On a Construction of Modular GMS-algebras

Abd El-Mohsen BADAWY
Department of Mathematics, Faculty of Science, Tanta University Tanta, Egypt
e-mail: abdelmohsen.mohamed@science.tanta.edu.eg

(Received April 19, 2013)

Abstract

In this paper we investigate the class of all modular $G M S$-algebras which contains the class of $M S$-algebras. We construct modular $G M S$ algebras from the variety $\underline{\mathbf{K}}_{2}$ by means of \underline{K}_{2}-quadruples. We also characterize isomorphisms of these algebras by means of \underline{K}_{2}-quadruples.

Key words: $M S$-algebras, $G M S$-algebras, K_{2}-algebras, Kleene algebras, isomorphisms.
2010 Mathematics Subject Classification: 06D05, 06D30

1 Introduction

T. S. Blyth and J. C. Varlet [2] have studied the variety of $M S$-algebras as a common abstraction of de Morgan algebras and Stone algebras. D. Ševčovič [12] investigated a larger variety of algebras containing $M S$-algebras, the socalled generalized $M S$-algebras ($G M S$-algebras). In such algebras the distributive identity need not be necessarily satisfied. In [4] T. S. Blyth and J. C. Varlet presented a construction of some $M S$-algebras from the subvariety \mathbf{K}_{2} (the socalled K_{2}-algebras) from Kleene algebras and distributive lattices. This was a construction by means of triples which were successfully used in construction of Stone algebras (see [6], [7]), distributive p-algebras (see [9]), modular p-algebras (see [10]), etc. T. S. Blyth and J. V. Varlet [5] improved their construction from [4] by means of quadruples and they showed that each member of \mathbf{K}_{2} can be constructed in this way. In [8] M. Haviar presented a simple quadruple construction of K_{2}-algebras which works with pairs of elements only. He also proved that there exists a one-to-one correspondence between locally bounded K_{2}-algebras and decomposable K_{2}-quadruples. Recently, A. Badawy, D. Guffová and M. Haviar [1] introduced the class of decomposable $M S$-algebras. They
presented a triple construction of decomposable $M S$-algebras. Moreover, they proved that there exists a one-to-one correspondence between the decomposable $M S$-algebras and the decomposable $M S$-triples.

The aim of this paper is to investigate a subvariety of $G M S$-algebras containing the variety of $M S$-algebras, the so-called modular $G M S$-algebras. We construct modular $G M S$-algebras from the variety $\underline{\mathbf{K}}_{2}\left(\underline{K}_{2}\right.$-algebras) from Kleene algebras and modular lattices by means of \underline{K}_{2}-quadruples. Also we define an isomorphism between two \underline{K}_{2}-quadruples and we show that two \underline{K}_{2}-algebras are isomorphic if and only if their associated \underline{K}_{2}-quadruples are isomorphic.

2 Preliminaries

An $M S$-algebra is an algebra $\left(L ; \vee, \wedge,{ }^{\circ}, 0,1\right)$ of type $(2,2,1,0,0)$ where $(L ; \vee, \wedge$, $0,1)$ is a bounded distributive lattice and the unary operation ${ }^{\circ}$ satisfies

$$
x \leq x^{\circ \circ}, \quad(x \wedge y)^{\circ}=x^{\circ} \vee y^{\circ}, \quad 1^{\circ}=0 .
$$

The class MS of all $M S$-algebras forms a variety. The members of the subvariety \mathbf{M} of MS defined by the identity $x=x^{\circ \circ}$ are called de Morgan algebras and the members of the subvariety \mathbf{K} of \mathbf{M} defined by the identity $x \wedge x^{\circ} \leq y \vee y^{\circ}$ are called Kleene algebras. The subvariety \mathbf{K}_{2} of MS is defined by the additional two identities

$$
x \wedge x^{\circ}=x^{\circ \circ} \wedge x^{\circ}, \quad x \wedge x^{\circ} \leq y \vee y^{\circ} .
$$

The class \mathbf{S} of all Stone algebras is a subvariety of MS and is characterized by the identity $x \wedge x^{\circ}=0$. The subvariety \mathbf{B} of $\mathbf{M S}$ characterized by the identity $x \vee x^{\circ}=1$ is the class of Boolean algebras.

A generalized de Morgan algebra (or $G M$-algebra) is a universal algebra $\left(L ; \vee, \wedge,{ }^{-}, 0,1\right)$ where $(L ; \vee, \wedge, 0,1)$ is a bounded lattice and the unary operation of involution - satisfies the identities

$$
G M_{1}: x=x^{--}, \quad G M_{2}:(x \wedge y)^{-}=x^{-} \vee y^{-}, \quad G M_{3}: 1^{-}=0
$$

A modular $G M$-algebra L is a $G M$-algebra where $(L ; \vee, \wedge, 0,1)$ is a modular lattice. A modular generalized Kleene algebra (modular $G K$-algebra) L is a modular $G M$-algebra satisfying the identity $x \wedge x^{\circ} \leq x \vee y^{\circ}$.

A generalized $M S$-algebra (or $G M S$-algebra) is a universal algebra ($L ; \vee, \wedge,{ }^{\circ}$, $0,1)$ where $(L ; \vee, \wedge, 0,1)$ is a bounded lattice and the unary operation ${ }^{\circ}$ satisfies the identities

$$
G M S_{1}: x \leq x^{\circ \circ}, \quad G M S_{2}:(x \wedge y)^{\circ}=x^{\circ} \vee y^{\circ}, \quad G M S_{3}: 1^{\circ}=0
$$

The class of all $G M$-algebras is a subvariety of the variety of all $G M S$ algebras.

A modular $G M S$-algebra is a $G M S$-algebra $\left(L ; \vee, \wedge,{ }^{\circ}, 0,1\right)$ where $(L ; \vee, \wedge, 0,1)$ is a modular lattice.

The class of all modular $G M S$-algebras forms a variety. The class MS is a subvariety of the variety of all modular $G M S$-algebras. Then the varieties \mathbf{B}, \mathbf{M}, \mathbf{S} and \mathbf{K}_{2} are subvarieties of the variety of all modular $G M S$-algebras.

The class $\underline{\mathbf{S}}$ of all modular S-algebras is a subvariety of the variety of all modular $G M S$-algebras and is characterized by the identity $x \wedge x^{\circ}=0$. It is known that the class \mathbf{S} is a subvariety of $\underline{\mathbf{S}}$.

The main immediate consequences of these axioms are summarized in the following result.

Lemma 2.1 Let L be a GMS-algebra. Then we have
(1) $0^{\circ}=1$,
(2) $x \leq y$ implies $x^{\circ} \geq y^{\circ}$,
(3) $x^{\circ}=x^{000}$,
(4) $(x \vee y)^{\circ}=x^{\circ} \wedge y^{\circ}$,
(5) $(x \wedge y)^{\circ \circ}=x^{\circ \circ} \wedge y^{\circ \circ}$,
(6) $(x \vee y)^{\circ \circ}=x^{\circ \circ} \vee y^{\circ \circ}$.

