Some Additive $2 - (v, 5, \lambda)$ Designs

Andrea CAGGEGI

DEIM, Viale delle Scienze Ed. 8, I-90128 Palermo, Italy e-mail: andrea.caggegi@unipa.it

(Received March 17, 2014)

Abstract

Given a finite additive abelian group G and an integer k, with $3 \le k \le |G|$, denote by $\mathcal{D}_k(G)$ the simple incidence structure whose point-set is G and whose blocks are the k-subsets $C = \{c_1, c_2, \ldots, c_k\}$ of G such that $c_1 + c_2 + \cdots + c_k = 0$. It is known (see [2]) that $\mathcal{D}_k(G)$ is a 2-design, if G is an elementary abelian p-group with p a prime divisor of k. From [3] we know that $\mathcal{D}_3(G)$ is a 2-design if and only if G is an elementary abelian 3-group. It is also known (see [4]) that G is necessarily an elementary abelian 2-group, if $\mathcal{D}_4(G)$ is a 2-design. Here we shall prove that $\mathcal{D}_5(G)$ is a 2-design if and only if G is an elementary abelian 2-group.

Key words: Conformal mapping, geodesic mapping, conformalgeodesic mapping, initial conditions, (pseudo-) Riemannian space.

2010 Mathematics Subject Classification: 53B20, 53B30, 53C21

1 Introduction and preliminary results

Let v, k, t, λ be positive integers with v > k > t. By a t-design with parameters v, k, λ (or shortly: a $t - (v, k, \lambda)$ design) one understands a pair $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ where \mathcal{P} is a finite set with v elements (called points) and \mathcal{B} is a set of subsets of \mathcal{P} called blocks such that each block contains k points and any t distinct points are contained in exactly λ common blocks (cf. [1], [5]). We say that a $t - (v, k, \lambda)$ design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is an additive design, if there are a finite abelian group G, written additively, and an injective mapping $\chi \colon \mathcal{P} \to G$ with the property that $\chi(c_1) + \chi(c_2) + \cdots + \chi(c_k) = 0$ whenever $C = \{c_1, c_2, \ldots, c_k\} \in \mathcal{B}$ is a block of $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ (cf. [2]). For every finite additive abelian group G and for any integer $k \in \{3, 4, \ldots, |G| - 1\}$ we denote by $\mathcal{D}_k(G)$ the simple incidence structure the point-set of which is G and the blocks of which are the k-subsets $C = \{c_1, c_2, \ldots, c_k\}$ of G such that $c_1 + c_2 + \cdots + c_k = 0$. Note that each 2-design of the form $\mathcal{D}_k(G)$ is an additive 2-design.

Throughout this paper we shall be concerned only with finite abelian groups, written additively. If G is such a group, the notation that follows will remain fixed: |G| is the order of G; $\langle a \rangle$ is the subgroup of G generated by $a \in G$; if m is a positive integer, mG and G_m are the subgroups of G given by $mG = \{mg \mid g \in G\}$ and $G_m = \{g \in G \mid mg = 0\}$; if |G| > 4 and if x, y are distinct elements of G, $N_{x,y}$ denotes the number of pairs $\{c, C\}$ where $c \in G \setminus \{x, y\}$ and C is a block of $\mathcal{D}_5(G)$ through $\{x, y, c\}$.

We state now some preliminary results.

Lemma 1 If $\mathcal{D}_5(G)$ is a $2-(|G|, 5, \lambda)$ design for some λ , then $N_{x,y}$ is a constant (equal to 3λ).

Proof Suppose $\mathcal{D}_5(G)$ is a $2 - (|G|, 5, \lambda)$ design for some λ . Then there are λ blocks of $\mathcal{D}_5(G)$ through any given two distinct elements $x, y \in G$; on the other hand, each block of $\mathcal{D}_5(G)$ through $\{x, y\}$ contains exactly 3 points distinct from x, y. Therefore $N_{x,y} = 3\lambda$ and the Lemma 1 is proved.

Proposition 1 $\mathcal{D}_5(G)$ is not a 2-design if one of the statements below is true:

- 1) G is an elementary abelian 2-group;
- 2) G is direct sum of cyclic groups of order 4;
- 3) G is direct sum of groups of order 2 and cyclic groups of order 4;
- 4) G contains just one involution and 2G is an elementary abelian 3-group.

Proof We may assume that G has order greater than 4.

1) Suppose G is an elementary abelian 2-group of order $n = 2^{\nu} \ge 8$. Let $g \in G, g \ne 0 \in G$ and let $x \in G \setminus \{0, g\}$. We show that $N_{0,g} \ne N_{x,g}$ and hence, by Lemma 1, $\mathcal{D}_5(G)$ is not a 2-design. There are no blocks of $\mathcal{D}_5(G)$ through $\{0, g, x, g+x\}$, however $\{0, g, x\}$ may be extended to a block $\{0, g, x, g+x+y\}$ for every $y \in G \setminus \{0, g, x, g+x\}$. Therefore

$$N_{0,g} = (n-2)\frac{n-4}{2}.$$

There are no blocks of $\mathcal{D}_5(G)$ through $\{g, x, g + x\}$, however there are $\frac{n-4}{2}$ blocks through $\{0, g, x\}$ and $\frac{n-6}{2}$ blocks through $\{x, g, z\}$ for any given $z \in G \setminus \{0, g, x, g + x\}$. Therefore

$$N_{x,g} = \frac{n-4}{2} + (n-4)\frac{n-6}{2}.$$

From $n \neq 4$ it follows $N_{0,g} \neq N_{x,g}$ and hence $\mathcal{D}_5(G)$ is not a 2-design.

