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Abstract

In this paper we investigate the class of all modular GMS-algebras
which contains the class of MS-algebras. We construct modular GMS-
algebras from the variety K, by means of K,-quadruples. We also char-
acterize isomorphisms of these algebras by means of K,-quadruples.
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1 Introduction

T. S. Blyth and J. C. Varlet [2] have studied the variety of MS-algebras as a
common abstraction of de Morgan algebras and Stone algebras. D. Sevcovic
[12] investigated a larger variety of algebras containing MS-algebras, the so-
called generalized MS-algebras (GMS-algebras). In such algebras the distribu-
tive identity need not be necessarily satisfied. In [4] T. S. Blyth and J. C. Varlet
presented a construction of some MS-algebras from the subvariety Ko (the so-
called K»-algebras) from Kleene algebras and distributive lattices. This was a
construction by means of triples which were successfully used in construction of
Stone algebras (see [6], [7]), distributive p-algebras (see [9]), modular p-algebras
(see [10]), etc. T. S. Blyth and J. V. Varlet [5] improved their construction
from [4] by means of quadruples and they showed that each member of K,
can be constructed in this way. In [8] M. Haviar presented a simple quadruple
construction of Ks-algebras which works with pairs of elements only. He also
proved that there exists a one-to-one correspondence between locally bounded
Ky-algebras and decomposable Ks-quadruples. Recently, A. Badawy, D. Guf-
fovd and M. Haviar [1] introduced the class of decomposable MS-algebras. They
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presented a triple construction of decomposable MS-algebras. Moreover, they
proved that there exists a one-to-one correspondence between the decomposable
MS-algebras and the decomposable MS-triples.

The aim of this paper is to investigate a subvariety of GMS-algebras contain-
ing the variety of MS-algebras, the so-called modular GMS-algebras. We con-
struct modular GMS-algebras from the variety K, (K,-algebras) from Kleene
algebras and modular lattices by means of K,-quadruples. Also we define an
isomorphism between two K,-quadruples and we show that two K,-algebras
are isomorphic if and only if their associated K ,-quadruples are isomorphic.

2 Preliminaries

An MS-algebra is an algebra (L; V, A,°,0,1) of type (2,2,1,0,0) where (L; V, A,
0,1) is a bounded distributive lattice and the unary operation ° satisfies

x <z (zAy)°=z2°Vy°, 1°=0.

The class MS of all MS-algebras forms a variety. The members of the
subvariety M of MS defined by the identity = z°° are called de Morgan
algebras and the members of the subvariety K of M defined by the identity
x Ax® < yVy° are called Kleene algebras. The subvariety Ko of MS is defined
by the additional two identities

xAz® =x°AN2°, xAx°<yVy°.

The class S of all Stone algebras is a subvariety of MS and is characterized
by the identity z A x° = 0. The subvariety B of MS characterized by the
identity = V 2° =1 is the class of Boolean algebras.

A generalized de Morgan algebra (or GM-algebra) is a universal algebra
(L;V,A,7,0,1) where (L; V, A, 0, 1) is a bounded lattice and the unary operation
of involution ~ satisfies the identities

GMi:z=2"", GMsy:(zANy)" =x2" Vy , GMs:1" =0.

A modular GM-algebra L is a GM-algebra where (L; V, A, 0,1) is a modular
lattice. A modular generalized Kleene algebra (modular GK-algebra) L is a
modular GM-algebra satisfying the identity x A 2° < z V y°.

A generalized MS-algebra (or GMS-algebra) is a universal algebra (L; V, A,°,
0,1) where (L; V, A, 0,1) is a bounded lattice and the unary operation ° satisfies
the identities

GMSy:x <z°°, GMSsy: (xANy)°=2°Vy®, GMS;3:1°=0.

The class of all GM-algebras is a subvariety of the variety of all GMS-
algebras.

