On a Construction of Modular *GMS*-algebras

Abd El-Mohsen BADAWY

Department of Mathematics, Faculty of Science, Tanta University Tanta, Egypt e-mail: abdelmohsen.mohamed@science.tanta.edu.eg

(Received April 19, 2013)

Abstract

In this paper we investigate the class of all modular *GMS*-algebras which contains the class of *MS*-algebras. We construct modular *GMS*algebras from the variety $\underline{\mathbf{K}}_2$ by means of \underline{K}_2 -quadruples. We also characterize isomorphisms of these algebras by means of \underline{K}_2 -quadruples.

Key words: MS-algebras, GMS-algebras, K_2 -algebras, Kleene algebras, isomorphisms.

2010 Mathematics Subject Classification: 06D05, 06D30

1 Introduction

T. S. Blyth and J. C. Varlet [2] have studied the variety of MS-algebras as a common abstraction of de Morgan algebras and Stone algebras. D. Sevčovič [12] investigated a larger variety of algebras containing MS-algebras, the socalled generalized MS-algebras (GMS-algebras). In such algebras the distributive identity need not be necessarily satisfied. In [4] T. S. Blyth and J. C. Varlet presented a construction of some MS-algebras from the subvariety \mathbf{K}_2 (the socalled K_2 -algebras) from Kleene algebras and distributive lattices. This was a construction by means of triples which were successfully used in construction of Stone algebras (see [6], [7]), distributive *p*-algebras (see [9]), modular *p*-algebras (see [10]), etc. T. S. Blyth and J. V. Varlet [5] improved their construction from [4] by means of quadruples and they showed that each member of \mathbf{K}_2 can be constructed in this way. In [8] M. Haviar presented a simple quadruple construction of K_2 -algebras which works with pairs of elements only. He also proved that there exists a one-to-one correspondence between locally bounded K_2 -algebras and decomposable K_2 -quadruples. Recently, A. Badawy, D. Guffová and M. Haviar [1] introduced the class of decomposable MS-algebras. They

presented a triple construction of decomposable MS-algebras. Moreover, they proved that there exists a one-to-one correspondence between the decomposable MS-algebras and the decomposable MS-triples.

The aim of this paper is to investigate a subvariety of GMS-algebras containing the variety of MS-algebras, the so-called modular GMS-algebras. We construct modular GMS-algebras from the variety $\underline{\mathbf{K}}_2$ (\underline{K}_2 -algebras) from Kleene algebras and modular lattices by means of \underline{K}_2 -quadruples. Also we define an isomorphism between two \underline{K}_2 -quadruples and we show that two \underline{K}_2 -algebras are isomorphic if and only if their associated \underline{K}_2 -quadruples are isomorphic.

2 Preliminaries

An *MS*-algebra is an algebra $(L; \lor, \land, \circ, 0, 1)$ of type (2, 2, 1, 0, 0) where $(L; \lor, \land, 0, 1)$ is a bounded distributive lattice and the unary operation \circ satisfies

$$x \le x^{\circ\circ}, \quad (x \land y)^{\circ} = x^{\circ} \lor y^{\circ}, \quad 1^{\circ} = 0.$$

The class **MS** of all *MS*-algebras forms a variety. The members of the subvariety **M** of **MS** defined by the identity $x = x^{\circ\circ}$ are called de Morgan algebras and the members of the subvariety **K** of **M** defined by the identity $x \wedge x^{\circ} \leq y \vee y^{\circ}$ are called Kleene algebras. The subvariety **K**₂ of **MS** is defined by the additional two identities

$$x \wedge x^{\circ} = x^{\circ \circ} \wedge x^{\circ}, \quad x \wedge x^{\circ} \le y \lor y^{\circ}.$$

The class **S** of all Stone algebras is a subvariety of **MS** and is characterized by the identity $x \wedge x^{\circ} = 0$. The subvariety **B** of **MS** characterized by the identity $x \vee x^{\circ} = 1$ is the class of Boolean algebras.

A generalized de Morgan algebra (or GM-algebra) is a universal algebra $(L; \lor, \land, -, 0, 1)$ where $(L; \lor, \land, 0, 1)$ is a bounded lattice and the unary operation of involution - satisfies the identities

$$GM_1: x = x^{--}, \quad GM_2: (x \wedge y)^- = x^- \vee y^-, \quad GM_3: 1^- = 0.$$

A modular GM-algebra L is a GM-algebra where $(L; \lor, \land, 0, 1)$ is a modular lattice. A modular generalized Kleene algebra (modular GK-algebra) L is a modular GM-algebra satisfying the identity $x \land x^{\circ} \leq x \lor y^{\circ}$.

A generalized *MS*-algebra (or *GMS*-algebra) is a universal algebra $(L; \lor, \land, \circ, 0, 1)$ where $(L; \lor, \land, 0, 1)$ is a bounded lattice and the unary operation \circ satisfies the identities

$$GMS_1: x \le x^{\circ\circ}, \quad GMS_2: (x \land y)^\circ = x^\circ \lor y^\circ, \quad GMS_3: 1^\circ = 0.$$

The class of all GM-algebras is a subvariety of the variety of all GMS-algebras.

A modular *GMS*-algebra is a *GMS*-algebra $(L; \lor, \land, \circ, 0, 1)$ where $(L; \lor, \land, 0, 1)$ is a modular lattice.

The class of all modular GMS-algebras forms a variety. The class **MS** is a subvariety of the variety of all modular GMS-algebras. Then the varieties **B**, **M**, **S** and **K**₂ are subvarieties of the variety of all modular GMS-algebras.

The class $\underline{\mathbf{S}}$ of all modular *S*-algebras is a subvariety of the variety of all modular *GMS*-algebras and is characterized by the identity $x \wedge x^{\circ} = 0$. It is known that the class \mathbf{S} is a subvariety of $\underline{\mathbf{S}}$.

The main immediate consequences of these axioms are summarized in the following result.

Lemma 2.1 Let L be a GMS-algebra. Then we have

(1)
$$0^{\circ} = 1$$
,
(2) $x \leq y$ implies $x^{\circ} \geq y^{\circ}$,
(3) $x^{\circ} = x^{\circ \circ \circ}$,
(4) $(x \vee y)^{\circ} = x^{\circ} \wedge y^{\circ}$,
(5) $(x \wedge y)^{\circ \circ} = x^{\circ \circ} \wedge y^{\circ \circ}$,
(6) $(x \vee y)^{\circ \circ} = x^{\circ \circ} \vee y^{\circ \circ}$.

