $n \rightarrow \infty$ we get

$$
d(I z, z, u) \leq \alpha(d(S z, z, u), d(z, I z, u), d(z, z, u))
$$

implies

$$
d(I z, z, u) \leq \alpha(0, d(z, I z, u), 0)
$$

Then by axiom (ii) of function α,

$$
\begin{equation*}
d(I z, z, u) \leq k \cdot 0=0 \quad \text { which gives } I z=z \tag{3.8}
\end{equation*}
$$

Since $I(X) \subset T(X)$, there exists a point $z^{\prime} \in X$ such that $T z^{\prime}=z=I z$, so by (3.2) we have

$$
\begin{aligned}
d\left(z, J z^{\prime}, u\right) & =d\left(I z, J z^{\prime}, u\right) \\
& \leq \alpha\left(d\left(S z, T z^{\prime}, u\right), d(S z, I z, u), d\left(T z^{\prime}, J z^{\prime}, u\right)\right) \\
& =\alpha\left(d(z, z, u), d(z, z, u), d\left(z, J z^{\prime}, u\right)\right) \\
& =\alpha\left(0,0, d\left(z, J z^{\prime}, u\right)\right)
\end{aligned}
$$

So by axiom (ii) of function α,

$$
d\left(z, J z^{\prime}, u\right) \leq k \cdot 0=0 \quad \text { which implies } J z^{\prime}=z
$$

As J and T weakly commute

$$
d\left(J T z^{\prime}, T J z^{\prime}, u\right) \leq d\left(T z^{\prime}, J z^{\prime}, u\right)=0
$$

which gives $J T z^{\prime}=T J z^{\prime}$ implies

$$
\begin{equation*}
J z=J T z^{\prime}=T J z^{\prime}=T z \tag{3.9}
\end{equation*}
$$

Thus from (3.2) we have

$$
\begin{aligned}
d(z, T z, u) & =d(I z, J z, u) \\
& \leq \alpha(d(S z, T z, u), d(S z, I z, u), d(T z, J z, u)) \\
& =\alpha(d(z, T z, u), 0,0)
\end{aligned}
$$

So by axiom (ii) of function α,

$$
\begin{equation*}
d(z, T z, u) \leq k \cdot 0=0 \quad \text { which implies } T z=z \tag{3.10}
\end{equation*}
$$

So by $(3.7),(3.8),(3.9)$ and (3.10) we conclude that z is a common fixed point of I, J, S and T.

For uniqueness, Let w be another common fixed point in X such that

$$
I z=J z=S z=T z=z \quad \text { and } \quad I w=J w=S w=T w=w .
$$

Then by (3.2) we have

$$
\begin{aligned}
d(w, z, u) & =d(I w, J z, u) \\
& \leq \alpha(d(S w, T z, u), d(S w, I w, u), d(T z, J z, u)) \\
& =\alpha(d(w, z, u), d(w, w, u), d(z, z, u)) \\
& =\alpha(d(w, z, u), 0,0) .
\end{aligned}
$$

So by axiom (ii) of function α,

$$
d(w, z, u) \leq k \cdot 0=0 \quad \text { which implies } w=z
$$

So uniqueness of z is proved.
The same result holds if any one of I, J and T is continuous.
Corollary 3.2 Let S, T, I and J be four self mappings of a complete 2-metric space (X, d) satisfying

$$
\begin{gather*}
I(X) \subset T(X) \text { and } J(X) \subset S(X) \tag{3.11}\\
d(I x, J y, u) \leq c \cdot \max \{d(S x, T y, u), d(S x, I x, u), d(T y, J y, u)\} \tag{3.12}
\end{gather*}
$$

for all x, y, u in X, where $0 \leq c<1$.
If one of S, T, I and J is continuous and if I and J weakly commute with S and T respectively, then I, J, S and T have a unique common fixed point z in X.

This result is a 2-metric analogue of the theorem of B. Fisher [5].
For any $f:(X, d) \rightarrow(X, d)$ we denote $F_{f}=\{x \in X: x=f(x)\}$.
Lemma 3.3 Let I, J, S and T be four self mappings of a complete 2-metric space (X, d). If the inequality (3.2) holds for $\alpha \in A$ and for all $x, y, u \in X$. Then $\left(F_{S} \cap F_{T}\right) \cap F_{I}=\left(F_{S} \cap F_{T}\right) \cap F_{J}$.