2) Suppose G is direct sum of $\nu \geq 2$ cyclic groups of order 4. So G is a finite abelian group of order $n = 4^{\nu} \geq 16$ and $2G = G_2$ is an elementary abelian 2-group of order $2^{\nu} \geq 4$.

Let $a \in G_2$, $a \neq 0$ and let $b \in G_4 \setminus G_2$. We show that $N_{0,a} \neq N_{0,b}$ and hence, by Lemma 1, $\mathcal{D}_5(G)$ is not a 2-design.

If $x \in G_2 \setminus \langle a \rangle$, there are no blocks of $\mathcal{D}_5(G)$ through $\{0, a, x, a + x\}$; if $y \in G \setminus G_2$ with $2y \neq a$, any block of $\mathcal{D}_5(G)$ through $\{0, a, y\}$ does not intersect $\{a - y, -y, a + 2y\}$. These facts imply:

if $g \in G$ with 2g = a, then $(g \in G \setminus G_2 \text{ and})$ there are $\frac{n-4}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{0, a, q\};$

if $g \in G \setminus G_2$ with $2g \neq a$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{0, a, g\}$; if $g \in G_2 \setminus \langle a \rangle$, there are $\frac{n-4-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{0, a, g\}$. Therefore

$$N_{0,a} = |G_2| \cdot \frac{n-4}{2} + (n-2|G_2|) \cdot \frac{n-6}{2} + (|G_2|-2) \cdot \frac{n-4-|G_2|}{2}$$

can be written as

$$N_{0,a} = 3 |G_2| - \frac{1}{2} |G_2|^2 + \frac{n^2 - 8n + 8}{2}.$$
 (1.1)

There are no blocks of $\mathcal{D}_5(G)$ containing the group $\langle b \rangle = \{0, b, 2b, -b\};$ if $g \in b + G_2$ with $b \neq g \neq -b$, there are no blocks of $\mathcal{D}_5(G)$ through $\{0, b, g, d\}$ $-b-g\};$ if $2b \neq g \in G \setminus b + G_2$, any block of $\mathcal{D}_5(G)$ through $\{0, b, g\}$ does not meet

 $\{3b - g, 2b - g, 2g - b\}.$

These facts guarantee that:

 $\frac{n-2-|G_2|}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ through $\{0, b, -b\}$;

there are $\frac{n-4}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{0, b, 2b\}$; if $g \in b + G_2$ with $b \neq g \neq -b$, there are $\frac{n-4-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{0, b, g\};$

if $g \in G$ with $g \neq 2b \neq 2g$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{0, b, g\}$. Therefore

$$N_{0,b} = \frac{n-2-|G_2|}{2} + \frac{n-4}{2} + (|G_2|-2) \cdot \frac{n-4-|G_2|}{2} + (n-|G_2|-2) \cdot \frac{n-6}{2}$$

can be written as

$$N_{0,b} = \frac{3}{2} \cdot |G_2| - \frac{1}{2} \cdot |G_2|^2 + \frac{n^2 - 8n + 14}{2}$$
(1.2)

Since $|G_2| \neq 2$, (1.1) and (1.2) yield $N_{0,a} \neq N_{0,b}$ and hence $\mathcal{D}_5(G)$ is not a 2-design.

3) Suppose G is direct sum of $h \ge 1$ groups of order 2 and $\nu \ge 1$ cyclic groups of order 4. So G is a finite abelian group of order $n = |G| = 2^h \cdot 4^\nu \ge 8$; 2G is an elementary abelian 2-group of order 2^{ν} ; G_2 is an elementary abelian 2-group of order $2^{h+\nu} \ge 4$ which admits 2G as a proper subgroup.

Let $a \in G_2 \setminus 2G$ and let $b \in 2G$, $b \neq 0$. We show now that $N_{0,a} \neq N_{0,b}$ and hence, by Lemma 1, $\mathcal{D}_5(G)$ is not a 2-design.

If $a \neq g \in a + 2G$, then $a + g \in 2G$ and there are no blocks of $\mathcal{D}_5(G)$ through $\{0, a, g, a + g\};$

if $0 \neq g \in G_2 \setminus a + 2G$, then $a + g \notin 2G$ and there are no blocks of $\mathcal{D}_5(G)$ through $\{0, a, g, a + g\};$

if $g \in G \setminus G_2$, then $a + g \notin 2G$ and any block of $\mathcal{D}_5(G)$ through $\{0, a, g\}$ does not intersect $\{a - g, -g, a + 2g\}$.