Consequently, if L is a modular GMS-algebra, then the set $L^{\circ\circ} = \{x \in L : x^{\circ\circ} = x\}$ is a modular GM-algebra and a subalgebra of L such that the mapping $x \mapsto x^{\circ\circ}$ is a homomorphism of L onto $L^{\circ\circ}$, and $D(L) = \{x \in L : x^{\circ} = 0\}$ is a filter of L, the elements of which are called dense.

For an arbitrary lattice L, the set F(L) of all filters of L ordered under set inclusion is a lattice. It is known that F(L) is a modular lattice if and only if L is modular. Let $a \in L$; [a) denotes the filter of L generated by a.

For any modular *GMS*-algebra L, the relation Φ defined by

$$x \equiv y \ (\Phi) \quad \Leftrightarrow \quad x^{\circ \circ} = y^{\circ \circ}$$

is a congruence relation on L and $L/\Phi \cong L^{\circ\circ}$ holds. Each congruence class contains exactly one element of $L^{\circ\circ}$ which is the largest element in the congruence class, the largest element of $[x]\Phi$ is $x^{\circ\circ}$ which is denoted by $\max[x]\Phi$. Hence Φ partition L into $\{F_c : c \in L^{\circ\circ}\}$, where $F_c = \{x \in L : x^{\circ\circ} = c\}$. Obviously, $F_0 = \{0\}$ and $F_1 = \{x \in L : x^{\circ\circ} = 1\} = D(L)$.

Now we introduce certain modular GMS-algebras, which are called \underline{K}_2 -algebras.

Definition 2.2 A modular *GMS*-algebra *L* is called a \underline{K}_2 -algebra if $L^{\circ\circ}$ is a distributive lattice and *L* satisfies the identities $x \wedge x^\circ = x^{\circ\circ} \wedge x^\circ$ and $x \wedge x^\circ \leq y \vee y^\circ$.

The class $\underline{\mathbf{K}}_2$ of all $\underline{\mathbf{K}}_2$ -algebras contains the class \mathbf{K}_2 . Clearly, the classes $\underline{\mathbf{S}}$, \mathbf{S} , \mathbf{M} , \mathbf{K} and \mathbf{B} are subclasses of the class $\underline{\mathbf{K}}_2$.

Theorem 2.3 Let $L \in \underline{\mathbf{K}}_2$. Then (1) $x = x^{\circ \circ} \land (x \lor x^{\circ})$ for every $x \in L$,

- (2) $L^{\circ\circ} = \{x \in L : x = x^{\circ\circ}\}$ is a Kleene algebra,
- (3) $L^{\wedge} = \{x \wedge x^{\circ} \colon x \in L\} = \{x \in L \colon x \leq x^{\circ}\}$ is an ideal of L,
- (4) $L^{\vee} = \{x \lor x^{\circ} : x \in L\} = \{x \in L : x \ge x^{\circ}\}$ is a filter of L,
- (5) $D(L) = \{x \in L \colon x^{\circ} = 0\}$ is a filter of L and $D(L) \subseteq L^{\vee}$.

Proof (1) Since $x \leq x^{\circ \circ}$, then by modularity of L we get

$$x^{\circ\circ} \wedge (x \vee x^{\circ}) = (x^{\circ\circ} \wedge x^{\circ}) \vee x$$
$$= (x \wedge x^{\circ}) \vee x \text{ by Definition 2.2}$$
$$= x$$

(2) It is obvious.

(3) Clearly $0 \in L^{\wedge}$. Let $x, y \in L^{\wedge}$. Then $x \leq x^{\circ}$ and $y \leq y^{\circ}$. By Definition 2.2, we get $x = x \wedge x^{\circ} \leq y \vee y^{\circ} = y^{\circ}$. It follows that $x^{\circ} \geq y^{\circ \circ} \geq y$. Then $x^{\circ} \wedge y^{\circ} \geq x, y$ implies $x^{\circ} \wedge y^{\circ} \geq x \vee y$. Now

$$(x \lor y) \land (x \lor y)^{\circ} = (x \lor y) \land (x^{\circ} \land y^{\circ}) = x \lor y.$$

Consequently $x \lor y \le (x \lor y)^{\circ}$ and $x \lor y \in L^{\wedge}$. Let $x \in L^{\wedge}$ be such that $z \le x$ for some $z \in L$. Then $z \le x \le x^{\circ} \le z^{\circ}$. Hence $z \in L^{\wedge}$. Then L^{\wedge} is an ideal of L.

(4) By duality of (3).

(5) It is obvious.

Corollary 2.4 Let L be a modular GMS-algebra. Then for all $x \in L$ the following conditions are equivalent:

(1)
$$x = x^{\circ \circ} \wedge (x \vee x^{\circ}),$$

(2)
$$x \wedge x^{\circ} = x^{\circ \circ} \wedge x^{\circ}$$
.

Now we reformulate the definition of polarization given in [Definition 1(iii), 11] as follows.

Definition 2.5 Let K be a Kleene algebra and D be a modular lattice with 1. A mapping $\varphi \colon K \to F(D)$ is called a polarization if φ is a (0,1)-homomorphism such that $a\varphi = D$ for every $a \in K^{\vee}$ and $a\varphi$ is a principal filter of D for every $a \in K^{\wedge}$.

3 The triple associated with a \underline{K}_2 -algebra

Let $L \in \underline{\mathbf{K}}_2$. L^{\vee} is a filter of L, and L^{\vee} is a modular lattice with the largest element 1. So $F(L^{\vee})$ is also a modular lattice. Consider the map $\varphi(L) \colon L^{\circ \circ} \to F(L^{\vee})$ defined by the following way

$$a\varphi(L) = \{x \in L^{\vee} \colon x \ge a^{\circ}\} = [a^{\circ}) \cap L^{\vee}, \quad a \in L^{\circ \circ}.$$

Lemma 3.1 Let $L \in \underline{\mathbf{K}}_2$. Then $\varphi(L)$ is a polarization of $L^{\circ\circ}$ into $F(L^{\vee})$.