Consequently, if L is a modular $G M S$-algebra, then the set $L^{\circ \circ}=\left\{x \in L: x^{\circ \circ}=\right.$ $x\}$ is a modular $G M$-algebra and a subalgebra of L such that the mapping $x \mapsto x^{\circ \circ}$ is a homomorphism of L onto $L^{\circ \circ}$, and $D(L)=\left\{x \in L: x^{\circ}=0\right\}$ is a filter of L, the elements of which are called dense.

For an arbitrary lattice L, the set $F(L)$ of all filters of L ordered under set inclusion is a lattice. It is known that $F(L)$ is a modular lattice if and only if L is modular. Let $a \in L ;[a)$ denotes the filter of L generated by a.

For any modular $G M S$-algebra L, the relation Φ defined by

$$
x \equiv y(\Phi) \quad \Leftrightarrow \quad x^{\circ \circ}=y^{\circ \circ}
$$

is a congruence relation on L and $L / \Phi \cong L^{\circ \circ}$ holds. Each congruence class contains exactly one element of $L^{\circ 0}$ which is the largest element in the congruence class, the largest element of $[x] \Phi$ is $x^{\circ 0}$ which is denoted by $\max [x] \Phi$. Hence Φ partition L into $\left\{F_{c}: c \in L^{\circ \circ}\right\}$, where $F_{c}=\left\{x \in L: x^{\circ \circ}=c\right\}$. Obviously, $F_{0}=\{0\}$ and $F_{1}=\left\{x \in L: x^{\circ \circ}=1\right\}=D(L)$.

Now we introduce certain modular $G M S$-algebras, which are called $\underline{K}_{2}{ }^{-}$ algebras.

Definition 2.2 A modular $G M S$-algebra L is called a \underline{K}_{2}-algebra if L^{00} is a distributive lattice and L satisfies the identities $x \wedge x^{\circ}=x^{\circ \circ} \wedge x^{\circ}$ and $x \wedge x^{\circ} \leq$ $y \vee y^{\circ}$.

The class $\underline{\mathbf{K}}_{2}$ of all \underline{K}_{2}-algebras contains the class \mathbf{K}_{2}. Clearly, the classes $\underline{\mathbf{S}}, \mathbf{S}, \mathbf{M}, \mathbf{K}$ and \mathbf{B} are subclasses of the class $\underline{\mathbf{K}}_{2}$.

Theorem 2.3 Let $L \in \underline{\mathbf{K}}_{2}$. Then
(1) $x=x^{\circ \circ} \wedge\left(x \vee x^{\circ}\right)$ for every $x \in L$,
(2) $L^{\circ \circ}=\left\{x \in L: x=x^{\circ \circ}\right\}$ is a Kleene algebra,
(3) $L^{\wedge}=\left\{x \wedge x^{\circ}: x \in L\right\}=\left\{x \in L: x \leq x^{\circ}\right\}$ is an ideal of L,
(4) $L^{\vee}=\left\{x \vee x^{\circ}: x \in L\right\}=\left\{x \in L: x \geq x^{\circ}\right\}$ is a filter of L,
(5) $D(L)=\left\{x \in L: x^{\circ}=0\right\}$ is a filter of L and $D(L) \subseteq L^{\vee}$.

Proof (1) Since $x \leq x^{\circ \circ}$, then by modularity of L we get

$$
\begin{aligned}
x^{\circ \circ} \wedge\left(x \vee x^{\circ}\right) & =\left(x^{\circ \circ} \wedge x^{\circ}\right) \vee x \\
& =\left(x \wedge x^{\circ}\right) \vee x \text { by Definition } 2.2 \\
& =x
\end{aligned}
$$

(2) It is obvious.
(3) Clearly $0 \in L^{\wedge}$. Let $x, y \in L^{\wedge}$. Then $x \leq x^{\circ}$ and $y \leq y^{\circ}$. By Definition 2.2, we get $x=x \wedge x^{\circ} \leq y \vee y^{\circ}=y^{\circ}$. It follows that $x^{\circ} \geq y^{\circ \circ} \geq y$. Then $x^{\circ} \wedge y^{\circ} \geq x, y$ implies $x^{\circ} \wedge y^{\circ} \geq x \vee y$. Now

$$
(x \vee y) \wedge(x \vee y)^{\circ}=(x \vee y) \wedge\left(x^{\circ} \wedge y^{\circ}\right)=x \vee y
$$

Consequently $x \vee y \leq(x \vee y)^{\circ}$ and $x \vee y \in L^{\wedge}$. Let $x \in L^{\wedge}$ be such that $z \leq x$ for some $z \in L$. Then $z \leq x \leq x^{\circ} \leq z^{\circ}$. Hence $z \in L^{\wedge}$. Then L^{\wedge} is an ideal of L.
(4) By duality of (3).
(5) It is obvious.

Corollary 2.4 Let L be a modular GMS-algebra. Then for all $x \in L$ the following conditions are equivalent:
(1) $x=x^{\circ \circ} \wedge\left(x \vee x^{\circ}\right)$,
(2) $x \wedge x^{\circ}=x^{\circ \circ} \wedge x^{\circ}$.

Now we reformulate the definition of polarization given in [Definition 1(iii), 11] as follows.

Definition 2.5 Let K be a Kleene algebra and D be a modular lattice with 1 . A mapping $\varphi: K \rightarrow F(D)$ is called a polarization if φ is a $(0,1)$-homomorphism such that $a \varphi=D$ for every $a \in K^{\vee}$ and $a \varphi$ is a principal filter of D for every $a \in K^{\wedge}$.

3 The triple associated with a \underline{K}_{2}-algebra

Let $L \in \underline{\mathbf{K}}_{2} . L^{\vee}$ is a filter of L, and L^{\vee} is a modular lattice with the largest element 1. So $F\left(L^{\vee}\right)$ is also a modular lattice. Consider the map $\varphi(L): L^{\circ \circ} \rightarrow$ $F\left(L^{\vee}\right)$ defined by the following way

$$
a \varphi(L)=\left\{x \in L^{\vee}: x \geq a^{\circ}\right\}=\left[a^{\circ}\right) \cap L^{\vee}, \quad a \in L^{\circ \circ} .
$$

Lemma 3.1 Let $L \in \underline{\mathbf{K}}_{2}$. Then $\varphi(L)$ is a polarization of $L^{\circ \circ}$ into $F\left(L^{\vee}\right)$.