From these facts we deduce that:

if $a \neq g \in a + 2G$, then $\frac{n-4-|G_2|}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ through $\{0, a, g\};$

if $g \in G_2$ with $0 \neq g \notin a + 2G$, there are $\frac{n-4}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{0, a, g\}$; if $g \in G \setminus G_2$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{0, a, g\}$.

Therefore

$$N_{0,a} = (|2G| - 1) \cdot \frac{n - 4 - |G_2|}{2} + (|G_2| - |2G| - 1) \cdot \frac{n - 4}{2} + (n - |G_2|) \cdot \frac{n - 6}{2}$$

which, since $|2G| \cdot |G_2| = |G| = n$, simplifies to

$$N_{0,a} = \frac{3}{2} \cdot |G_2| + \frac{n^2 - 9n + 8}{2}.$$
 (1.3)

If b = 2g with $g \in G$, then $b + g \notin 2G$ and there are no blocks of $\mathcal{D}_5(G)$ through $\{0, b, g, -g\};$

if $g \in 2G \setminus \{0, b\}$, then $b + g \in 2G$ and there are no blocks of $\mathcal{D}_5(G)$ through $\{0, b, q, b+q\};$

if $g \in G_2 \setminus 2G$, then $b + g \notin 2G$ and there are no blocks of $\mathcal{D}_5(G)$ through $\{0, b, g, b+g\};$

if $g \in G \setminus G_2$ and $2g \neq b$, then $b + g \notin 2G$ and any block of $\mathcal{D}_5(G)$ through $\{0, b, g\}$ does not meet $\{b - g, -g, b + 2g\}$.

These facts enable us to conclude that:

if $g \in G$ has the property that 2g = b, there are $\frac{n-4}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{0, b, g\};$

if $g \in 2G \setminus \{0, b\}$, then $\frac{n-4-|G_2|}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ through $\{0, b, g\};$

if $g \in G_2 \setminus 2G$, there are $\frac{n-4}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{0, b, g\}$; if $g \in G \setminus G_2$ with $2g \neq b$, then $\frac{n-6}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ through $\{0, b, g\}.$

Therefore

$$\begin{split} N_{0,b} = \\ = |G_2| \cdot \frac{n-4}{2} + (|2G|-2) \cdot \frac{n-4-|G_2|}{2} + (|G_2|-|2G|) \cdot \frac{n-4}{2} + (n-2|G_2|) \cdot \frac{n-6}{2} \end{split}$$

which, since $|2G| \cdot |G_2| = |G| = n$, can be rewritten as

$$N_{0,b} = 3|G_2| + \frac{n^2 - 9n + 8}{2}.$$
(1.4)

Since $|G_2| \neq 0$, (1.3) and (1.4) give $N_{0,a} \neq N_{0,b}$ and hence $\mathcal{D}_5(G)$ is not a 2-design.

4) In this case $G_2 = \{0, a\}$ is a group of order two and a is the unique involution of G; G can be written as direct sum $G = G_2 \oplus 2G$ and $2G = G_3$ is an elementary abelian 3-group. If $2G = G_3$ has order 3, then G is cyclic of order 6 and clearly $\mathcal{D}_5(G)$ is not a 2-design. Thus we may assume that $|2G| = 3^m$ for some integer m > 1. Then G has order $n = |G| = 2|2G| \ge 18$ and we have:

if $a \neq g \in G \setminus 2G$ and $x \in \{2g, -g\}$, there are no blocks of $\mathcal{D}_5(G)$ through $\{0, a, g, x\};$

if $0 \neq g \in 2G$, any block of $\mathcal{D}_5(G)$ through $\{0, a, g\}$ does not intersect $\{a - g, a, g\}$ -q, a - 2q.

These facts imply:

if $g \in G \setminus 2G$ with $g \neq a$, there are $\frac{n-4-|G_2|}{2} = \frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{0, a, g\};$

if $g \in 2G$ is not equal to $0 \in G$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{0, a, g\}$. Therefore

$$N_{0,a} = (|2G| - 1) \cdot \frac{n - 6}{2} + (|2G| - 1) \cdot \frac{n - 6}{2}.$$
 (1.5)

Let $b \in G_3$, $b \neq 0$. Clearly $(b \neq a \text{ and})$ we have: there are no blocks of $\mathcal{D}_5(G)$ containing $\{0, b, -b\}$;

if $g \in G \setminus 2G$, any block of $\mathcal{D}_5(G)$ through $\{0, b, g\}$ does not intersect $\{2b-g, b-g, d\}$ 2b - 2g;

if $g \in 2G \setminus \langle b \rangle$, then $b + g \in 2G$ and any block of $\mathcal{D}_5(G)$ through $\{0, b, g\}$ does not intersect $\{2b-q, b-q, 2b-2q\}$.

These facts imply:

if $g \in G \setminus 2G$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{0, b, g\}$; if $g \in 2G \setminus \langle b \rangle$, there are $\frac{\overline{n-6-|G_2|}}{2} = \frac{n-8}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{0, b, g\}$.