Proof It is easy to check that $0\varphi(L) = [1)$, $1\varphi(L) = L^{\vee}$ and $(a \wedge b)\varphi(L) = a\varphi(L) \cap b\varphi(L)$. Now we show that $(a \vee b)\varphi(L) = a\varphi(L) \vee b\varphi(L)$. Since $a, b \leq a \vee b$, then $a\varphi(L) \vee b\varphi(L) \subseteq (a \vee b)\varphi(L)$. For the converse, let $t \in (a \vee b)\varphi(L) = [a^{\circ} \wedge b^{\circ}) \cap L^{\vee}$. Put $x = a \vee (a^{\circ} \wedge t)$. Then $x^{\circ} = a^{\circ} \wedge (a \vee t^{\circ}) = (a^{\circ} \wedge a) \vee (a^{\circ} \wedge t^{\circ}) \leq a \vee (a^{\circ} \wedge t) = x$ since $L^{\circ\circ}$ is distributive and $t^{\circ} \leq t$. Thus $x \in L^{\vee}$. Moreover,

$$a^{\circ} \wedge (b^{\circ} \vee x) = a^{\circ} \wedge (b^{\circ} \vee (a \vee (a^{\circ} \wedge t))) = (a^{\circ} \wedge (a \vee b^{\circ})) \vee (a^{\circ} \wedge t) \leq t,$$

since $a^{\circ} \wedge (a \vee b^{\circ}) = (a^{\circ} \wedge a) \vee (a^{\circ} \wedge b^{\circ}) \leq t$. Now, $t \in [a^{\circ}) \vee [b^{\circ} \vee x) \subseteq [a^{\circ}) \vee ([b^{\circ}) \cap L^{\vee})$. But $t \in L^{\vee}$ and F(L) is a modular lattice, hence

$$t \in ([a^{\circ}) \vee ([b^{\circ}) \cap L^{\vee})) \cap L^{\vee} = ([a^{\circ}) \cap L^{\vee}) \vee ([b^{\circ}) \cap L^{\vee}) = a\varphi(L) \vee b\varphi(L).$$

Thus $\varphi(L)$ is (0,1)-lattice homomorphism. If $a \in L^{\circ\circ}$, then $(a \vee a^{\circ})\varphi(L) = [a^{\circ} \wedge a) \cap L^{\vee} = L^{\vee}$ and $(a \wedge a^{\circ})\varphi(L) = [a^{\circ} \vee a)$. Then φ is a polarization. \Box

Definition 3.2 A triple (K, D, φ) is said to be a <u>K</u>₂-triple if

- (1) $(K; \lor, \land, 0, 1)$ is a Kleene algebra,
- (2) D is a modular lattice with 1,
- (3) $\varphi \colon K \to F(D)$ is a polarization.

Let L be a <u>K</u>₂-algebra. Then $(L^{\circ\circ}, L^{\vee}, \varphi(L))$ is the triple associated with L and this triple is a <u>K</u>₂-triple.

Lemma 3.3 Let (K, D, φ) be a <u>K</u>₂-triple. Then we have

$$a\varphi \cap (b\varphi \lor c\varphi) = (a\varphi \cap b\varphi) \lor (a\varphi \cap c\varphi) \text{ for every } a, b, c \in K.$$

Lemma 3.4 Let (K, D, φ) be a <u>K</u>₂-triple. Then we have

(i) for every $a \in K$ and for every $y \in D$ there exists an element $t \in D$ such that

$$a\varphi \cap [y) = [t),$$

(ii) for every $a \in K$ and for every $y \in D$ there exists an element $t \in a^{\circ}\varphi$ such that

$$a\varphi \lor [y) = a\varphi \lor [t),$$

(iii) for every $a, b \in K$ and for every $y \in D$ there exists an element $t \in D$ such that

$$((a\varphi \cap b^{\circ}\varphi) \vee [y)) \cap (a^{\circ}\varphi \vee b\varphi \vee [y)) = [t).$$

Proof For any $a \in K$, there is $d_a \in D$ such that $(a \wedge a^\circ)\varphi = a\varphi \cap a^\circ\varphi = [d_a)$ as $a \wedge a^\circ \in K^\wedge$ and φ is a polarization. Recall that F(D) is a modular lattice.

(i). For all $a \in K, a \wedge a^{\circ} \in K^{\wedge}, a \vee a^{\circ} \in K^{\vee}$. Then there exists $d_a \in D$ such that $a\varphi \cap a^{\circ}\varphi = [d_a)$ and $a\varphi \vee a^{\circ}\varphi = (a \vee a^{\circ})\varphi = D$. Therefore, there exist elements $x_1 \in a\varphi$ and $z_1 \in a^{\circ}\varphi$ such that $x_1, z_1 \leq d_a$ and $x_1 \wedge z_1 \leq y$.

We notice that $x_1 \vee z_1 \in a\varphi \cap a^{\circ}\varphi$. Hence $x_1 \vee z_1 = d_a$. We claim $t = x_1 \vee y$. Clearly $t \in a\varphi \cap [y]$. Conversely, let $v \in a\varphi \cap [y]$. Then

$$v \ge (v \land x_1) \lor y$$

= $((v \land x_1) \lor (x_1 \land z_1)) \lor y$
= $(((v \land x_1) \lor z_1) \land x_1) \lor y$ by modularity of D
= $(d_a \land x_1) \lor y$
= $x_1 \lor y$ as $(v \land x_1) \lor z_1 = d_a \ge x_1$.

Hence $v \ge x_1 \lor y = t$, and therefore $a\varphi \cap [y] = [t)$.

(ii). It is enough to show that $a^{\circ}\varphi \cap (a\varphi \vee [y)) = [t)$, for some $t \in D$ since then $t \in a^{\circ}\varphi$ and $[t) \vee a\varphi = (a^{\circ}\varphi \cap (a\varphi \vee [y))) \vee a\varphi = (a\varphi \vee [y)) \cap (a^{\circ}\varphi \vee a\varphi) = a\varphi \vee [y)$, from modularity of F(D). Let $x_1 \in a\varphi$, $z_1 \in a^{\circ}\varphi$, $x_1 \wedge z_1 \leq y$ and $x_1, z_1 \leq d_a$. We claim that $t = z_1 \vee (x_1 \wedge y)$. Evidently, $t \in a^{\circ}\varphi \cap (a\varphi \vee [y))$. Conversely, let $v \in a^{\circ}\varphi \cap (a\varphi \vee [y))$. Then $v \geq v \wedge z_1 \in a^{\circ}\varphi$ and there is $x \in a\varphi$ with $v \geq x \wedge y \geq (x \wedge x_1) \wedge y$. Denote $z_0 = v \wedge z_1$ and $x_0 = x \wedge x_1$. Hence