Proof It is easy to check that $0 \varphi(L)=[1), 1 \varphi(L)=L^{\vee}$ and $(a \wedge b) \varphi(L)=$ $a \varphi(L) \cap b \varphi(L)$. Now we show that $(a \vee b) \varphi(L)=a \varphi(L) \vee b \varphi(L)$. Since $a, b \leq a \vee b$, then $a \varphi(L) \vee b \varphi(L) \subseteq(a \vee b) \varphi(L)$. For the converse, let $t \in(a \vee b) \varphi(L)=$ $\left[a^{\circ} \wedge b^{\circ}\right) \cap L^{\vee}$. Put $x=a \vee\left(a^{\circ} \wedge t\right)$. Then $x^{\circ}=a^{\circ} \wedge\left(a \vee t^{\circ}\right)=\left(a^{\circ} \wedge a\right) \vee\left(a^{\circ} \wedge t^{\circ}\right) \leq$ $a \vee\left(a^{\circ} \wedge t\right)=x$ since $L^{\circ \circ}$ is distributive and $t^{\circ} \leq t$. Thus $x \in L^{\vee}$. Moreover,

$$
a^{\circ} \wedge\left(b^{\circ} \vee x\right)=a^{\circ} \wedge\left(b^{\circ} \vee\left(a \vee\left(a^{\circ} \wedge t\right)\right)\right)=\left(a^{\circ} \wedge\left(a \vee b^{\circ}\right)\right) \vee\left(a^{\circ} \wedge t\right) \leq t
$$

since $a^{\circ} \wedge\left(a \vee b^{\circ}\right)=\left(a^{\circ} \wedge a\right) \vee\left(a^{\circ} \wedge b^{\circ}\right) \leq t$. Now, $t \in\left[a^{\circ}\right) \vee\left[b^{\circ} \vee x\right) \subseteq$ $\left[a^{\circ}\right) \vee\left(\left[b^{\circ}\right) \cap L^{\vee}\right)$. But $t \in L^{\vee}$ and $F(L)$ is a modular lattice, hence

$$
t \in\left(\left[a^{\circ}\right) \vee\left(\left[b^{\circ}\right) \cap L^{\vee}\right)\right) \cap L^{\vee}=\left(\left[a^{\circ}\right) \cap L^{\vee}\right) \vee\left(\left[b^{\circ}\right) \cap L^{\vee}\right)=a \varphi(L) \vee b \varphi(L)
$$

Thus $\varphi(L)$ is $(0,1)$-lattice homomorphism. If $a \in L^{\circ \circ}$, then $\left(a \vee a^{\circ}\right) \varphi(L)=$ $\left[a^{\circ} \wedge a\right) \cap L^{\vee}=L^{\vee}$ and $\left(a \wedge a^{\circ}\right) \varphi(L)=\left[a^{\circ} \vee a\right)$. Then φ is a polarization.

Definition 3.2 A triple (K, D, φ) is said to be a \underline{K}_{2}-triple if
(1) $(K ; \vee, \wedge, 0,1)$ is a Kleene algebra,
(2) D is a modular lattice with 1 ,
(3) $\varphi: K \rightarrow F(D)$ is a polarization.

Let L be a \underline{K}_{2}-algebra. Then $\left(L^{\circ \circ}, L^{\vee}, \varphi(L)\right)$ is the triple associated with L and this triple is a \underline{K}_{2}-triple.

Lemma 3.3 Let (K, D, φ) be a \underline{K}_{2}-triple. Then we have

$$
a \varphi \cap(b \varphi \vee c \varphi)=(a \varphi \cap b \varphi) \vee(a \varphi \cap c \varphi) \text { for every } a, b, c \in K
$$

Lemma 3.4 Let (K, D, φ) be a \underline{K}_{2}-triple. Then we have
(i) for every $a \in K$ and for every $y \in D$ there exists an element $t \in D$ such that

$$
a \varphi \cap[y)=[t),
$$

(ii) for every $a \in K$ and for every $y \in D$ there exists an element $t \in a^{\circ} \varphi$ such that

$$
a \varphi \vee[y)=a \varphi \vee[t),
$$

(iii) for every $a, b \in K$ and for every $y \in D$ there exists an element $t \in D$ such that

$$
\left(\left(a \varphi \cap b^{\circ} \varphi\right) \vee[y)\right) \cap\left(a^{\circ} \varphi \vee b \varphi \vee[y)\right)=[t) .
$$

Proof For any $a \in K$, there is $d_{a} \in D$ such that $\left(a \wedge a^{\circ}\right) \varphi=a \varphi \cap a^{\circ} \varphi=\left[d_{a}\right)$ as $a \wedge a^{\circ} \in K^{\wedge}$ and φ is a polarization. Recall that $F(D)$ is a modular lattice.
(i). For all $a \in K, a \wedge a^{\circ} \in K^{\wedge}, a \vee a^{\circ} \in K^{\vee}$. Then there exists $d_{a} \in D$ such that $a \varphi \cap a^{\circ} \varphi=\left[d_{a}\right)$ and $a \varphi \vee a^{\circ} \varphi=\left(a \vee a^{\circ}\right) \varphi=D$. Therefore, there exist elements $x_{1} \in a \varphi$ and $z_{1} \in a^{\circ} \varphi$ such that $x_{1}, z_{1} \leq d_{a}$ and $x_{1} \wedge z_{1} \leq y$.

We notice that $x_{1} \vee z_{1} \in a \varphi \cap a^{\circ} \varphi$. Hence $x_{1} \vee z_{1}=d_{a}$. We claim $t=x_{1} \vee y$. Clearly $t \in a \varphi \cap[y)$. Conversely, let $v \in a \varphi \cap[y)$. Then

$$
\begin{aligned}
v & \geq\left(v \wedge x_{1}\right) \vee y \\
& =\left(\left(v \wedge x_{1}\right) \vee\left(x_{1} \wedge z_{1}\right)\right) \vee y \\
& =\left(\left(\left(v \wedge x_{1}\right) \vee z_{1}\right) \wedge x_{1}\right) \vee y \text { by modularity of } D \\
& =\left(d_{a} \wedge x_{1}\right) \vee y \\
& =x_{1} \vee y \text { as }\left(v \wedge x_{1}\right) \vee z_{1}=d_{a} \geq x_{1} .
\end{aligned}
$$

Hence $v \geq x_{1} \vee y=t$, and therefore $a \varphi \cap[y)=[t)$.
(ii). It is enough to show that $a^{\circ} \varphi \cap(a \varphi \vee[y))=[t)$, for some $t \in D$ since then $t \in a^{\circ} \varphi$ and $[t) \vee a \varphi=\left(a^{\circ} \varphi \cap(a \varphi \vee[y))\right) \vee a \varphi=(a \varphi \vee[y)) \cap\left(a^{\circ} \varphi \vee a \varphi\right)=a \varphi \vee[y)$, from modularity of $F(D)$. Let $x_{1} \in a \varphi, z_{1} \in a^{\circ} \varphi, x_{1} \wedge z_{1} \leq y$ and $x_{1}, z_{1} \leq d_{a}$. We claim that $t=z_{1} \vee\left(x_{1} \wedge y\right)$. Evidently, $t \in a^{\circ} \varphi \cap(a \varphi \vee[y))$. Conversely, let $v \in a^{\circ} \varphi \cap(a \varphi \vee[y))$. Then $v \geq v \wedge z_{1} \in a^{\circ} \varphi$ and there is $x \in a \varphi$ with $v \geq x \wedge y \geq\left(x \wedge x_{1}\right) \wedge y$. Denote $z_{0}=v \wedge z_{1}$ and $x_{0}=x \wedge x_{1}$. Hence

$$
v \geq\left(x_{0} \wedge y\right) \vee z_{0} \geq\left(x_{0} \wedge x_{1} \wedge z_{1}\right) \vee z_{0}=\left(x_{0} \wedge z_{1}\right) \vee z_{0}=\left(x_{0} \vee z_{0}\right) \wedge z_{1}=z_{1}
$$

because $x_{0} \vee z_{0}=d_{a} \geq z_{1}$. This implies

$$
\begin{aligned}
v & \geq\left(x_{0} \wedge y\right) \vee z_{1} \\
& =\left(x_{0} \wedge y\right) \vee\left(x_{1} \wedge z_{1}\right) \vee z_{1} \\
& =\left(\left(x_{0} \vee\left(x_{1} \wedge z_{1}\right)\right) \wedge y\right) \vee z_{1} \\
& =\left(\left(x_{0} \vee z_{1}\right) \wedge x_{1} \wedge y\right) \vee z_{1} \\
& =\left(x_{1} \wedge y\right) \vee z_{1} \text { as } x_{0} \vee z_{1}=d_{a} \geq x_{1} \wedge y \\
& =t
\end{aligned}
$$