Therefore

$$N_{0,b} = (n - |2G|) \cdot \frac{n - 6}{2} + (|2G| - 3) \cdot \frac{n - 8}{2}$$

which, since 2|2G| = |G| = n, simplifies to

$$N_{0,b} = |2G| \cdot (n-6) + 12 - 2n.$$
(1.6)

Since $n \neq 6$, (1.5) and (1.6) yield $N_{0,a} \neq N_{0,b}$ and hence $\mathcal{D}_5(G)$ is not a 2-design. This last result completes the proof.

Lemma 2 Let G be a finite additive abelian group of even order n > 4. If there is $a \in G$ such that $a \notin 2G$ and $2a \neq 0$, then

$$N_{a,-a} = |G_3| + \frac{n^2 - 9n + 18}{2}.$$

Proof We first note that there are $\frac{n-2-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, 0\}$. We now discuss five cases.

Case (L. 1. 1): 4a = 0 and $|G_3| = 1$. In this case we have:

 $\frac{n-2-|G_2|}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ through $\{a, -a, 2a\}$;

if $g \in 2G$ with $0 \neq g \neq 2a$, there are $\frac{n-6-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in G - 2G$ with $a \neq g \neq -a$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$.

Therefore

$$N_{a,-a} = 2 \cdot \frac{n-2-|G_2|}{2} + (|2G|-2) \cdot \frac{n-6-|G_2|}{2} + (n-|2G|-2) \cdot \frac{n-6}{2}$$

which, since $|2G| \cdot |G_2| = |G| = n$ and $|G_3| = 1$, can be written as

$$N_{a,-a} = |G_3| + \frac{n^2 - 9n + 18}{2}$$

Case (L. 1. 2): 4a = 0 and $|G_3| \neq 1$. In this case we get: $\frac{n-2-|G_2|}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ through $\{a, -a, 2a\}$; if $g \in G_3$ is distinct from 0, there are $\frac{n-4-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in 2G \setminus G_3$ with $g \neq 2a$, there are $\frac{n-6-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in G \setminus 2G$ with $a \neq g \neq -a$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; Therefore

$$N_{a,-a} = 2 \cdot \frac{n-2-|G_2|}{2} + (|G_3|-1) \cdot \frac{n-4-|G_2|}{2} + (|2G|-|G_3|-1) \cdot \frac{n-6-|G_2|}{2} + (n-|2G|-2) \cdot \frac{n-6}{2}$$

which, since $|2G| \cdot |G_2| = |G| = n$, simplifies to

$$N_{a,-a} = |G_3| + \frac{n^2 - 9n + 18}{2}.$$

Case (L. 1. 3): a has order 6. In this case we have:

if $g \in \{-2a, 2a\}$, then $\frac{n-2-|G_2|}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$;

if $g \in G_3 \setminus \{0, -2a, 2a\}$, there are $\frac{n-4-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in 2G \setminus G_3$, then $\frac{n-6-|G_2|}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ containing $\{a, -a, g\}$;

if $g \in G \setminus 2G$ with $a \neq g \neq -a$, there are $\frac{n-6}{2}$ blocks $\mathcal{D}_5(G)$ including $\{a, -a, g\}$. Therefore

$$N_{a,-a} = 3 \cdot \frac{n-2-|G_2|}{2} + (|G_3|-3) \cdot \frac{n-4-|G_2|}{2} + (|2G|-|G_3|) \cdot \frac{n-6-|G_2|}{2} + (n-|2G|-2) \cdot \frac{n-6}{2}$$

which, since $|2G| \cdot |G_2| = |G| = n$, gives

$$N_{a,-a} = |G_3| + \frac{n^2 - 9n + 18}{2}.$$

Case (L. 1. 4): $4a \neq 0 \neq 6a$ and $|G_3| = 1$. In this case we get: if $g \in \{-2a, 2a\}$, there are $\frac{n-4-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in 2G \setminus \{0, -2a, 2a\}$, $\frac{n-6-|G_2|}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ including $\{a, -a, g\}$; if $g \in G \setminus 2G$ with $a \neq g \neq -a$, $\frac{n-6}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$. Therefore

Therefore

$$N_{a,-a} = \frac{n-2-|G_2|}{2} + 2 \cdot \frac{n-4-|G_2|}{2} + (|2G|-3) \cdot \frac{n-6-|G_2|}{2} + (n-|2G|-2) \cdot \frac{n-6}{2}$$

which, since $|2G| \cdot |G_2| = |G| = n$ and $|G_3| = 1$, can be rewritten as

$$N_{a,-a} = |G_3| + \frac{n^2 - 9n + 18}{2}.$$

Case (L. 1. 5): $4a \neq 0 \neq 6a$ and $|G_3| \neq 1$. In this case we obtain: there are $\frac{n-4-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$ if $g \in \{-2a, 2a\}$ or $0 \neq g \in G_3$; if $g \in 2G \setminus G_3$ with $2a \neq g \neq -2a$, there are $\frac{n-6-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in G \setminus 2G$ with $a \neq g \neq -a$, $\frac{n-6}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$. Therefore

$$N_{a,-a} = \frac{n-2-|G_2|}{2} + (|G_3|+1) \cdot \frac{n-4-|G_2|}{2} + (|2G|-|G_3|-2) \cdot \frac{n-6-|G_2|}{2} + (n-|2G|-2) \cdot \frac{n-6}{2}$$

which, since $|2G| \cdot |G_2| = |G| = n$, simplifies to

$$N_{a,-a} = |G_3| + \frac{n^2 - 9n + 18}{2}$$

The Lemma 2 is proved.