$$v \ge (x_0 \land y) \lor z_0 \ge (x_0 \land x_1 \land z_1) \lor z_0 = (x_0 \land z_1) \lor z_0 = (x_0 \lor z_0) \land z_1 = z_1,$$

because $x_0 \vee z_0 = d_a \ge z_1$. This implies

$$\begin{aligned} v &\geq (x_0 \wedge y) \vee z_1 \\ &= (x_0 \wedge y) \vee (x_1 \wedge z_1) \vee z_1 \\ &= ((x_0 \vee (x_1 \wedge z_1)) \wedge y) \vee z_1 \\ &= ((x_0 \vee z_1) \wedge x_1 \wedge y) \vee z_1 \\ &= (x_1 \wedge y) \vee z_1 \text{ as } x_0 \vee z_1 = d_a \geq x_1 \wedge y \\ &= t. \end{aligned}$$

So, $v \ge t$ and $a^{\circ}\varphi \cap (a\varphi \lor [y)) = [t)$.

(iii). From (ii) there exists $y_1 \in a\varphi$ such that $[y_1) \vee a^{\circ}\varphi = [y) \vee a^{\circ}\varphi$. Using Lemma 3.3 and modularity of F(D), we get

$$\begin{aligned} ((a\varphi \cap b^{\circ}\varphi) \vee [y)) \cap (a^{\circ}\varphi \vee b\varphi \vee [y)) \\ &= ((a\varphi \cap b^{\circ}\varphi) \cap (a^{\circ}\varphi \vee b\varphi \vee [y))) \vee [y) \\ &= ((a\varphi \cap b^{\circ}\varphi) \cap (a^{\circ}\varphi \vee b\varphi \vee [y_{1}))) \vee [y) \\ &= (b^{\circ}\varphi \cap (a\varphi \cap (a^{\circ}\varphi \vee b\varphi \vee [y_{1})))) \vee [y) \\ &= (b^{\circ}\varphi \cap ((a\varphi \cap (a^{\circ}\varphi \vee b\varphi)) \vee [y_{1}))) \vee [y) \\ &= (b^{\circ}\varphi \cap ([d_{a}) \vee (a\varphi \cap b\varphi) \vee [y_{1}))) \vee [y) \\ &= (b^{\circ}\varphi \cap (a\varphi \cap (b\varphi \vee [y_{1} \wedge d_{a})))) \vee [y) \\ &= [t_{2}) \vee [y) \\ &= [t_{2} \wedge y). \end{aligned}$$

where $t_1, t_2 \in D$ are such elements that $b^{\circ}\varphi \cap (b\varphi \vee [y_1 \wedge d_a)) = [t_1)$ (see the proof of (ii)), $a\varphi \cap [t_1) = [t_2)$ from (i). Thus $t = t_2 \wedge y$.

Theorem 3.5 Let (K, D, φ) be a <u>K</u>₂-triple. Then for any $a, b \in K$ and $x, y \in D$ there exists an element $t \in D$ such that

$$(a^{\circ}\varphi \vee [x)) \cap (b^{\circ}\varphi \vee [y)) = (a \vee b)^{\circ}\varphi \vee [t).$$

Proof Let $a, b \in K$ and $x, y \in D$. It is enough to show that there is $t \in D$ such that

$$(a^{\circ}\varphi \vee [x)) \cap (b^{\circ}\varphi \vee [y)) \cap (a \wedge b)\varphi = [t)$$

because then

$$\begin{split} [t) \lor (a \lor b)^{\circ} \varphi &= ((a^{\circ} \varphi \lor [x)) \cap (b^{\circ} \varphi \lor [y)) \cap (a \land b) \varphi) \lor (a \lor b)^{\circ} \varphi \\ &= (a^{\circ} \varphi \lor [x)) \cap (b^{\circ} \varphi \lor [y)) \cap ((a \land b) \varphi \lor (a \lor b)^{\circ} \varphi) \\ &= (a^{\circ} \varphi \lor [x)) \cap (b^{\circ} \varphi \lor [y)) \end{split}$$

by modularity of F(D) and since $(a \lor b)\varphi \lor (a \lor b)^{\circ}\varphi = D$. In accordance with Lemma 3.4, we can suppose $x \in a\varphi$ and $y \in b\varphi$. Then by Lemma 3.3 and by modularity of F(D),

$$\begin{aligned} (a^{\circ}\varphi \vee [x)) \cap (b^{\circ}\varphi \vee [y)) \cap (a \vee b)\varphi \\ &= ((a^{\circ}\varphi \vee [x)) \cap (a\varphi \vee b\varphi)) \cap ((b^{\circ}\varphi \vee [y)) \cap (a\varphi \vee b\varphi)) \\ &= ((a^{\circ}\varphi \cap (a\varphi \vee b\varphi)) \vee [x)) \cap ((b^{\circ}\varphi \cap (a\varphi \vee b\varphi)) \vee [y)) \\ &= ((a^{\circ}\varphi \cap a\varphi) \vee (a^{\circ}\varphi \cap b\varphi) \vee [x)) \cap ((b^{\circ}\varphi \cap a\varphi) \vee (b^{\circ}\varphi \cap b\varphi) \vee [y)) \\ &= ([d_{a} \wedge x) \vee (a^{\circ}\varphi \cap b\varphi)) \cap ([d_{b} \wedge y) \vee (b^{\circ}\varphi \cap a\varphi)) \end{aligned}$$

where d_a , d_b are as in the proof of Lemma 3.4. Denote $x_0 = x \wedge d_a$, $y_0 = y \wedge d_b$ and $x_0 \wedge y_0 = z$. We first show that

$$((a\varphi \cap b^{\circ}\varphi) \vee [z)) \cap ((a^{\circ}\varphi \cap b\varphi) \vee [z)) = [p),$$

for some $p \in D$. Since $a^{\circ}\varphi \vee b\varphi \supseteq a^{\circ}\varphi \cap b\varphi$, we can write

$$\begin{aligned} &((a\varphi \cap b^{\circ}\varphi) \vee [z)) \cap ((a^{\circ}\varphi \cap b\varphi) \vee [z)) \\ &= ((a\varphi \cap b^{\circ}\varphi) \vee [z)) \cap (a^{\circ}\varphi \vee b\varphi \vee [z)) \cap ((a^{\circ}\varphi \cap b\varphi) \vee [z)) \\ &= [q) \cap ((a^{\circ}\varphi \cap b\varphi) \vee [z)) \end{aligned}$$