So, $v \geq t$ and $a^{\circ} \varphi \cap(a \varphi \vee[y))=[t)$.
(iii). From (ii) there exists $y_{1} \in a \varphi$ such that $\left[y_{1}\right) \vee a^{\circ} \varphi=[y) \vee a^{\circ} \varphi$. Using Lemma 3.3 and modularity of $F(D)$, we get

$$
\begin{aligned}
((a \varphi \cap & \left.\left.b^{\circ} \varphi\right) \vee[y)\right) \cap\left(a^{\circ} \varphi \vee b \varphi \vee[y)\right) \\
& =\left(\left(a \varphi \cap b^{\circ} \varphi\right) \cap\left(a^{\circ} \varphi \vee b \varphi \vee[y)\right)\right) \vee[y) \\
& =\left(\left(a \varphi \cap b^{\circ} \varphi\right) \cap\left(a^{\circ} \varphi \vee b \varphi \vee\left[y_{1}\right)\right)\right) \vee[y) \\
& =\left(b^{\circ} \varphi \cap\left(a \varphi \cap\left(a^{\circ} \varphi \vee b \varphi \vee\left[y_{1}\right)\right)\right)\right) \vee[y) \\
& =\left(b^{\circ} \varphi \cap\left(\left(a \varphi \cap\left(a^{\circ} \varphi \vee b \varphi\right)\right) \vee\left[y_{1}\right)\right)\right) \vee[y) \\
& =\left(b^{\circ} \varphi \cap\left(\left[d_{a}\right) \vee(a \varphi \cap b \varphi) \vee\left[y_{1}\right)\right)\right) \vee[y) \\
& =\left(b^{\circ} \varphi \cap\left(a \varphi \cap\left(b \varphi \vee\left[y_{1} \wedge d_{a}\right)\right)\right)\right) \vee[y) \\
& =\left(a \varphi \cap\left[t_{1}\right)\right) \vee[y) \\
& =\left[t_{2}\right) \vee[y) \\
& =\left[t_{2} \wedge y\right) .
\end{aligned}
$$

where $t_{1}, t_{2} \in D$ are such elements that $b^{\circ} \varphi \cap\left(b \varphi \vee\left[y_{1} \wedge d_{a}\right)\right)=\left[t_{1}\right)$ (see the proof of (ii)), $a \varphi \cap\left[t_{1}\right)=\left[t_{2}\right)$ from (i). Thus $t=t_{2} \wedge y$.

Theorem 3.5 Let (K, D, φ) be a \underline{K}_{2}-triple. Then for any $a, b \in K$ and $x, y \in$ D there exists an element $t \in D$ such that

$$
\left(a^{\circ} \varphi \vee[x)\right) \cap\left(b^{\circ} \varphi \vee[y)\right)=(a \vee b)^{\circ} \varphi \vee[t) .
$$

Proof Let $a, b \in K$ and $x, y \in D$. It is enough to show that there is $t \in D$ such that

$$
\left(a^{\circ} \varphi \vee[x)\right) \cap\left(b^{\circ} \varphi \vee[y)\right) \cap(a \wedge b) \varphi=[t)
$$

because then

$$
\begin{aligned}
{[t) \vee(a \vee b)^{\circ} \varphi } & =\left(\left(a^{\circ} \varphi \vee[x)\right) \cap\left(b^{\circ} \varphi \vee[y)\right) \cap(a \wedge b) \varphi\right) \vee(a \vee b)^{\circ} \varphi \\
& =\left(a^{\circ} \varphi \vee[x)\right) \cap\left(b^{\circ} \varphi \vee[y)\right) \cap\left((a \wedge b) \varphi \vee(a \vee b)^{\circ} \varphi\right) \\
& =\left(a^{\circ} \varphi \vee[x)\right) \cap\left(b^{\circ} \varphi \vee[y)\right)
\end{aligned}
$$

by modularity of $F(D)$ and since $(a \vee b) \varphi \vee(a \vee b)^{\circ} \varphi=D$. In accordance with Lemma 3.4, we can suppose $x \in a \varphi$ and $y \in b \varphi$. Then by Lemma 3.3 and by modularity of $F(D)$,

$$
\begin{aligned}
& \left(a^{\circ} \varphi \vee[x)\right) \cap\left(b^{\circ} \varphi \vee[y)\right) \cap(a \vee b) \varphi \\
& \quad=\left(\left(a^{\circ} \varphi \vee[x)\right) \cap(a \varphi \vee b \varphi)\right) \cap\left(\left(b^{\circ} \varphi \vee[y)\right) \cap(a \varphi \vee b \varphi)\right) \\
& \quad=\left(\left(a^{\circ} \varphi \cap(a \varphi \vee b \varphi)\right) \vee[x)\right) \cap\left(\left(b^{\circ} \varphi \cap(a \varphi \vee b \varphi)\right) \vee[y)\right) \\
& \quad=\left(\left(a^{\circ} \varphi \cap a \varphi\right) \vee\left(a^{\circ} \varphi \cap b \varphi\right) \vee[x)\right) \cap\left(\left(b^{\circ} \varphi \cap a \varphi\right) \vee\left(b^{\circ} \varphi \cap b \varphi\right) \vee[y)\right) \\
& \quad=\left(\left[d_{a} \wedge x\right) \vee\left(a^{\circ} \varphi \cap b \varphi\right)\right) \cap\left(\left[d_{b} \wedge y\right) \vee\left(b^{\circ} \varphi \cap a \varphi\right)\right)
\end{aligned}
$$

where d_{a}, d_{b} are as in the proof of Lemma 3.4. Denote $x_{0}=x \wedge d_{a}, y_{0}=y \wedge d_{b}$ and $x_{0} \wedge y_{0}=z$. We first show that

$$
\left(\left(a \varphi \cap b^{\circ} \varphi\right) \vee[z)\right) \cap\left(\left(a^{\circ} \varphi \cap b \varphi\right) \vee[z)\right)=[p),
$$

for some $p \in D$. Since $a^{\circ} \varphi \vee b \varphi \supseteq a^{\circ} \varphi \cap b \varphi$, we can write

$$
\begin{aligned}
& \left(\left(a \varphi \cap b^{\circ} \varphi\right) \vee[z)\right) \cap\left(\left(a^{\circ} \varphi \cap b \varphi\right) \vee[z)\right) \\
& \quad=\left(\left(a \varphi \cap b^{\circ} \varphi\right) \vee[z)\right) \cap\left(a^{\circ} \varphi \vee b \varphi \vee[z)\right) \cap\left(\left(a^{\circ} \varphi \cap b \varphi\right) \vee[z)\right) \\
& \quad=[q) \cap\left(\left(a^{\circ} \varphi \cap b \varphi\right) \vee[z)\right)
\end{aligned}
$$

where $[q)=\left(\left(a \varphi \cap b^{\circ} \varphi\right) \vee[z)\right) \cap\left(a^{\circ} \varphi \vee b \varphi \vee[z)\right)$, by Lemma 3.4 (iii). Evidently $[q) \supseteq[z)$. Hence by modularity we get

$$
\begin{aligned}
{[q) } & \cap\left(\left(a^{\circ} \varphi \cap b \varphi\right) \vee[z)\right) \\
& =\left([q) \cap a^{\circ} \varphi \cap b \varphi\right) \vee[z) \\
& =\left([q) \cap\left(a^{\circ} \wedge b\right) \varphi\right) \vee[z) \\
& =\left[t_{1}\right) \vee[z) \text { where }[q) \cap\left(a^{\circ} \wedge b\right) \varphi=\left[t_{1}\right) \text { by Lemma 4.3(i) } \\
& =\left[t_{1} \wedge z\right) \\
& =[p) \text { where } p=t_{1} \wedge z .
\end{aligned}
$$