A modular GMS-algebra is a GMS-algebra (L; V, A,°,0,1) where (L; V, A, 0,1)
is a modular lattice.
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The class of all modular GMS-algebras forms a variety. The class MS is a
subvariety of the variety of all modular GMS-algebras. Then the varieties B,
M, S and K, are subvarieties of the variety of all modular GMS-algebras.

The class S of all modular S-algebras is a subvariety of the variety of all
modular GMS-algebras and is characterized by the identity x A z° = 0. It is
known that the class S is a subvariety of S.

The main immediate consequences of these axioms are summarized in the
following result.

Lemma 2.1 Let L be a GMS-algebra. Then we have

(1) 0°=1,
(2) x <y implies x° > y°,
(3) xo — xOOO

o

(4) @Vy)
(5) (2 Ay)™ =a% Ay,
(6) (xVy)™ =a% vy,

Consequently, if L is a modular GMS-algebra, then the set L°° = {z € L: 2°° =
x} is a modular GM-algebra and a subalgebra of L such that the mapping
x — x°° is a homomorphism of L onto L°°, and D(L) = {z € L: 2° =0} is a
filter of L, the elements of which are called dense.

For an arbitrary lattice L, the set F'(L) of all filters of L ordered under set
inclusion is a lattice. It is known that F'(L) is a modular lattice if and only if
L is modular. Let a € L; [a) denotes the filter of L generated by a.

For any modular GMS-algebra L, the relation ® defined by

zVy)°® =a°ANy°,

r=y (®) & 2=y

is a congruence relation on L and L/® = L°° holds. Each congruence class con-
tains exactly one element of L°° which is the largest element in the congruence
class, the largest element of [z]® is x°° which is denoted by max[z]®. Hence
® partition L into {F,: ¢ € L°°}, where F, = {z € L: 2°° = ¢}. Obviously,
Fy={0} and Fy ={x € L: 2°° =1} = D(L).

Now we introduce certain modular GMS-algebras, which are called K,-
algebras.

Definition 2.2 A modular GMS-algebra L is called a K,-algebra if L°° is a
distributive lattice and L satisfies the identities £ A z° = 2°° A z° and 2 A 2° <

yVy°.

The class K, of all K,-algebras contains the class Ky. Clearly, the classes
S, S, M, K and B are subclasses of the class K.

Theorem 2.3 Let L € K,. Then
(1) x=2a°° N(xzVa°) for everyx € L,



22 Abd EI-Mohsen BADAWY

(2) L°° ={x € L:x =2z} is a Kleene algebra,

(3) LN ={anz°:xe€L}={xeL:ax <z} is an ideal of L,
(4) LV ={xzVvz*:xeL}={zx € L: x>z} is a filter of L,
(5) D(L)={x € L: 2° =0} is a filter of L and D(L) C L".

Proof (1) Since x < z°°, then by modularity of L we get

2°AN(xVva®) = (z°°ANz°)Va
= (x A x°) V 2 by Definition 2.2

= X.

(2) It is obvious.

(3) Clearly 0 € L". Let =,y € L™. Then x < z° and y < y°. By Definition
22 wegetz =xANz® < yVy® =y It follows that z° > y°° > y. Then
x° A y°® > x,y implies z° Ay° > 2V y. Now

(zVy) A(zVy)® =(@Vy A(z°Ay°)=aVy.

Consequently z Vy < (zVy)° and z Vy € L". Let z € L™ be such that z < x
for some z € L. Then z < < 2° < 2°. Hence z € L. Then L” is an ideal
of L.

(4) By duality of (3).

(5) It is obvious. O

Corollary 2.4 Let L be a modular GMS-algebra. Then for all x € L the fol-
lowing conditions are equivalent:

(1) x=2xz°NA(zVz°),

(2) xAx® =z Aaz°.

Now we reformulate the definition of polarization given in [Definition 1(iii),
11] as follows.