where $[q) = ((a\varphi \cap b^{\circ}\varphi) \vee [z)) \cap (a^{\circ}\varphi \vee b\varphi \vee [z))$, by Lemma 3.4 (iii). Evidently $[q) \supseteq [z)$. Hence by modularity we get

$$\begin{split} &[q) \cap \left((a^{\circ}\varphi \cap b\varphi) \vee [z) \right) \\ &= \left([q) \cap a^{\circ}\varphi \cap b\varphi \right) \vee [z) \\ &= \left([q) \cap (a^{\circ} \wedge b)\varphi \right) \vee [z) \\ &= [t_1) \vee [z) \text{ where } [q) \cap (a^{\circ} \wedge b)\varphi = [t_1) \text{ by Lemma 4.3(i)} \\ &= [t_1 \wedge z) \\ &= [p) \text{ where } p = t_1 \wedge z. \end{split}$$

Since $[p) \supseteq [z] \supseteq [x_0), [y_0)$ and F(D) is modular, we have

$$\begin{split} ([x_0) \lor (a^\circ \varphi \cap b\varphi)) &\cap ([y_0) \lor (b^\circ \varphi \cap a\varphi)) \\ &= ([p) \cap ([x_0) \lor (a^\circ \varphi \cap b\varphi))) \cap ([p) \cap ([y_0) \lor (b^\circ \varphi \cap a\varphi))) \\ &= (([p) \cap (a^\circ \varphi \cap b\varphi)) \lor [x_0)) \cap (([p) \cap (b^\circ \varphi \cap a\varphi)) \lor [y_0)) \\ &= ([v) \lor [x_0)) \cap ([w) \lor [y_0)) \text{ for some } v, w \in D \\ &= [(u \land x_0) \lor (w \land y_0)) \\ &= [t), \end{split}$$

where $[v) = [p) \cap a^{\circ}\varphi \cap b\varphi$, $[w) = [p) \cap b^{\circ}\varphi \cap a\varphi$ and $t = (u \wedge x_0) \vee (w \wedge y_0) \in D$.

4 K_2 -construction

In this section we generalize the construction of [3, 4] from the so-called K_2 -algebras to \underline{K}_2 -algebras. Also we prove that there exists a one-to-one correspondence between \underline{K}_2 -algebras and \underline{K}_2 -quadruples.

Definition 4.1 A <u> K_2 </u>-quadruple is (K, D, φ, γ) where

(i) (K, D, φ) is a <u>K</u>₂-triple, and

(ii) γ is a monomial congruence on D, that is every γ class $[y]\gamma$ has a largest element $(\max[y]\gamma)$.

Let $L \in \underline{\mathbf{K}}_2$. Then $(L^{\circ\circ}, L^{\vee}, \varphi(L))$ is a K_2 -triple. Let $\gamma(L)$ be the restriction of the congruence Φ on L^{\vee} . Since $\max[x]\gamma = x^{\circ\circ}$, for every $x \in L^{\vee}$. Then $\gamma(L)$ is a monomial congruence on L^{\vee} . We say that $(L^{\circ\circ}, L^{\vee}, \varphi(L), \gamma(L))$ is the quadruple associated with L and this quadruple is a \underline{K}_2 -quadruple.

Theorem 4.2 Let (K, D, φ, γ) be a <u>K</u>₂-quadruple. Then

$$L = \{(a, a^{\circ}\varphi \lor [x)) \colon a \in K, x \in D, \max[x]\gamma \in a^{\circ}\varphi\}$$

is a \underline{K}_2 -algebra if we define

$$\begin{aligned} (a, a^{\circ}\varphi \vee [x)) \wedge (b, b^{\circ}\varphi \vee [y)) &= (a \wedge b, (a^{\circ}\varphi \vee [x)) \vee (b^{\circ}\varphi \vee [y))), \\ (a, a^{\circ}\varphi \vee [x)) \vee (b, b^{\circ}\varphi \vee [y)) &= (a \vee b, (a^{\circ}\varphi \vee [x)) \cap (b^{\circ}\varphi \vee [y))), \\ (a, a^{\circ}\varphi \vee [x))^{\circ} &= (a^{\circ}, a\varphi), \\ 1_{L} &= (1, [1)), \\ 0_{L} &= (0, D). \end{aligned}$$

Moreover, $L^{\circ\circ} \cong K$.

Proof Let $F_d(D)$ denote the dual lattice to the modular lattice F(D) of all filters of D. Evidently, L is a subset of the direct product $K \times F_d(D)$. We show

first that L is a sublattice of $K \times F_d(D)$. Let $(a, a^{\circ} \varphi \vee [x)), (b, b^{\circ} \varphi \vee [y)) \in L$. Then

$$(a,a^{\circ}\varphi \vee [x)) \wedge (b,b^{\circ}\varphi \vee [y)) = (a \wedge b,(a \wedge b)^{\circ}\varphi \vee [x \wedge y)) \in L,$$

because of φ is a lattice homomorphism and

$$\max[x \wedge y]\gamma = \max[x]\gamma \wedge \max[y]\gamma \in a^{\circ}\varphi \lor b^{\circ}\varphi = (a \wedge b)^{\circ}\varphi.$$

Moreover,

$$\begin{aligned} (a, a^{\circ}\varphi \lor [x)) \lor (b, b^{\circ}\varphi \lor [y)) \\ &= (a \lor b, (a^{\circ}\varphi \lor [x)) \cap (b^{\circ}\varphi \lor [y))) \\ &= (a \lor b, (a \lor b)^{\circ}\varphi \lor [t)) \text{ for some } t \in D, \text{ by Theorem 3.5.} \end{aligned}$$

Now we prove that $\max[x]\gamma \in a^{\circ}\varphi$ and $\max[y]\gamma \in b^{\circ}\varphi$ implies $\max[t]\gamma \in (a \lor b)^{\circ}\varphi$. From the proof of Theorem 3.5, $t = (v \land x_0) \lor (w \land y_0)$ where $v \in a^{\circ}\varphi$, $w \in b^{\circ}\varphi$, $x_0 = x \land d_a$ and $y_0 = y \land d_a$. Then

$$t = (v \land x \land d_a) \lor (w \land y \land d_b) = (x \land v_0) \lor (y \land w_0)$$

where $v_0 = v \wedge d_a \in a^{\circ}\varphi$ and $w_0 = w \wedge d_b \in b^{\circ}\varphi$. Then