Since $[p) \supseteq[z) \supseteq\left[x_{0}\right),\left[y_{0}\right)$ and $F(D)$ is modular, we have

$$
\begin{aligned}
\left(\left[x_{0}\right) \vee\right. & \left.\left(a^{\circ} \varphi \cap b \varphi\right)\right) \cap\left(\left[y_{0}\right) \vee\left(b^{\circ} \varphi \cap a \varphi\right)\right) \\
& =\left([p) \cap\left(\left[x_{0}\right) \vee\left(a^{\circ} \varphi \cap b \varphi\right)\right)\right) \cap\left([p) \cap\left(\left[y_{0}\right) \vee\left(b^{\circ} \varphi \cap a \varphi\right)\right)\right) \\
& =\left(\left([p) \cap\left(a^{\circ} \varphi \cap b \varphi\right)\right) \vee\left[x_{0}\right)\right) \cap\left(\left([p) \cap\left(b^{\circ} \varphi \cap a \varphi\right)\right) \vee\left[y_{0}\right)\right) \\
& =\left([v) \vee\left[x_{0}\right)\right) \cap\left([w) \vee\left[y_{0}\right)\right) \text { for some } v, w \in D \\
& =\left[\left(u \wedge x_{0}\right) \vee\left(w \wedge y_{0}\right)\right) \\
& =[t),
\end{aligned}
$$

where $[v)=[p) \cap a^{\circ} \varphi \cap b \varphi,[w)=[p) \cap b^{\circ} \varphi \cap a \varphi$ and $t=\left(u \wedge x_{0}\right) \vee\left(w \wedge y_{0}\right) \in D$.

$4 \quad \underline{K}_{2}$-construction

In this section we generalize the construction of [3, 4] from the so-called $K_{2^{-}}$ algebras to \underline{K}_{2}-algebras. Also we prove that there exists a one-to-one correspondence between \underline{K}_{2}-algebras and \underline{K}_{2}-quadruples.

Definition 4.1 A \underline{K}_{2}-quadruple is (K, D, φ, γ) where
(i) (K, D, φ) is a \underline{K}_{2}-triple, and
(ii) γ is a monomial congruence on D, that is every γ class $[y] \gamma$ has a largest element ($\max [y] \gamma$).

Let $L \in \underline{\mathbf{K}}_{2}$. Then $\left(L^{\circ \circ}, L^{\vee}, \varphi(L)\right)$ is a K_{2}-triple. Let $\gamma(L)$ be the restriction of the congruence Φ on L^{\vee}. Since $\max [x] \gamma=x^{\circ \circ}$, for every $x \in L^{\vee}$. Then $\gamma(L)$ is a monomial congruence on L^{\vee}. We say that $\left(L^{\circ \circ}, L^{\vee}, \varphi(L), \gamma(L)\right)$ is the quadruple associated with L and this quadruple is a \underline{K}_{2}-quadruple.

Theorem 4.2 Let (K, D, φ, γ) be a \underline{K}_{2}-quadruple. Then

$$
L=\left\{\left(a, a^{\circ} \varphi \vee[x)\right): a \in K, x \in D, \max [x] \gamma \in a^{\circ} \varphi\right\}
$$

is a \underline{K}_{2}-algebra if we define

$$
\begin{aligned}
\left(a, a^{\circ} \varphi \vee[x)\right) \wedge\left(b, b^{\circ} \varphi \vee[y)\right) & =\left(a \wedge b,\left(a^{\circ} \varphi \vee[x)\right) \vee\left(b^{\circ} \varphi \vee[y)\right)\right), \\
\left(a, a^{\circ} \varphi \vee[x)\right) \vee\left(b, b^{\circ} \varphi \vee[y)\right) & =\left(a \vee b,\left(a^{\circ} \varphi \vee[x)\right) \cap\left(b^{\circ} \varphi \vee[y)\right)\right), \\
\left(a, a^{\circ} \varphi \vee[x)\right)^{\circ} & =\left(a^{\circ}, a \varphi\right), \\
1_{L} & =(1,[1)), \\
0_{L} & =(0, D) .
\end{aligned}
$$

Moreover, $L^{\circ \circ} \cong K$.
Proof Let $F_{d}(D)$ denote the dual lattice to the modular lattice $F(D)$ of all filters of D. Evidently, L is a subset of the direct product $K \times F_{d}(D)$. We show
first that L is a sublattice of $K \times F_{d}(D)$. Let $\left(a, a^{\circ} \varphi \vee[x)\right),\left(b, b^{\circ} \varphi \vee[y)\right) \in L$. Then

$$
\left(a, a^{\circ} \varphi \vee[x)\right) \wedge\left(b, b^{\circ} \varphi \vee[y)\right)=\left(a \wedge b,(a \wedge b)^{\circ} \varphi \vee[x \wedge y)\right) \in L
$$

because of φ is a lattice homomorphism and

$$
\max [x \wedge y] \gamma=\max [x] \gamma \wedge \max [y] \gamma \in a^{\circ} \varphi \vee b^{\circ} \varphi=(a \wedge b)^{\circ} \varphi
$$

Moreover,

$$
\begin{aligned}
& \left(a, a^{\circ} \varphi \vee[x)\right) \vee\left(b, b^{\circ} \varphi \vee[y)\right) \\
& \quad=\left(a \vee b,\left(a^{\circ} \varphi \vee[x)\right) \cap\left(b^{\circ} \varphi \vee[y)\right)\right) \\
& \quad=\left(a \vee b,(a \vee b)^{\circ} \varphi \vee[t)\right) \text { for some } t \in D, \text { by Theorem 3.5. }
\end{aligned}
$$