Definition 2.5 Let K be a Kleene algebra and D be a modular lattice with 1.
A mapping p: K — F(D) is called a polarization if ¢ is a (0,1)-homomorphism
such that ap = D for every a € KV and a¢ is a principal filter of D for every
ae KM

3 The triple associated with a K,-algebra

Let L € K,. LV is a filter of L, and LV is a modular lattice with the largest
element 1. So F(LV) is also a modular lattice. Consider the map ¢(L): L°° —
F(LV) defined by the following way

ap(Ly={reLY:z>a’}=[a®)NLY, aecL.

Lemma 3.1 Let L € K,. Then ¢(L) is a polarization of L°° into F(LV).
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Proof It is easy to check that Op(L) = [1), 1p(L) = LY and (a A b)p(L) =
ap(L)Nbp(L). Now we show that (aVb)p(L) = ap(L)Vbp(L). Since a,b < aVb,
then ap(L) V bp(L) C (a V b)p(L). For the converse, let t € (a V b)p(L) =
[a®° AL°)NLY. Put x = aV(a®At). Then 2° = a®°A(aVi®) = (a°Aa)V (a® At°) <
aV (a® At) = x since L°° is distributive and ¢° < t. Thus 2 € LY. Moreover,

a® A (B°Va)=a® AB°V(aV(a® At))) = (a® A(aV b))V (a® AL) <L,

since a® A (a V1°) = (a®° Aa)V (a® Ab°) < t. Now, t € [a°) V [b°Vz) C
[a®) Vv ([b°) N LY). But ¢t € LY and F(L) is a modular lattice, hence

te([a®) vV (P)NLY)NLY = ([a®) N LY) v ([b°) N LY) = ap(L) V bp(L).

Thus (L) is (0,1)-lattice homomorphism. If a € L°°; then (a V a®)p(L)
[a° Aa)N LY = LY and (a A a®)p(L) = [a® V a). Then ¢ is a polarization. O

Definition 3.2 A triple (K, D, ) is said to be a K,-triple if
(1) (K;V,A,0,1) is a Kleene algebra,

(2) D is a modular lattice with 1,

(3) ¢: K — F(D) is a polarization.

Let L be a Ky-algebra. Then (L°°, LY, p(L)) is the triple associated with L and
this triple is a K ,-triple.

Lemma 3.3 Let (K, D, ) be a Ky-triple. Then we have
ap N (bp V ep) = (ap Nbp) V (ap Nep) for every a,b,c € K.

Lemma 3.4 Let (K, D, ) be a Ky-triple. Then we have

(i) for every a € K and for every y € D there exists an element t € D such
that

apNly) =1t),
(ii) for every a € K and for every y € D there exists an element t € a°p such
that
ap V[y) = ap V [t),
(iii) for every a,b € K and for every y € D there exists an element t € D such
that
((apNb°0) V[y)) N (a®p Vb V [y)) = [t).

Proof For any a € K, there is d, € D such that (a Aa®)p = apNa®p =[d,)
as a Aa® € K" and ¢ is a polarization. Recall that F(D) is a modular lattice.

(i). Foralla € K,aNa® € K",aVa® € KY. Then there exists d, € D
such that ap Na®p = [d,) and ap V a®p = (a V a®)p = D. Therefore, there
exist elements x1 € ay and 21 € a°yp such that x1,27 < d, and 1 A 27 < .
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We notice that 1 V 21 € ap N a®p. Hence 1 V 21 = d,. We claim ¢t = 21 V y.
Clearly ¢ € ap N [y). Conversely, let v € ap N [y). Then

> (vAz1)Vy

(vAz1)V(r1 Az1))Vy

(((vAx1)V 21) A1) Vy by modularity of D

(da A1) VY

=xz1Vyas (VAxy)V 2z =dg > 2.