 $\max[t]\gamma \geq (\max[x]\gamma \wedge \max[v_0]\gamma) \vee (\max[y]\gamma \wedge [w_0]\gamma) \in a^{\circ}\varphi \cap b^{\circ}\varphi = (a \lor b)^{\circ}\varphi,$

because of $\max[v_0]\gamma \geq v_0 \in a^{\circ}\varphi$ and $\max[w_0]\gamma \geq w_0 \in b^{\circ}\varphi$ implies $\max[v_0]\gamma \in a^{\circ}\varphi$ and $\max[w_0]\gamma \in b^{\circ}\varphi$, respectively. Then $(a \lor b, (a \lor b)^{\circ}\varphi \lor [t)) \in L$. Therefore L is a sublattice of $K \times F_d(D)$. Hence L is a modular lattice. The order of L is given by

$$(a, a^{\circ}\varphi \vee [x)) \leq (b, b^{\circ}\varphi \vee [y))$$
 iff $a \leq b$ and $a^{\circ}\varphi \vee [x] \supseteq b^{\circ}\varphi \vee [y).$

L is bounded and

$$(0,D) \le (a, a^{\circ}\varphi \lor [x)) \le (1,[1))$$

In addition,

$$(a, a^{\circ}\varphi \vee [x)) \leq (a, a^{\circ}\varphi) = (a, a^{\circ}\varphi \vee [x))^{\circ\circ},$$
$$((a, a^{\circ}\varphi \vee [x)) \wedge (b, b^{\circ}\varphi \vee [y)))^{\circ} = (a, a^{\circ}\varphi \vee [x))^{\circ} \vee (b, b^{\circ}\varphi \vee [y))^{\circ},$$
$$(1, [1))^{\circ} = (0, D).$$

Then L is a modular *GMS*-algebra. Also we get

$$\begin{aligned} (a, a^{\circ}\varphi \vee [x)) \wedge (a, a^{\circ}\varphi \vee [x))^{\circ} \\ &= (a \wedge a^{\circ}, a^{\circ}\varphi \vee [x) \vee a\varphi) \\ &= (a \wedge a^{\circ}, a^{\circ}\varphi \vee a\varphi) \text{ as } [x) \subseteq a\varphi \vee a^{\circ}\varphi = D \\ &= (a, a^{\circ}\varphi) \wedge (a^{\circ}, a\varphi) \\ &= (a, a^{\circ}\varphi \vee [x))^{\circ \circ} \wedge (a, a^{\circ}\varphi \vee [x))^{\circ}, \end{aligned}$$

and

$$a, a^{\circ}\varphi \vee [x)) \wedge (a, a^{\circ}\varphi \vee [x))^{\circ} \leq (b, b^{\circ}\varphi \vee [y)) \vee (b, b^{\circ}\varphi \vee [y))^{\circ}.$$

Hence $L \in \underline{\mathbf{K}}_2$. Now,

$$L^{\circ\circ} = \{(a, a^{\circ}\varphi \lor [x))^{\circ\circ} \colon (a, a^{\circ}\varphi \lor [x)) \in L\} = \{(a, a^{\circ}\varphi) \colon a \in K\} \cong K$$

under the isomorphism $(a, a^{\circ}\varphi) \mapsto a$. Then $L^{\circ\circ}$ is a Kleene algebra. Therefore L is a \underline{K}_2 -algebra.

Corollary 4.3 From Theorem 4.2, we have

(1) $L^{\vee} = \{(a, a^{\circ}\varphi \vee [x)) \in L : a \in K^{\vee}, x \in D\},\$ (2) $D(L) = \{(1, [x)) : x \in [1]\gamma, x \in D\}.$

Corollary 4.4 Let (K, D, φ, γ) be a <u>K</u>₂-quadruple. Then

(1) If D is a distributive lattice, then L described by Theorem 4.2 is a K_2 -algebra;

(2) If K is a Boolean algebra and $\gamma = \iota$, then L described by Theorem 4.2 is a modular S-algebra;

(3) If K is a Boolean algebra, D is a distributive lattice and $\gamma = \iota$, then L described by Theorem 4.2 is a Stone algebra.

We say that $L \in \underline{\mathbf{K}}_2$ from Theorem 4.2 is associated with the \underline{K}_2 -quadruple (K, D, φ, γ) and the construction of L described in Theorem 4.2 will be called a \underline{K}_2 -construction.

Theorem 4.5 Let $L \in \underline{\mathbf{K}}_2$. Let $(L^{\circ\circ}, L^{\vee}, \varphi(L), \gamma(L))$ be the $\underline{\mathbf{K}}_2$ -quadruple associated with L. Then L_1 associated with $(L^{\circ\circ}, L^{\vee}, \varphi(L), \gamma(L))$ is isomorphic to L.

Proof For every $x \in L$, $x = x^{\circ \circ} \wedge (x \vee x^{\circ})$ and by modularity of F(L), we observe

$$x^{\circ}\varphi(L) \vee [x \vee x^{\circ}) = ([x^{\circ\circ}) \cap L^{\vee}) \vee [x \vee x^{\circ}) = L^{\vee} \cap ([x^{\circ\circ}) \vee [x \vee x^{\circ})) = L^{\vee} \cap [x).$$

We shall prove that the mapping $f: L \to L_1$ defined by

$$xf = (x^{\circ \circ}, x^{\circ}\varphi(L) \lor [x \lor x^{\circ})) = (x^{\circ \circ}, L^{\vee} \cap [x))$$

is the described isomorphism. Obviously $xf \in L_1$, since $\max[x \vee x^\circ]\gamma(L) = (x \vee x^\circ)^{\circ\circ} = x^{\circ\circ} \vee x^\circ \in [x^{\circ\circ}) \cap L^{\vee} = x^\circ \varphi(L)$. For every $x, y \in L$,

$$\begin{aligned} (x \wedge y)f &= ((x \wedge y)^{\circ\circ}, (x \wedge y)^{\circ}\varphi(L) \vee [(x \wedge y) \vee (x \wedge y)^{\circ})) \\ &= ((x \wedge y)^{\circ\circ}, [x \wedge y) \cap L^{\vee}), \\ xf \wedge yf &= (x^{\circ\circ}, x^{\circ}\varphi(L) \vee [x \vee x^{\circ})) \wedge (y^{\circ\circ}, y^{\circ}\varphi(L) \vee [y \vee y^{\circ})) \\ &= (x^{\circ\circ} \wedge y^{\circ\circ}, x^{\circ}\varphi(L) \vee [x \vee x^{\circ}) \vee y^{\circ}\varphi(L) \vee [y \vee y^{\circ})) \end{aligned}$$