Now we prove that $\max [x] \gamma \in a^{\circ} \varphi$ and $\max [y] \gamma \in b^{\circ} \varphi$ implies $\max [t] \gamma \in(a \vee$ $b)^{\circ} \varphi$. From the proof of Theorem 3.5, $t=\left(v \wedge x_{0}\right) \vee\left(w \wedge y_{0}\right)$ where $v \in a^{\circ} \varphi$, $w \in b^{\circ} \varphi, x_{0}=x \wedge d_{a}$ and $y_{0}=y \wedge d_{a}$. Then

$$
t=\left(v \wedge x \wedge d_{a}\right) \vee\left(w \wedge y \wedge d_{b}\right)=\left(x \wedge v_{0}\right) \vee\left(y \wedge w_{0}\right)
$$

where $v_{0}=v \wedge d_{a} \in a^{\circ} \varphi$ and $w_{0}=w \wedge d_{b} \in b^{\circ} \varphi$. Then

$$
\max [t] \gamma \geq\left(\max [x] \gamma \wedge \max \left[v_{0}\right] \gamma\right) \vee\left(\max [y] \gamma \wedge\left[w_{0}\right] \gamma\right) \in a^{\circ} \varphi \cap b^{\circ} \varphi=(a \vee b)^{\circ} \varphi,
$$

because of $\max \left[v_{0}\right] \gamma \geq v_{0} \in a^{\circ} \varphi$ and $\max \left[w_{0}\right] \gamma \geq w_{0} \in b^{\circ} \varphi$ implies $\max \left[v_{0}\right] \gamma \in$ $a^{\circ} \varphi$ and $\max \left[w_{0}\right] \gamma \in b^{\circ} \varphi$, respectively. Then $\left(a \vee b,(a \vee b)^{\circ} \varphi \vee[t)\right) \in L$. Therefore L is a sublattice of $K \times F_{d}(D)$. Hence L is a modular lattice. The order of L is given by

$$
\left(a, a^{\circ} \varphi \vee[x)\right) \leq\left(b, b^{\circ} \varphi \vee[y)\right) \text { iff } a \leq b \text { and } a^{\circ} \varphi \vee[x) \supseteq b^{\circ} \varphi \vee[y)
$$

L is bounded and

$$
(0, D) \leq\left(a, a^{\circ} \varphi \vee[x)\right) \leq(1,[1))
$$

In addition,

$$
\begin{aligned}
\left(a, a^{\circ} \varphi \vee[x)\right) & \leq\left(a, a^{\circ} \varphi\right)=\left(a, a^{\circ} \varphi \vee[x)\right)^{\circ \circ}, \\
\left(\left(a, a^{\circ} \varphi \vee[x)\right) \wedge\left(b, b^{\circ} \varphi \vee[y)\right)\right)^{\circ} & =\left(a, a^{\circ} \varphi \vee[x)\right)^{\circ} \vee\left(b, b^{\circ} \varphi \vee[y)\right)^{\circ}, \\
(1,[1))^{\circ} & =(0, D) .
\end{aligned}
$$

Then L is a modular $G M S$-algebra. Also we get

$$
\begin{aligned}
\left(a, a^{\circ} \varphi\right. & \vee[x)) \wedge\left(a, a^{\circ} \varphi \vee[x)\right)^{\circ} \\
& =\left(a \wedge a^{\circ}, a^{\circ} \varphi \vee[x) \vee a \varphi\right) \\
& =\left(a \wedge a^{\circ}, a^{\circ} \varphi \vee a \varphi\right) \text { as }[x) \subseteq a \varphi \vee a^{\circ} \varphi=D \\
& =\left(a, a^{\circ} \varphi\right) \wedge\left(a^{\circ}, a \varphi\right) \\
& =\left(a, a^{\circ} \varphi \vee[x)\right)^{\circ \circ} \wedge\left(a, a^{\circ} \varphi \vee[x)\right)^{\circ},
\end{aligned}
$$

and

$$
\left(a, a^{\circ} \varphi \vee[x)\right) \wedge\left(a, a^{\circ} \varphi \vee[x)\right)^{\circ} \leq\left(b, b^{\circ} \varphi \vee[y)\right) \vee\left(b, b^{\circ} \varphi \vee[y)\right)^{\circ} .
$$

Hence $L \in \underline{\mathbf{K}}_{2}$. Now,

$$
L^{\circ \circ}=\left\{\left(a, a^{\circ} \varphi \vee[x)\right)^{\circ \circ}:\left(a, a^{\circ} \varphi \vee[x)\right) \in L\right\}=\left\{\left(a, a^{\circ} \varphi\right): a \in K\right\} \cong K
$$

under the isomorphism $\left(a, a^{\circ} \varphi\right) \mapsto a$. Then $L^{\circ \circ}$ is a Kleene algebra. Therefore L is a \underline{K}_{2}-algebra.

Corollary 4.3 From Theorem 4.2, we have
(1) $L^{\vee}=\left\{\left(a, a^{\circ} \varphi \vee[x)\right) \in L: a \in K^{\vee}, x \in D\right\}$,
(2) $D(L)=\{(1,[x)): x \in[1] \gamma, x \in D\}$.

Corollary 4.4 Let (K, D, φ, γ) be a \underline{K}_{2}-quadruple. Then
(1) If D is a distributive lattice, then L described by Theorem 4.2 is a K_{2} algebra;
(2) If K is a Boolean algebra and $\gamma=\iota$, then L described by Theorem 4.2 is a modular S-algebra;
(3) If K is a Boolean algebra, D is a distributive lattice and $\gamma=\iota$, then L described by Theorem 4.2 is a Stone algebra.

We say that $L \in \underline{\mathbf{K}}_{2}$ from Theorem 4.2 is associated with the \underline{K}_{2}-quadruple (K, D, φ, γ) and the construction of L described in Theorem 4.2 will be called a \underline{K}_{2}-construction.

Theorem 4.5 Let $L \in \underline{\mathbf{K}}_{2}$. Let $\left(L^{\circ \circ}, L^{\vee}, \varphi(L), \gamma(L)\right)$ be the \underline{K}_{2}-quadruple associated with L. Then L_{1} associated with $\left(L^{\circ \circ}, L^{\vee}, \varphi(L), \gamma(L)\right)$ is isomorphic to L.

Proof For every $x \in L, x=x^{\circ \circ} \wedge\left(x \vee x^{\circ}\right)$ and by modularity of $F(L)$, we observe
$x^{\circ} \varphi(L) \vee\left[x \vee x^{\circ}\right)=\left(\left[x^{\circ \circ}\right) \cap L^{\vee}\right) \vee\left[x \vee x^{\circ}\right)=L^{\vee} \cap\left(\left[x^{\circ \circ}\right) \vee\left[x \vee x^{\circ}\right)\right)=L^{\vee} \cap[x)$.
We shall prove that the mapping $f: L \rightarrow L_{1}$ defined by

$$
x f=\left(x^{\circ \circ}, x^{\circ} \varphi(L) \vee\left[x \vee x^{\circ}\right)\right)=\left(x^{\circ \circ}, L^{\vee} \cap[x)\right)
$$

is the described isomorphism. Obviously $x f \in L_{1}$, since $\max \left[x \vee x^{\circ}\right] \gamma(L)=$ $\left(x \vee x^{\circ}\right)^{\circ \circ}=x^{\circ \circ} \vee x^{\circ} \in\left[x^{\circ \circ}\right) \cap L^{\vee}=x^{\circ} \varphi(L)$. For every $x, y \in L$,

$$
\begin{aligned}
(x \wedge y) f & =\left((x \wedge y)^{\circ \circ},(x \wedge y)^{\circ} \varphi(L) \vee\left[(x \wedge y) \vee(x \wedge y)^{\circ}\right)\right) \\
& =\left((x \wedge y)^{\circ \circ},(x \wedge y) \cap L^{\vee}\right) \\
x f \wedge y f & =\left(x^{\circ \circ}, x^{\circ} \varphi(L) \vee\left[x \vee x^{\circ}\right)\right) \wedge\left(y^{\circ \circ}, y^{\circ} \varphi(L) \vee\left[y \vee y^{\circ}\right)\right) \\
& =\left(x^{\circ \circ} \wedge y^{\circ \circ}, x^{\circ} \varphi(L) \vee\left[x \vee x^{\circ}\right) \vee y^{\circ} \varphi(L) \vee\left[y \vee y^{\circ}\right)\right) .
\end{aligned}
$$