Hence v > 21 V y = t, and therefore ap N [y) = [¢).
(ii). It is enough to show that a®°pN(apV]y)) = [t), for some t € D since then

tea’pand [t)Vap = (a®pN(apV[y)))Vap = (apVy))N(a®pVap) = apVy),
from modularity of FI(D). Let x1 € ay, z1 € a®p, 1 A z1 <y and x1,21 < d,.
We claim that t = z; V (z1 A y). Evidently, ¢t € a°p N (ap V [y)). Conversely,
let v € a®o N (ap V [y)). Then v > v A 21 € a®p and there is © € ap with
v>x Ay > (xAxi)Ay. Denote zo = v A 21 and xg = x A x1. Hence

v> (o AY)Vzo> (o Az1 Az1)Vzg= (o Az1)Vzo= (2o V 20) A 21 = 21,

because g V zg = d, > z1. This implies

oV (T1 A z1))AY)V 21
ToV21) ANT1 AY)V 21
TIAY)VzrasaxgVz =dg 221Ny

So, v >t and a®p N (ap V [y)) = [t).
(iii). From (ii) there exists y1 € ay such that [y1) V a®p = [y) V a®°¢. Using
Lemma 3.3 and modularity of F/(D), we get

((ap N %) V [y)) N (a9 V bp V [y))

= ((apNd°p) N (a®p Vb V[y))) Vy)
= ((apNb°p) N (a®p VooV [y1))) V [y)
= (¢ N(apn(a®pVbeViy))))Vy)

NV

N ((apn(a®p Vb)) Viy))) V[y)
b’ N ([da) V (ap Nbp) V [y1)))
b2 N (ap N (bp V [y1 Ada)))) V [y)
ap N [t)) V[y)
t2) V[y)
ta A y).

where t1,t2 € D are such elements that 5°¢ N (b V [y1 A dy)) = [t1) (see the
proof of (ii)), ap N [t1) = [t2) from (i). Thus t =t A y. O

(
(
(
(0%
(
(
= (
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Theorem 3.5 Let (K, D, ) be a K,-triple. Then for any a,b € K and x,y €
D there exists an element t € D such that

(@ V)N (e Vy) = (aVb)°e Vi)

Proof Let a,b € K and z,y € D. It is enough to show that there is t € D
such that

(@ V)N (e VIy) N(anb)e =t)

because then

)V (aVb)°e = ((a®eV[z)) N (0% V [y)) N (aAb)p)V(aVb)°p

by modularity of F(D) and since (aVb)¢ V (aV b)°¢ = D. In accordance with
Lemma 3.4, we can suppose = € ap and y € bp. Then by Lemma 3.3 and by
modularity of F (D),

(a®p V [z )) (0°pVy)N(aVb)e

((a®p Vv [z)) N (ap Vbp)) N ((0°¢ V [y)) N (ap V by))
(°tpﬂ(a<p\/b<p)) [2)) N ((b°¢ N (ap V b)) V [y))
(a®pNap) VvV (a®pNbp) V[z)) N((0°pNap) vV (b°pNbe) V [y))
[da A2) V (a®p N bp)) N ([dy Ay) V (b0 Nap))

where d,, dj, are as in the proof of Lemma 3.4. Denote xg =z Adgy, yo =y Adp
and xg A yo = z. We first show that

((apNb°p) v [2)) N ((a®p Nbp) V [2)) = [p),

for some p € D. Since a®p V by 2 a’p Nbp, we can write

((apNb°p) V [2)) N ((a®p Ndp) V [2))
= ((apNb°p) V[2)) N (a®o Vbp V [2)) N ((a®p Nbp) V [2))
= [g) N ((a®pNbp) V [2))

where [q) = ((apNb°p) V [2)) N (a®p Vbp V [2)), by Lemma 3.4 (iii). Evidently
[9) 2 [z). Hence by modularity we get

[9) N ((e®pNbp) V [2))

= ([9) Na®pNbe) v [2)

— ([) " (@ A D) V [2)
= [t1) V [2) where [q) N (a® Ab)¢ = [t1) by Lemma 4.3(i)

= [tl /\Z)

= [p) where p =t A z.