Since $x = x^{\circ\circ} \wedge (x \vee x^{\circ})$, $y = y^{\circ\circ} \wedge (y \vee y^{\circ})$ and $\varphi(L)$ is a polarity (see Lemma 3.1), then by modularity of F(L), we have

$$\begin{aligned} x^{\circ}\varphi(L) &\vee [x \vee x^{\circ}) \vee y^{\circ}\varphi(L) \vee [y \vee y^{\circ}) \\ &= (x \wedge y)^{\circ}\varphi(L) \vee [(x \vee x^{\circ}) \wedge (y \vee y^{\circ})) \\ &= ([(x \wedge y)^{\circ\circ}) \cap L^{\vee}) \vee [(x \vee x^{\circ}) \wedge (y \vee y^{\circ})) \\ &= L^{\vee} \cap ([(x \wedge y)^{\circ\circ}) \vee [(x \vee x^{\circ}) \wedge (y \vee y^{\circ})) \\ &= L^{\vee} \cap [x^{\circ\circ} \wedge y^{\circ\circ} \wedge (x \vee x^{\circ}) \wedge (y \vee y^{\circ})) \\ &= L^{\vee} \cap [x \wedge y]. \end{aligned}$$

Then $(x \wedge y)f = xf \wedge yf$. Also,

$$\begin{split} (x \lor y)f &= ((x \lor y)^{\circ \circ}, [x \lor y) \cap L^{\vee}) \\ &= (x^{\circ \circ} \lor y^{\circ \circ}, [x) \cap [y) \cap L^{\vee}) \\ &= (x^{\circ \circ} \lor y^{\circ \circ}, ([x) \cap L^{\vee}) \cap ([y) \cap L^{\vee})) \\ &= (x^{\circ \circ}, [x) \cap L^{\vee}) \lor (y^{\circ \circ}, [y) \cap L^{\vee}) \\ &= xf \lor yf \end{split}$$

and $0f=(0,L^{\vee}),$ 1f=(1,[1)). Then f is a (0,1)-lattice homomorphism. Now,

$$(xf)^{\circ} = (x^{\circ\circ}, x^{\circ}\varphi(L) \vee [x \vee x^{\circ}))^{\circ}$$
$$= (x^{\circ}, x^{\circ\circ}\varphi(L))$$
$$= (x^{\circ}, [x^{\circ}) \cap L^{\vee})$$
$$= x^{\circ}f,$$

hence f is a homomorphism of \underline{K}_2 -algebras. Now assume $x_1 f = x_2 f$. Then $(x_1^{\circ\circ}, [x_1) \cap L^{\vee}) = (x_2^{\circ\circ}, [x_2) \cap L^{\vee})$. It follows that $x_1^{\circ\circ} = x_2^{\circ\circ}$ and $[x_1) \cap L^{\vee} = [x_2) \cap L^{\vee}$. Now

$$\begin{split} & [x_1) = [x_1^{\circ\circ} \wedge (x_1 \vee x_1^{\circ})) \\ & = [x_1^{\circ\circ}) \vee [x_1 \vee x_1^{\circ}) \\ & = [x_1^{\circ\circ}) \vee (L^{\vee} \cap [x_1 \vee x_1^{\circ})) \text{ as } x_1 \vee x_1^{\circ} \in L^{\vee} \\ & = [x_1^{\circ\circ}) \vee (L^{\vee} \cap [x_1) \cap [x_1^{\circ})) \\ & = [x_2^{\circ\circ}) \vee (L^{\vee} \cap [x_2) \cap [x_2^{\circ})) \\ & = [x_2^{\circ\circ}) \vee (L^{\vee} \cap [x_2 \vee x_2^{\circ})) \\ & = [x_2^{\circ\circ}) \vee [x_2 \vee x_2^{\circ}) \text{ as } x_2 \vee x_2^{\circ} \in L^{\vee} \\ & = [x_2^{\circ\circ} \wedge (x_2 \vee x_2^{\circ})) \\ & = [x_2). \end{split}$$

Consequently, $x_1 = x_2$ and f is injective. It remains to prove that f is surjective. Let $(x^{\circ\circ}, x^{\circ}\varphi(L) \vee [z)) \in L_1$, that is $z^{\circ\circ} = \max[z]\gamma(L) \in x^{\circ}\varphi(L) = [x^{\circ\circ}) \cap L^{\vee}$. Then by modularity of F(L) we get

$$(x^{\circ\circ}, x^{\circ}\varphi(L) \vee [z)) = (x^{\circ\circ}, ([x^{\circ\circ}) \cap L^{\vee}) \vee [z)) = (x^{\circ\circ}, L^{\vee} \cap [x^{\circ\circ} \wedge z)).$$

Set $h = x^{\circ\circ} \wedge z$. Then $h^{\circ\circ} = x^{\circ\circ} \wedge z^{\circ\circ} = x^{\circ\circ}$ and consequently

$$(x^{\circ\circ}, x^{\circ}\varphi(L) \vee [z)) = (h^{\circ\circ}, [h) \cap L^{\vee}) = (h^{\circ\circ}, h^{\circ}\varphi(L) \vee [h \vee h^{\circ})) = hf.$$

Thus f is an isomorphism.

5 Isomorphisms

In this section we define an isomorphism between two \underline{K}_2 -quadruples and we show that two \underline{K}_2 -algebras are isomorphic if and only if their associated \underline{K}_2 -quadruples are isomorphic.

Definition 5.1 An isomorphism of the \underline{K}_2 -quadruples (K, D, φ, γ) and $(K_1, D_1, \varphi_1, \gamma_1)$ is a pair (f, g), where f is an isomorphism of K and K_1, g is an isomorphism of D and D_1 such that $x \equiv y(\gamma)$ iff $xg \equiv yg(\gamma_1)$ for all $x, y \in D$ and the diagram

$$\begin{array}{c} K & \xrightarrow{\varphi} F(D) \\ f \downarrow & \downarrow F(g) \\ K_1 & \xrightarrow{\varphi_1} F(D_1) \end{array}$$

commutes (F(g)) stands for the isomorphism of F(D) and $F(D_1)$ induced by g).