Since $x=x^{\circ \circ} \wedge\left(x \vee x^{\circ}\right), y=y^{\circ \circ} \wedge\left(y \vee y^{\circ}\right)$ and $\varphi(L)$ is a polarity (see Lemma 3.1), then by modularity of $F(L)$, we have

$$
\begin{aligned}
x^{\circ} \varphi & (L) \vee\left[x \vee x^{\circ}\right) \vee y^{\circ} \varphi(L) \vee\left[y \vee y^{\circ}\right) \\
& =(x \wedge y)^{\circ} \varphi(L) \vee\left[\left(x \vee x^{\circ}\right) \wedge\left(y \vee y^{\circ}\right)\right) \\
& =\left(\left[(x \wedge y)^{\circ \circ}\right) \cap L^{\vee}\right) \vee\left[\left(x \vee x^{\circ}\right) \wedge\left(y \vee y^{\circ}\right)\right) \\
& =L^{\vee} \cap\left(\left[(x \wedge y)^{\circ \circ}\right) \vee\left[\left(x \vee x^{\circ}\right) \wedge\left(y \vee y^{\circ}\right)\right)\right. \\
& =L^{\vee} \cap\left[x^{\circ \circ} \wedge y^{\circ \circ} \wedge\left(x \vee x^{\circ}\right) \wedge\left(y \vee y^{\circ}\right)\right) \\
& =L^{\vee} \cap[x \wedge y) .
\end{aligned}
$$

Then $(x \wedge y) f=x f \wedge y f$. Also,

$$
\begin{aligned}
(x \vee y) f & =\left((x \vee y)^{\circ \circ},[x \vee y) \cap L^{\vee}\right) \\
& =\left(x^{\circ \circ} \vee y^{\circ \circ},[x) \cap[y) \cap L^{\vee}\right) \\
& =\left(x^{\circ \circ} \vee y^{\circ \circ},\left([x) \cap L^{\vee}\right) \cap\left([y) \cap L^{\vee}\right)\right) \\
& =\left(x^{\circ \circ},[x) \cap L^{\vee}\right) \vee\left(y^{\circ \circ},[y) \cap L^{\vee}\right) \\
& =x f \vee y f
\end{aligned}
$$

and $0 f=\left(0, L^{\vee}\right), 1 f=(1,[1))$. Then f is a $(0,1)$-lattice homomorphism.
Now,

$$
\begin{aligned}
(x f)^{\circ} & =\left(x^{\circ \circ}, x^{\circ} \varphi(L) \vee\left[x \vee x^{\circ}\right)\right)^{\circ} \\
& =\left(x^{\circ}, x^{\circ \circ} \varphi(L)\right) \\
& =\left(x^{\circ},\left[x^{\circ}\right) \cap L^{\vee}\right) \\
& =x^{\circ} f,
\end{aligned}
$$

hence f is a homomorphism of \underline{K}_{2}-algebras.
Now assume $x_{1} f=x_{2} f$. Then $\left(x_{1}^{\circ \circ},\left[x_{1}\right) \cap L^{\vee}\right)=\left(x_{2}^{\circ \circ},\left[x_{2}\right) \cap L^{\vee}\right)$. It follows that $x_{1}^{\circ \circ}=x_{2}^{\circ \circ}$ and $\left[x_{1}\right) \cap L^{\vee}=\left[x_{2}\right) \cap L^{\vee}$. Now

$$
\begin{aligned}
{\left[x_{1}\right) } & =\left[x_{1}^{\circ \circ} \wedge\left(x_{1} \vee x_{1}^{\circ}\right)\right) \\
& =\left[x_{1}^{\circ \circ}\right) \vee\left[x_{1} \vee x_{1}^{\circ}\right) \\
& =\left[x_{1}^{\circ \circ}\right) \vee\left(L^{\vee} \cap\left[x_{1} \vee x_{1}^{\circ}\right)\right) \text { as } x_{1} \vee x_{1}^{\circ} \in L^{\vee} \\
& =\left[x_{1}^{\circ \circ}\right) \vee\left(L^{\vee} \cap\left[x_{1}\right) \cap\left[x_{1}^{\circ}\right)\right) \\
& =\left[x_{2}^{\circ \circ}\right) \vee\left(L^{\vee} \cap\left[x_{2}\right) \cap\left(x_{2}^{\circ}\right)\right) \\
& =\left[x_{2}^{\circ \circ}\right) \vee\left(L^{\vee} \cap\left(x_{2} \vee x_{2}^{\circ}\right)\right) \\
& =\left[x_{2}^{\circ \circ}\right) \vee\left[x_{2} \vee x_{2}^{\circ}\right) \text { as } x_{2} \vee x_{2}^{\circ} \in L^{\vee} \\
& =\left[x_{2}^{\circ \circ} \wedge\left(x_{2} \vee x_{2}^{\circ}\right)\right) \\
& =\left[x_{2}\right) .
\end{aligned}
$$

Consequently, $x_{1}=x_{2}$ and f is injective. It remains to prove that f is surjective. Let $\left(x^{\circ \circ}, x^{\circ} \varphi(L) \vee[z)\right) \in L_{1}$, that is $z^{\circ \circ}=\max [z] \gamma(L) \in x^{\circ} \varphi(L)=\left[x^{\circ \circ}\right) \cap L^{\vee}$. Then by modularity of $F(L)$ we get

$$
\left(x^{\circ \circ}, x^{\circ} \varphi(L) \vee[z)\right)=\left(x^{\circ \circ},\left(\left[x^{\circ \circ}\right) \cap L^{\vee}\right) \vee[z)\right)=\left(x^{\circ \circ}, L^{\vee} \cap\left[x^{\circ \circ} \wedge z\right)\right)
$$

Set $h=x^{\circ \circ} \wedge z$. Then $h^{\circ \circ}=x^{\circ \circ} \wedge z^{\circ \circ}=x^{\circ \circ}$ and consequently

$$
\left(x^{\circ \circ}, x^{\circ} \varphi(L) \vee[z)\right)=\left(h^{\circ \circ},[h) \cap L^{\vee}\right)=\left(h^{\circ \circ}, h^{\circ} \varphi(L) \vee\left[h \vee h^{\circ}\right)\right)=h f .
$$

Thus f is an isomorphism.

5 Isomorphisms

In this section we define an isomorphism between two \underline{K}_{2}-quadruples and we show that two \underline{K}_{2}-algebras are isomorphic if and only if their associated $\underline{K}_{2}{ }^{-}$ quadruples are isomorphic.