(
(
(
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Since [p) 2 [2) 2 [z0), [yo) and F(D) is modular, we have

([z0) V (a® N b)) N ([yo) V (b°p Nag))

(Ip) N ([zo0) V (a®p N b)) N ([p) N ([yo) V (b°¢ N ag)))
= (([p) N (@ Nbp)) V [z0)) N (([p) N (B% N ap)) V [yo))
([v) V [z0)) N ([w) V [yo)) for some v, w € D

where [v) = [p) NapNbyp, [w) =[p)Nb°pNap and t = (uAxzo) V(wAYy) € D.
O

4 K,-construction

In this section we generalize the construction of [3, 4] from the so-called Ks-
algebras to K ,-algebras. Also we prove that there exists a one-to-one corre-
spondence between K,-algebras and K,-quadruples.

Definition 4.1 A K,-quadruple is (K, D, ¢,~) where

(i) (K, D, ) is a K,-triple, and

(ii) 7 is a monomial congruence on D, that is every ~ class [y]y has a largest

element (max[y]y).

Let L € K,. Then (L°°, LY, ¢(L)) is a Ko-triple. Let (L) be the restriction
of the congruence ® on LY. Since max[z]y = z°°, for every z € LY. Then
v(L) is a monomial congruence on LY. We say that (L°°, LY, p(L),~(L)) is the
quadruple associated with L and this quadruple is a K ,-quadruple.

Theorem 4.2 Let (K, D, ¢,7) be a K,-quadruple. Then
L={(a,a°pV[2)): a € K,z € D,max[z]y € a®°p}

is a Ky-algebra if we define

(a,a° V [2)) A (0,0°¢ V [y)) = (aADb,(a®pV [z)) V (b°¢ V [y))),
(a,a%p V [2)) V (b,0°¢p V [y)) = (a Vb, (a®p V [2)) N ¢V [y))),
(a,a°p V [1))° = (a°, ap),
1p = (1,]1)),
0, = (0, D).

Moreover, L°° = K.

Proof Let F;(D) denote the dual lattice to the modular lattice F/(D) of all
filters of D. Evidently, L is a subset of the direct product K x Fz(D). We show
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first that L is a sublattice of K x Fy(D). Let (a,a’p V [x)), (b,b°¢ V [y)) € L.
Then

(a,0° V [2)) A (0,0 V [y)) = (a A D, (aAD) @V [z Ay)) € L,
because of ¢ is a lattice homomorphism and

max[z A y|y = max[z|y A max[yly € a®o Vb°p = (a Ab)°p

Moreover,
(a,a%p V [x)) V (b,0°¢ V [y))
= (aVb,(a®p [)) (0°¢ Vv [y)))
= (aVb,(aVb)°pVI]t)) for some ¢t € D, by Theorem 3.5.

Now we prove that max[z]y € a°¢ and max[y]y € b°p implies max[t]y € (a V
b)°¢. From the proof of Theorem 3.5, t = (v A zg) V (w A yp) where v € a°p,
w € b%p, xg = Ad, and ygp =y A d,. Then

t=WAxAd,)V (wAyANdy) = (zAvg)V (yAwp)
where vg = v Ad, € a°p and wyg = w A dy € b°p. Then
max[t]y > (max[z]y A max[voly) V (max[yly A fwoly) € a®p Nb°p = (aV b)°p,

because of max[vg]y > vg € a®p and max[wg]y > wp € b°p implies max[vg]y €
a®p and max|wo]y € b°y, respectively. Then (aVb, (aVb)°pV|[t)) € L. Therefore
L is a sublattice of K x F;(D). Hence L is a modular lattice. The order of L is
given by

(a,a’p V[z)) < (b,b°¢ V[y)) if a <band a®p V]z) DbV [y).

L is bounded and
(0,D) < (a,a°p V [z)) < (1,[1)).
In addition,

(a,a% V [z)) < (a,a%) = (a,a%¢ V [2))*°,
((a,a% V [2)) A (0,09 V [y)))" = (a0 V [2))° V (b, b°¢ V [))°,
(1,[1))" = (0, D).