Theorem 5.2 Let $L, M \in \underline{\mathbf{K}}_2$. Then $L \cong M$ if and only if

$$(L^{\circ\circ}, L^{\vee}, \varphi(L), \gamma(L)) \cong (M^{\circ\circ}, M^{\vee}, \varphi(M), \gamma(M)).$$

Proof Let $\theta: L \to M$ be an isomorphism. We have two isomorphisms, $f: L^{\circ \circ} \to M^{\circ \circ}$ defined by $xf = x\theta$ and $g: L^{\vee} \to M^{\vee}$ defined by $xg = x\theta$. Now define $F(g): F(L^{\vee}) \to F(M^{\vee})$ by $AF(g) = \{a\theta: a \in A\}$.

For every $a \in L^{\circ \circ}$, we have

$$\begin{aligned} (af)\varphi(M) &= (a\theta)\varphi(M) = [(a\theta)^{\circ}) \cap M^{\vee}, \\ a\varphi(L)F(g) &= ([a^{\circ}) \cap L^{\vee})F(g) = \{y\theta \colon y \in [a^{\circ}) \cap L^{\vee}\} = [(a\theta)^{\circ}) \cap M^{\vee}. \end{aligned}$$

For $x, y \in L^{\vee}$, $x \equiv y(\gamma(L))$ iff $x^{\circ\circ} = y^{\circ\circ}$ iff $x^{\circ\circ}\theta = y^{\circ\circ}\theta$ iff $(xg)^{\circ\circ} = (x\theta)^{\circ\circ} = x^{\circ\circ}\theta = y^{\circ\circ}\theta = (y\theta)^{\circ\circ} = (yg)^{\circ\circ}$. Hence $xg \equiv yg(\gamma(M))$. Then (f,g) is a <u>K</u>₂-quadruple isomorphism. Conversely, we have to show that the isomorphism (f,g) of <u>K</u>₂-quadruples $(L^{\circ\circ}, L^{\vee}, \varphi(L), \gamma(L))$ and $(M^{\circ\circ}, M^{\vee}, \varphi(M), \gamma(M))$ implies the existence of an isomorphism $h \colon L \to M$, between <u>K</u>₂-algebras L, M constructed by <u>K</u>₂-construction. We claim that

$$(a, a^{\circ}\varphi(L) \lor [x))h = (af, (af)^{\circ}\varphi(M) \lor [xg))$$

is the desired isomorphism. Firstly we note that

$$(\max[x]\gamma(L))g = \max[xg]\gamma(M)$$
 for all $x \in L^{\vee}$

Then

$$\max[xg]\gamma(M) = (\max[x]\gamma(L))g \in (a^{\circ}\varphi(L))F(g) = (af)^{\circ}\varphi(M)$$

as $\max[x]\gamma(L) \in a^{\circ}\varphi(L)$. Hence h is well defined. Since f and F(g) are isomorphisms, then we get

$$\begin{split} (a, a^{\circ}\varphi(L) \vee [x)) &\leq (b, b^{\circ}\varphi(L) \vee [y)) \\ \Leftrightarrow a \leq b, a^{\circ}\varphi(L) \vee [x) \supseteq b^{\circ}\varphi(L) \vee [y) \\ \Leftrightarrow af \leq bf, (a^{\circ}\varphi(L) \vee [x))F(g) \supseteq (b^{\circ}\varphi(L) \vee [y))F(g) \\ \Leftrightarrow af \leq bf, (a^{\circ}\varphi(L))F(g) \vee [x)F(g) \supseteq (b^{\circ}\varphi(L))F(g) \vee [y)F(g) \\ \Leftrightarrow af \leq bf, (af)^{\circ}\varphi(M) \vee [xg) \supseteq (bf)^{\circ}\varphi(M) \vee [yg) \\ \Leftrightarrow (af, (af)^{\circ}\varphi(M) \vee [xg)) \leq (bf, (bf)^{\circ}\varphi(M) \vee [yg)) \\ \Leftrightarrow (a, a^{\circ}\varphi(L) \vee [x))h \leq (b, b^{\circ}\varphi(L) \vee [y))h. \end{split}$$

Thus, since h is a bijection, h is an isomorphism.

In a subsequent paper, we shall consider homomorphisms, subalgebras and congruence pairs of \underline{K}_2 -algebras.

Acknowledgement The author would like to thank the referee for his/her useful comments and valuable suggestions given to this paper.

References

- Badawy, A., Guffová, D., Haviar, M.: Triple construction of decomposable MS-algebras. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 51, 2 (2012), 35–65.
- [2] Birkhoff, G.: Lattice Theory. 3rd edition, Amer. Math. Soc. Colloq. Pub. 25, Amer. Math. Soc., Providence, R.I., 1967.
- [3] Blyth, T. S., Varlet, J. C.: On a common abstraction of De Morgan algebras and Stone algebras. Proc. Roy. Soc. Edinburgh A 94 (1983), 301–308.
- Blyth, T. S., Varlet, J. C.: Sur la construction de certaines MS-algèbres. Portugaliea Math. 39 (1980), 489–496.
- Blyth, T. S., Varlet, J. C.: Corrigendum "Sur la construction de certaines MS-algèbres". Portugaliea Math. 42 (1983/84), 469–471.
- [6] Chen, C. C., Grätzer, G.: Stone lattices I, Construction theorems. Canad. J. Math. 21 (1969), 884–894.
- [7] Chen, C. C., Grätzer, G.: Stone lattices II, Structure theorems. Canad. J. Math. 21 (1969), 895–903.
- [8] Haviar, M.: On a certain construction of MS-algebras. Portugliae Mathematica 51 (1994), 71–83.
- Katriňák, T.: Die Konstruktion der distributiven pseudokomplementären verbande. Math. Nachrichten 53 (1972), 85–89.
- [10] Katriňák, T., Mederly, P.: Construction of modular p-algebras. Algebra Univ. 4 (1974), 301–315.
- [11] Katriňák, T., Mikula, K.: On a construction of MS-algebras. Portugliae Mathematica 45 (1978), 157–163.
- [12] Ševčovič, D.: Free non-distributive Morgan-Stone algebras. New Zealand J. Math. 25 (1996), 85–94.