Proposition 2 $\mathcal{D}_5(G)$ is not a 2-design if G is a finite abelian group of even order n > 4 with the property that 2G = 4G.

Proof From 2G = 4G it follows $G_2 = G_4$ and this requires that the Sylow 2-subgroup of G is an elementary abelian 2-group. Therefore G can be written as direct sum $G = G_2 \oplus 2G$ and, by Proposition 1, we may assume that 2Gis a finite abelian group of odd order |2G| > 1. Then any $z \in G$ of the form z = x + y, with $x \in G_2$ and $y \in 2G$ both distinct from 0, is not equal to -z and does not belong to 2G. Thus, using Lemma 2 we see that

$$N_{z,-z} = |G_3| + \frac{n^2 - 9n + 18}{2}.$$
(1.7)

Choose $a \in 2G$, $a \neq 0$ and let α be the unique element in 2G such that $a = 2\alpha$. We shall prove that $N_{a,-a} \neq N_{z,-z}$ and hence, by Lemma 1, $\mathcal{D}_5(G)$ is not a 2-design. We first note that $\frac{n-2-|G_2|}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ through $\{a, -a, 0\}$. We now discuss five cases.

Case (P. 2. 1): $|G_3| = 1$ and $5a \neq 0$. In this case we have:

if $g \in \{-2a, 2a, -\alpha, \alpha\}$, there are $\frac{n-4-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $-\alpha \neq g \in G$ with 2g = -a, then $(g \in -\alpha + G_2$ hence) $g \notin 2G$ and there are $\frac{n-4}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\};$

if $\alpha \neq g \in G$ with 2g = a, then $(g \in \alpha + G_2$ hence) $g \notin 2G$ and there are $\frac{n-4}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$;

if $g \in 2G \setminus \{a, -a, 0, \alpha, -\alpha, 2a, -2a\}$, there are $\frac{n-6-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\};$

if $g \in G \setminus 2G$ with $-a \neq 2g \neq a$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}.$

Therefore

$$N_{a,-a} = \frac{n-2-|G_2|}{2} + 4 \cdot \frac{n-4-|G_2|}{2} + 2(|G_2|-1) \cdot \frac{n-4}{2} + (|2G|-7) \cdot \frac{n-6-|G_2|}{2} + (n-2 \cdot |G_2|-|2G|+2) \cdot \frac{n-6}{2}$$

which, since $|2G| \cdot |G_2| = |G| = n$ and $|G_3| = 1$, can be rewritten as

$$N_{a,-a} = 3|G_2| + |G_3| + \frac{n^2 - 9n + 18}{2}$$

Because $|G_2| \neq 0$, this equality together with (1.7) gives $N_{a,-a} \neq N_{z,-z}$ and hence $\mathcal{D}_5(G)$ is not a 2-design.

Case (P. 2. 2): $|G_3| = 1$ and a has order 5. In this case we have $(\alpha = -2a)$ and):

if $g \in \{2a, -2a\}$, there are $\frac{n-2-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $2a \neq g \in G$ with 2g = -a, then $(g \in 2a + G_2$ hence) $g \notin 2G$ and there are $\frac{n-4}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $-2a \neq g \in G$ with 2g = a, then $(g \in -2a + G_2$ hence) $g \notin 2G$ and there are

 $\frac{n-4}{2} \text{ blocks of } \mathcal{D}_5(G) \text{ through } \{a, -a, g\};$ if $g \in 2G \setminus \langle a \rangle$, there are $\frac{n-6-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\};$

73

if $g \in G \setminus 2G$ with $-a \neq 2g \neq a$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}.$

Therefore

$$N_{a,-a} = 3 \cdot \frac{n-2-|G_2|}{2} + 2 \cdot (|G_2|-1)\frac{n-4}{2} + (|2G|-5) \cdot \frac{n-6-|G_2|}{2} + (n-2 \cdot |G_2|-|2G|+2) \cdot \frac{n-6}{2}$$

which, since $|2G| \cdot |G_2| = |G| = n$ and $|G_3| = 1$, simplifies to

$$N_{a,-a} = 3|G_2| + |G_3| + \frac{n^2 - 9n + 18}{2}$$

Since $|G_2| \neq 0$, this equality together with (1.7) gives $N_{a,-a} \neq N_{z,-z}$ and hence $\mathcal{D}_5(G)$ is not a 2-design.