Proof Let $x \in\left(F_{S} \cap F_{T}\right) \cap F_{I}$. Then by(3.2)

$$
\begin{aligned}
d(x, J x, u) & =d(I x, J x, u) \\
& \leq \alpha(d(S x, T x, u), d(S x, I x, u), d(T x, J x, u)) \\
& =\alpha(0,0, d(x, J x, u))
\end{aligned}
$$

So by axiom (ii) of function α,

$$
d(x, J x, u) \leq k \cdot 0=0 \quad \text { implies } x=J x .
$$

Thus

$$
\left(F_{S} \cap F_{T}\right) \cap F_{I} \subset\left(F_{S} \cap F_{T}\right) \cap F_{J}
$$

Similarly we have

$$
\left(F_{S} \cap F_{T}\right) \cap F_{J} \subset\left(F_{S} \cap F_{T}\right) \cap F_{I}
$$

and so $\left(F_{S} \cap F_{T}\right) \cap F_{I}=\left(F_{S} \cap F_{T}\right) \cap F_{J}$
Theorem 3.4 Let S, T and $\left\{I_{n}\right\}_{n \in N}$ be mappings from a complete 2-metric space (X, d) into itself satisfying

$$
\begin{equation*}
I_{1}(X) \subset T(X) \text { and } I_{2}(X) \subset S(X) \tag{3.13}
\end{equation*}
$$

For $\alpha \in A$ and for all $x, y, u \in X$,

$$
\begin{equation*}
d\left(I_{n} x, I_{n+1} y, u\right) \leq \alpha\left(d(S x, T y, u), d\left(S x, I_{n} x, u\right), d\left(T y, I_{n+1} y, u\right)\right) \tag{3.14}
\end{equation*}
$$

holds for all $n \in N$. If one of S, T, I_{1} and I_{2} is continuous and if I_{1} and I_{2} weakly commute with S and T respectively, then S, T and $\left\{I_{n}\right\}_{n \in N}$ have a unique common fixed point z in X.

Proof By Theorem 3.1, S, T, I_{1} and I_{2} have a unique common fixed point z in X. Now z is a unique common fixed point of S, T, I_{1} and also by Lemma 3.3, $\left(F_{S} \cap F_{T}\right) \cap F_{I_{1}}=\left(F_{S} \cap F_{T}\right) \cap F_{I_{2}}, z$ is a common fixed point of S, T, I_{2}. Also z is unique common fixed point of S, T, I_{2}. If not, let w be another common fixed point of S, T, I_{2}. Then by (3.14)

$$
\begin{aligned}
d(z, w, u) & =d\left(I_{1} z, I_{2} w, u\right) \\
& \leq \alpha\left(d(S z, T w, u), d\left(S z, I_{1} z, u\right), d\left(T w, I_{2} w, u\right)\right) \\
& =\alpha(d(z, w, u), d(z, z, u), d(w, w, u)) \\
& =\alpha(d(z, w, u), 0,0)
\end{aligned}
$$

So by axiom (ii) of function α,

$$
d(z, w, u) \leq k \cdot 0=0 \quad \text { implies } z=w .
$$

In the similar manner we can show that z is a unique common fixed point of S, T and I_{3}. Continuing in this way, we arrive at desired result.
Acknowledgements The authors are thankful to the anonymous referee for his valuable opinions.

References

[1] Akram, M., Zafar, A. A., Siddiqui A. A.: A general class of contractions: A-contractions. Novi Sad J. Math. 38, 1 (2008), 25-33.
[2] Bianchini, R.: Su un problema di S.Reich riguardante la teori dei punti fissi. Boll. Un. Math. Ital. 5 (1972), 103-108.
[3] Cho, Y. J., Khan, M. S., Singh, S. L.: Common fixed points of weakly commuting mappings. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 18, 1 (1988), 129-142.
[4] Delbosco, D.: An unified approach for the contractive mappings. Jnanabha 16 (1986), 1-11.
[5] Fisher, B.: Common fixed points of four mappings. Bull. Inst. Math. Acad. Sinicia 11 (1983), 103-113.
[6] Gähler, S.: 2-metric Raume and ihre topologische strucktur. Math.Nachr. 26 (1963), 115-148.
[7] Gähler, S: Uber die unifromisieberkeit 2-metrischer Raume. Math. Nachr. 28 (1965), 235-244.
[8] Kannan, R.: Some results on fixed points-II. Amer. Math. Monthly 76, 4 (1969), 405408.
[9] Khan, M. D.: A Study of Fixed Point Theorems. Doctoral Thesis, Aligarh Muslim University, Aligarh, Uttar Pradesh, India, 1984.
[10] Naidu, S. V. R., Prasad, J. R.: Fixed points in 2- metric spaces. Indian J. Pure AppL. Math. 1, 8 (1986), 974-993.
[11] Reich, S.: Kannans fixed point theorem. Boll. Un. Math. Ital. 4 (1971), 1-11.

[^0]: * Corresponding author