Then L is a modular GMS-algebra. Also we get

(a,a% Vv [2)) A (a0 V [2))°
aNa’,a’oV[z)Vap)

(

(ana®,a’pVap)as[z) CapVa®p=D
(a,a’p) A (a®, ap)
(

a,a®pV [2))*° A (a,a®p V [2))°,
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and
(a,a%p V [2)) A(a,a%p V [x))° < (b,6°0 V [y)) V (b,0°¢ V [y))°.
Hence L € K,. Now,

L°° ={(a,a®p V [2))°°: (a,a°p V [2)) € L} = {(a,a°p): a € K} 2 K

under the isomorphism (a,a°p) +— a. Then L°° is a Kleene algebra. Therefore
L is a K ,-algebra. O
Corollary 4.3 From Theorem 4.2, we have

(1) LY ={(a,a°pV [z)) € L: a € K",z € D},

(2) D(L) ={(1L,[z)): = € [I]y,x € D}.

Corollary 4.4 Let (K, D,¢,v) be a K,-quadruple. Then

(1) If D is a distributive lattice, then L described by Theorem 4.2 is a Ka-
algebra;

(2) If K is a Boolean algebra and v =, then L described by Theorem 4.2 is a
modular S-algebra;

(8) If K is a Boolean algebra, D is a distributive lattice and v = ¢, then L
described by Theorem 4.2 is a Stone algebra.

We say that L € K, from Theorem 4.2 is associated with the K ,-quadruple
(K, D, p,~) and the construction of L described in Theorem 4.2 will be called
a K ,-construction.

Theorem 4.5 Let L € K,. Let (L°°, LY, p(L),~v(L)) be the K,-quadruple as-
sociated with L. Then L1 associated with (L°°, LY ¢(L),v(L)) is isomorphic
to L.

Proof For every x € L, x = 2°° A (x V 2°) and by modularity of F(L), we
observe

2°o(L)V]zVa®)=([z°°)NLY)V[zVvz®)=L"N([z°°)V[zVz°)) =LY N[z).
We shall prove that the mapping f: L — L; defined by
af = (2°°,2°p(L) V [z V 2°)) = (z°°, LY N [z))

is the described isomorphism. Obviously zf € L;, since max[z V z°]y(L) =
(xVa®)°° =x°Va® € [z°°)NLY =a°p(L). For every z,y € L,

(@Ay)f = ((@Ay)* (@Ay)°e(L)VI(@Ay)V(zAy)))
= ((zAy) [z Ay)NLY),
af Nyf = (2°%,2%p(L) V [z Va®)) Ay, y°e(L) V [y Vy°))
(

2 Ny, 2%p(L) V [z Va®) VY e(L) Viy Vy©)).
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Since z = z°° A (x Vz°), y = y°° A (y Vy°) and (L) is a polarity (see Lemma
3.1), then by modularity of F'(L), we have
2p(L)V [z vV a®) V(L) V Iy Vy°)

= (e Ay)°e(L)V[(xVa®) Ay Vy°))

= ((@Ay)>)nLY) V[ Vva®) Ay Vy))
LY N ([(zAy)*) VI Va) Ay Vy))

= LYN[z° Ay Az Vz°)A(yVy°))

=LYN[zAy).
Then (z Ay)f =zf Ayf. Also,

(xVyf = ((:EVy)""JmVy )N LY)

= (@ vy, [z)Nly)NLY)

= (Vg ([2)nLY) N ([y) N LY))
= (@, [x)NLY) v (y*°,[y) N LY)
=zfVyf

and 0f = (0,LY), 1f = (1,[1)). Then f is a (0,1)-lattice homomorphism.
Now,

(xf)? = (%, 2°%(L) V [z Vv a°))°
= (2°,2%p(L))
= («°,[2°)NLY)
= a°f,
hence f is a homomorphism of K ,-algebras.
Now assume z1f = zaf. Then (z9°,[z1) N LY) = (25°, [z2) N LY). It follows
that z9° = 25° and [z1) N LY = [x2) N LY. Now

[21) = [27° A (21 V 27))
= [27°) V [z1 V 27)
= [2°)V (LY N[zyVas))asx Va) €LY
= [21°) V(LY N [z1) N [27))
= [23°) V(LY N [22) N [23))
= [23°) V(LY N[22 V 23))
= [25°)V[zaVad) as za Va5 € LY
= [25° A (22 V 23))
[2).