Case (P. 2. 3): $|G_3| \neq 1$ and a has order 5. In this case we have $(\alpha = -2a)$ and):

if $g \in \{2a, -2a\}$, there are $\frac{n-2-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $2a \neq g \in G$ with 2g = -a, then $(g \in 2a + G_2$ hence) $g \notin 2G$ and there are $\frac{n-4}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\};$

if $-2a \neq g \in G$ with 2g = a, then $(g \in -2a + G_2$ hence) $g \notin 2G$ and there are $\frac{n-4}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\};$

if $0 \neq g \in G_3$, then $\frac{n-4-|G_2|}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\};$

if $g \in 2G \setminus G_3$ with $2a \neq g \neq -2a$, there are $\frac{n-6-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\};$

if $g \in G \setminus 2G$ with $-a \neq 2g \neq a$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}.$

Therefore

$$N_{a,-a} = 3 \cdot \frac{n-2-|G_2|}{2} + 2 \cdot (|G_2|-1) \cdot \frac{n-4}{2} + (|G_3|-1) \cdot \frac{n-4-|G_2|}{2} + (|2G|-|G_3|-2) \cdot \frac{n-6-|G_2|}{2} + (n-2 \cdot |G_2|-|2G|) \cdot \frac{n-6}{2}$$

which, since $|2G| \cdot |G_2| = |G| = n$, simplifies to

$$N_{a,-a} = 2|G_2| + |G_3| + \frac{n^2 - 9n + 18}{2}$$

Since $|G_2| \neq 0$, this equality together with (1.7) gives $N_{a,-a} \neq N_{z,-z}$ and hence $\mathcal{D}_5(G)$ is not a 2-design.

Case (P. 2. 4): $|G_3| \neq 1$ and $3a \neq 0 \neq 5a$. In this case we have: if $g \in \{2a, -2a, \alpha, -\alpha\}$, there are $\frac{n-4-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $-\alpha \neq g \in G$ with 2g = -a, then $(g \in -\alpha + G_2$ hence) $g \notin 2G$ and there are $\frac{n-4}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\};$

if $\alpha \neq g \in G$ with 2g = a, then $(g \in \alpha + G_2$ hence) $g \notin 2G$ and there are $\frac{n-4}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$;

if $0 \neq g \in G_3$, there are $\frac{n-4-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$;

if $g \in 2G \setminus G_3$ and $g \notin \{a, -a, \alpha, -\alpha, 2a, -2a\}$, there are $\frac{n-6-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in G \setminus 2G$ with $-a \neq 2g \neq a$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$.

Therefore

$$\begin{split} N_{a,-a} &= \frac{n-2-|G_2|}{2} + 4 \cdot \frac{n-4-|G_2|}{2} + 2 \cdot (|G_2|-1) \cdot \frac{n-4}{2} \\ &+ (|G_3|-1) \cdot \frac{n-4-|G_2|}{2} + (|2G|-|G_3|-6) \cdot \frac{n-6-|G_2|}{2} \\ &+ (n-2 \cdot |G_2|-|2G|+2) \cdot \frac{n-6}{2} \end{split}$$

which, since $|2G| \cdot |G_2| = |G| = n$, can be rewritten as

$$N_{a,-a} = 3|G_2| + |G_3| + \frac{n^2 - 9n + 18}{2}$$

Since $|G_2| \neq 0$, this equality together with (1.7) gives $N_{a,-a} \neq N_{z,-z}$ and hence $\mathcal{D}_5(G)$ is not a 2-design.

Case (P. 2. 5): $a \in G_3$. In this case we obtain ($\alpha = -a$ and): if $a \neq g \in G$ with 2g = -a, then ($g \in a + G_2$ hence) $g \notin 2G$ and there are $\frac{n-4}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $-a \neq g \in G$ with 2g = a, then ($g \in -a + G_2$ hence) $g \notin 2G$ and there are

 $\frac{n-4}{2} \text{ blocks of } \mathcal{D}_{5}(G) \text{ through } \{a, -a, g\};$ if $g \in G_{3} \setminus \langle a \rangle$, then $\frac{n-4-|G_{2}|}{2}$ is the number of blocks of $\mathcal{D}_{5}(G)$ through $\{a, -a, g\};$ if $g \in 2G \setminus G_{3}$, then $\frac{n-6-|G_{2}|}{2}$ is the number of blocks of $\mathcal{D}_{5}(G)$ through $\{a, -a, g\};$ if $g \in G \setminus 2G$ with $-a \neq 2g \neq a$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_{5}(G)$ through $\{a, -a, g\}.$

Therefore

$$N_{a,-a} = \frac{n-2-|G_2|}{2} + 2(|G_2|-1) \cdot \frac{n-4}{2} + (|G_3|-3) \cdot \frac{n-4-|G_2|}{2} + (|2G|-|G_3|) \cdot \frac{n-6-|G_2|}{2} + (n-2\cdot|G_2|-|2G|+2) \cdot \frac{n-6}{2}$$

which, since $|2G| \cdot |G_2| = |G| = n$, can be rewritten as

$$N_{a,-a} = 3|G_2| - 6 + |G_3| + \frac{n^2 - 9n + 18}{2}$$

This equality together with (1.7) yields $|G_2| = 2$. Such a result and those obtained from the above cases allow as to conclude that: G has just one involution and 2G must be an elementary abelian 3-group. Now using Proposition 1 we see that $\mathcal{D}_5(G)$ is not a 2-design, the Proposition is proved.