Definition 5.1 An isomorphism of the \underline{K}_{2}-quadruples (K, D, φ, γ) and (K_{1}, D_{1}, $\left.\varphi_{1}, \gamma_{1}\right)$ is a pair (f, g), where f is an isomorphism of K and K_{1}, g is an isomorphism of D and D_{1} such that $x \equiv y(\gamma)$ iff $x g \equiv y g\left(\gamma_{1}\right)$ for all $x, y \in D$ and the diagram

commutes $\left(F(g)\right.$ stands for the isomorphism of $F(D)$ and $F\left(D_{1}\right)$ induced by $\left.g\right)$.
Theorem 5.2 Let $L, M \in \underline{\mathbf{K}}_{2}$. Then $L \cong M$ if and only if

$$
\left(L^{\circ \circ}, L^{\vee}, \varphi(L), \gamma(L)\right) \cong\left(M^{\circ \circ}, M^{\vee}, \varphi(M), \gamma(M)\right)
$$

Proof Let $\theta: L \rightarrow M$ be an isomorphism. We have two isomorphisms, $f: L^{\circ \circ} \rightarrow M^{\circ \circ}$ defined by $x f=x \theta$ and $g: L^{\vee} \rightarrow M^{\vee}$ defined by $x g=x \theta$. Now define $F(g): F\left(L^{\vee}\right) \rightarrow F\left(M^{\vee}\right)$ by $A F(g)=\{a \theta: a \in A\}$.

For every $a \in L^{\circ \circ}$, we have

$$
\begin{aligned}
(a f) \varphi(M) & =(a \theta) \varphi(M)=\left[(a \theta)^{\circ}\right) \cap M^{\vee} \\
a \varphi(L) F(g) & =\left(\left[a^{\circ}\right) \cap L^{\vee}\right) F(g)=\left\{y \theta: y \in\left[a^{\circ}\right) \cap L^{\vee}\right\}=\left[(a \theta)^{\circ}\right) \cap M^{\vee} .
\end{aligned}
$$

For $x, y \in L^{\vee}, x \equiv y(\gamma(L))$ iff $x^{\circ \circ}=y^{\circ \circ}$ iff $x^{\circ \circ} \theta=y^{\circ \circ} \theta$ iff $(x g)^{\circ \circ}=(x \theta)^{\circ \circ}=$ $x^{\circ \circ} \theta=y^{\circ \circ} \theta=(y \theta)^{\circ \circ}=(y g)^{\circ \circ}$. Hence $x g \equiv y g(\gamma(M))$. Then (f, g) is a $\underline{K}_{2}{ }^{-}$ quadruple isomorphism. Conversely, we have to show that the isomorphism (f, g) of \underline{K}_{2}-quadruples ($\left.L^{\circ \circ}, L^{\vee}, \varphi(L), \gamma(L)\right)$ and ($\left.M^{\circ \circ}, M^{\vee}, \varphi(M), \gamma(M)\right)$ implies the existence of an isomorphism $h: L \rightarrow M$, between \underline{K}_{2}-algebras L, M constructed by \underline{K}_{2}-construction. We claim that

$$
\left(a, a^{\circ} \varphi(L) \vee[x)\right) h=\left(a f,(a f)^{\circ} \varphi(M) \vee[x g)\right)
$$

is the desired isomorphism. Firstly we note that

$$
(\max [x] \gamma(L)) g=\max [x g] \gamma(M) \text { for all } x \in L^{\vee}
$$

Then

$$
\max [x g] \gamma(M)=(\max [x] \gamma(L)) g \in\left(a^{\circ} \varphi(L)\right) F(g)=(a f)^{\circ} \varphi(M)
$$

as $\max [x] \gamma(L) \in a^{\circ} \varphi(L)$. Hence h is well defined.
Since f and $F(g)$ are isomorphisms, then we get

$$
\begin{aligned}
&\left(a, a^{\circ} \varphi(L) \vee[x)\right) \leq\left(b, b^{\circ} \varphi(L) \vee[y)\right) \\
& \Leftrightarrow a \leq b, a^{\circ} \varphi(L) \vee[x) \supseteq b^{\circ} \varphi(L) \vee[y) \\
& \quad \Leftrightarrow a f \leq b f,\left(a^{\circ} \varphi(L) \vee[x)\right) F(g) \supseteq\left(b^{\circ} \varphi(L) \vee[y)\right) F(g) \\
& \quad \Leftrightarrow a f \leq b f,\left(a^{\circ} \varphi(L)\right) F(g) \vee[x) F(g) \supseteq\left(b^{\circ} \varphi(L)\right) F(g) \vee[y) F(g) \\
& \quad \Leftrightarrow a f \leq b f,(a f)^{\circ} \varphi(M) \vee[x g) \supseteq(b f)^{\circ} \varphi(M) \vee[y g) \\
& \quad \Leftrightarrow\left(a f,(a f)^{\circ} \varphi(M) \vee[x g)\right) \leq\left(b f,(b f)^{\circ} \varphi(M) \vee[y g)\right) \\
& \quad \Leftrightarrow\left(a, a^{\circ} \varphi(L) \vee[x)\right) h \leq\left(b, b^{\circ} \varphi(L) \vee[y)\right) h .
\end{aligned}
$$

Thus, since h is a bijection, h is an isomorphism.
In a subsequent paper, we shall consider homomorphisms, subalgebras and congruence pairs of \underline{K}_{2}-algebras.

Acknowledgement The author would like to thank the referee for his/her useful comments and valuable suggestions given to this paper.

References

[1] Badawy, A., Guffová, D., Haviar, M.: Triple construction of decomposable MS-algebras. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 51, 2 (2012), 35-65.
[2] Birkhoff, G.: Lattice Theory. 3rd edition, Amer. Math. Soc. Colloq. Pub. 25, Amer. Math. Soc., Providence, R.I., 1967.
[3] Blyth, T. S., Varlet, J. C.: On a common abstraction of De Morgan algebras and Stone algebras. Proc. Roy. Soc. Edinburgh A 94 (1983), 301-308.
[4] Blyth, T. S., Varlet, J. C.: Sur la construction de certaines MS-algèbres. Portugaliea Math. 39 (1980), 489-496.
[5] Blyth, T. S., Varlet, J. C.: Corrigendum "Sur la construction de certaines MS-algèbres". Portugaliea Math. 42 (1983/84), 469-471.
[6] Chen, C. C., Grätzer, G.: Stone lattices I, Construction theorems. Canad. J. Math. 21 (1969), 884-894.
[7] Chen, C. C., Grätzer, G.: Stone lattices II, Structure theorems. Canad. J. Math. 21 (1969), 895-903.
[8] Haviar, M.: On a certain construction of MS-algebras. Portugliae Mathematica 51 (1994), 71-83.
[9] Katriňák, T.: Die Konstruktion der distributiven pseudokomplementären verbande. Math. Nachrichten 53 (1972), 85-89.
[10] Katriňák, T., Mederly, P.: Construction of modular p-algebras. Algebra Univ. 4 (1974), 301-315.
[11] Katriňák, T., Mikula, K.: On a construction of MS-algebeas. Portugliae Mathematica 45 (1978), 157-163.
[12] Ševčovič, D.: Free non-distributive Morgan-Stone algebras. New Zealand J. Math. 25 (1996), 85-94.