Consequently, 1 = x5 and f is injective. It remains to prove that f is surjective.
Let (z°°,2°p(L) V [2)) € L1, that is 2°° = max[z]y(L) € x°p(L) = [z°°) N L.
Then by modularity of F(L) we get

(z%°, 2% (L) V [2)) = (2%, ([z°°) N LY) V [2)) = (z°, LY N [z°° A 2)).
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Set h = 2°° A z. Then h°°® = x°° A 2°° = z°° and consequently
(@°%, 2% (L) V [2)) = (h°°, [R) N LY) = (h°°,h°p(L) V [V h°)) = hf.

Thus f is an isomorphism. O

5 Isomorphisms

In this section we define an isomorphism between two K,-quadruples and we
show that two K ,-algebras are isomorphic if and only if their associated K-
quadruples are isomorphic.

Definition 5.1 An isomorphism of the K,-quadruples (K, D, ¢,~) and (K1, D1,
©1,71) is a pair (f, g), where f is an isomorphism of K and K7, g is an isomor-
phism of D and D, such that = y(v) iff zg = yg(v1) for all z,y € D and the
diagram

K%~ F(D)

f[ 7o)

K —> F(Dy)
commutes (F'(g) stands for the isomorphism of F'(D) and F'(D;) induced by g).
Theorem 5.2 Let L, M € K,. Then L = M if and only if
(L%, LY p(L),y(L)) = (M°°, MY, o(M),v(M)).

Proof Let 6: L — M be an isomorphism. We have two isomorphisms,
f: L°° — MP°° defined by zf = 20 and ¢g: LV — MV defined by zg = x0.
Now define F(g): F(LY) — F(M") by AF(g) = {af: a € A}.
For every a € L°°, we have

(af)p(M) = (ad)p(M) = [(ad)*) N M,

ap(L)F(g) = ([a®) NLY)F(g) = {yf: y € [a®) N L"} = [(ad)®) N M.
For z,y € LY, x = y(y(L)) iff 2°° = y°° iff x°°0 = y°°0 iff (zg)°° = (26)°° =
z°°0 = y°°0 = (y0)°° = (yg)°°. Hence zg = yg(v(M)). Then (f,g) is a K,-
quadruple isomorphism. Conversely, we have to show that the isomorphism
(fv g) of KQ—quadruples (Loo’ va @(L)v W(L)) and (Moo’ Mvv @(M)v W(M)) im-
plies the existence of an isomorphism h: L — M, between K ,-algebras L, M
constructed by K,-construction. We claim that

(a,a°0(L) V [2))h = (af, (af)*(M) V [xg))
is the desired isomorphism. Firstly we note that

(max|z]y(L))g = max[zg]y(M) for all z € LY
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Then

max[zgly(M) = (max[z]y(L))g € (a®p(L))F(g) = (af)° (M)

as max[z]y(L) € a°p(L). Hence h is well defined.

(a,a%p(L) V [x)) < (b,0%¢(L)

Since f and F'(g) are isomorphisms, then we get

[y))

\Y
& a<ba®p(L)V[z) 2 (L)

& af <bf,(a®e(L)V[z))F(g)
& af <bf,(a®e(L))F(g) V[x)F(g) 2 (b°p(L))F(g) V [y)F(g)
& af <bf,(af)°e(M)V [zg) 2 (bf)°e(M) V [yg)
< (af, (af)?e(M) V [zg)) < (bf, (bf) (M) V [yg))
& (a,a®(L) V [z))h < (b,0°¢(L) V [y))h
Thus, since h is a bijection, h is an isomorphism. O

In a subsequent paper, we shall consider homomorphisms, subalgebras and

congruence pairs of K,-algebras.
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