Some additive $2 - (v, 5, \lambda)$ designs

Lemma 3 Suppose G is a finite abelian group of even order n > 4 in which $G_4 \neq G \neq G_2 + 2G$ and choose $\alpha \in G$ in such a way that $\alpha \notin G_2 + 2G$, $4\alpha \neq 0$. Then $a = 2\alpha$ and -a are distinct elements of G and

$$N_{a,-a} = 3|G_2| + |G_3| + \frac{n^2 - 9n + 18}{2}.$$

Proof Clearly, from $a = 2\alpha$ it follows $a \in 2G$, $2a \neq 0$, $a \notin 4G$, $3a \neq 0$, $5a \neq 0$. We first note that: $\frac{n-2-|G_2|}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ through $\{a, -a, 0\}$; if $g \in G \setminus \{a, -a, 0\}$, any block of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$ does not intersect $\{-a - g, a - g, -2g\}$. We now discuss five cases.

Case (L. 2. 1): 4a = 0 and $|G_3| = 1$. In this case we have: $\frac{n-2-|G_2|}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ through $\{a, -a, 2a\}$; if $g \in G$ and $2g \in \{a, -a\}$, then $g \notin 2G$ and there are $\frac{n-4}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in 2G \setminus \langle a \rangle$, there are $\frac{n-6-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in G \setminus 2G$ with $-a \neq 2g \neq a$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $a, -a, g\}$.

Therefore

$$N_{a,-a} = 2 \cdot \frac{n-2-|G_2|}{2} + 2 \cdot |G_2| \cdot \frac{n-4}{2} + (|2G|-4) \cdot \frac{n-6-|G_2|}{2} + (n-2 \cdot |G_2|-|2G|) \cdot \frac{n-6}{2}$$

which, since $|2G| \cdot |G_2| = |G| = n$ and $|G_3| = 1$, yields

$$N_{a,-a} = 3|G_2| + |G_3| + \frac{n^2 - 9n + 18}{2}.$$

Case (L. 2. 2): 4a = 0 and $|G_3| \neq 1$. In this case we have: $\frac{n-2-|G_2|}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ through $\{a, -a, 2a\}$; if $g \in G$ and $2g \in \{a, -a\}$, then $g \notin 2G$ and there are $\frac{n-4}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in G_3$ is distinct from 0, there are $\frac{n-4-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in 2G \setminus G_3$ does not belong to $\langle a \rangle$, there are $\frac{n-6-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in G \setminus 2G$ with $-a \neq 2g \neq a$; there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$. Therefore

$$N_{a,-a} = 2 \cdot \frac{n-2-|G_2|}{2} + 2 \cdot |G_2| \cdot \frac{n-4}{2} + (|G_3|-1) \cdot \frac{n-4-|G_2|}{2} + (|2G|-|G_3|-3) \cdot \frac{n-6-|G_2|}{2} + (n-2 \cdot |G_2|-|2G|) \cdot \frac{n-6}{2}$$

which, since $|2G| \cdot |G_2| = |G| = n$, simplifies to

$$N_{a,-a} = 3|G_2| + |G_3| + \frac{n^2 - 9n + 18}{2}$$

Case (L. 2. 3): a has order 6. In this case we obtain:

if $g \in \{2a, -2a\}$, there are $\frac{n-2-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in G$ and $2g \in \{a, -a\}$, then $g \notin 2G$ and there are $\frac{n-4}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in G_3 \setminus \{0, 2a, -2a\}$, there are $\frac{n-4-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in 2G \setminus G_3$ with $-a \neq g \neq a$, there are $\frac{n-6-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in G \setminus 2G$ with $-a \neq 2g \neq a$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in G \setminus 2G$ with $-a \neq 2g \neq a$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in G \setminus 2G$ with $-a \neq 2g \neq a$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$. Therefore

$$N_{a,-a} = 3 \cdot \frac{n-2-|G_2|}{2} + 2 \cdot |G_2| \cdot \frac{n-4}{2} + (|G_3|-3) \cdot \frac{n-4-|G_2|}{2} + (|2G|-|G_3|-2) \cdot \frac{n-6-|G_2|}{2} + (n-2 \cdot |G_2|-|2G|) \cdot \frac{n-6}{2}$$

which, since $|2G| \cdot |G_2| = |G| = n$, yields

$$N_{a,-a} = 3|G_2| + |G_3| + \frac{n^2 - 9n + 18}{2}.$$

Case (L. 2. 4): $4a \neq 0 \neq 6a$ and $|G_3| = 1$. In this case we get: if $g \in \{2a, -2a\}$, there are $\frac{n-4-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in G$ and $2g \in \{-a, a\}$, then $g \notin 2G$ and there are $\frac{n-4}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in 2G \setminus \{a, -a, 0, -2a, 2a\}$, there are $\frac{n-6-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in G \setminus 2G$ with $-a \neq 2g \neq a$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in G \setminus 2G$ with $-a \neq 2g \neq a$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$. Therefore

$$N_{a,-a} = \frac{n-2-|G_2|}{2} + 2 \cdot \frac{n-4-|G_2|}{2} + 2 \cdot |G_2| \cdot \frac{n-4}{2} + (|2G|-5) \cdot \frac{n-6-|G_2|}{2} + (n-2 \cdot |G_2|-|2G|) \cdot \frac{n-6}{2}$$

Some additive $2 - (v, 5, \lambda)$ designs

which, since $|2G| \cdot |G_2| = |G| = n$ and $|G_3| = 1$, yields

$$N_{a,-a} = 3|G_2| + |G_3| + \frac{n^2 - 9n + 18}{2}.$$

Case (L. 2. 5): $4a \neq 0 \neq 6a$ and $|G_3| \neq 1$. In this case we deduce: if $g \in \{2a, -2a\}$, there are $\frac{n-4-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in G$ and $2g \in \{a, -a\}$, then $g \notin 2G$ and there are $\frac{n-4}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in G_3$ is distinct from 0, there are $\frac{n-4-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in 2G \setminus G_3$ and $g \notin \{a, -a, 2a, -2a\}$, there are $\frac{n-6-|G_2|}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in G \setminus 2G$ with $-a \neq 2g \neq a$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$; if $g \in G \setminus 2G$ with $-a \neq 2g \neq a$, there are $\frac{n-6}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}$. Therefore

$$N_{a,-a} = \frac{n-2-|G_2|}{2} + (|G_3|+1) \cdot \frac{n-4-|G_2|}{2} + 2 \cdot |G_2| \cdot \frac{n-4}{2} + (|2G|-|G_3|-4) \cdot \frac{n-6-|G_2|}{2} + (n-2 \cdot |G_2|-|2G|) \cdot \frac{n-6}{2}$$

which, since $|2G| \cdot |G_2| = |G| = n$, yields

$$N_{a,-a} = 3|G_2| + |G_3| + \frac{n^2 - 9n + 18}{2}.$$

The Lemma 3 is proved.

Theorem 1 If $\mathcal{D}_5(G)$ is a 2-design, then n = |G| must be odd integer.

Proof We may assume that G is a finite additive abelian group of order n = |G| > 4. Suppose n is an even integer: so we must show that $\mathcal{D}_5(G)$ is not a 2-design. We discuss five cases.

Case (T. 1): 2g = 0 whenever $g \in G \setminus 2G$. In this case G must be an elementary abelian 2-group and hence, by Proposition 1, $\mathcal{D}_5(G)$ is not a 2-design.

Case (T. 2): G is an abelian group of exponent 4. In this case either G is direct sum of cyclic groups of order 4 or G is direct sum of groups of order 2 and cyclic groups of order 4. Then, by Proposition 1, $\mathcal{D}_5(G)$ is not a 2-design.

Case (T. 3): 2G = 4G. Then Proposition 2 asserts that $\mathcal{D}_5(G)$ is not a 2-design.

Case (T. 4): $2G \neq 4G$ and 4x = 0 for every $x \notin G_2 + 2G$. Then G must be an abelian group of exponent 4 and hence, by statements 2) and 3) of Proposition 1, $\mathcal{D}_5(G)$ is not a 2-design.

Case (T. 5): $2G \neq 4G$ and $G \neq G_4$. Then $G_2 + 2G$ is a proper subgroup of G and there is $\alpha \in G$ such that $\alpha \notin G_2 + 2G$ and $4\alpha \neq 0$. Thus $a = 2\alpha \neq -a$ and, by Lemma 3, we obtain

$$N_{a,-a} = 3|G_2| + |G_3| + \frac{n^2 - 9n + 18}{2}.$$
(1.8)

On the other hand, since $2G \neq 4G$ implies that G is not an elementary abelian 2-group, there is $z \in G$ such that $z \notin 2G$ and $2z \neq 0$. Then using Lemma 2 we deduce that

$$N_{z,-z} = |G_3| + \frac{n^2 - 9n + 18}{2}.$$
(1.9)

Since $|G_2| \neq 0$, combining (1.8) and (1.9) we deduce that $N_{a,-a} \neq N_{z,-z}$ and hence, by Lemma 1, $\mathcal{D}_5(G)$ is not a 2-design. Now the proof of the theorem is complete.

$\mathbf{2}$ Main result

Proposition 3 $\mathcal{D}_5(G)$ is not a 2-design if one of the statements below is true:

- 1. G is a finite abelian group of odd order n divisible by 3;
- 2. G is a finite abelian group of odd order n not divisible by 5.

Proof

1. Choose $a \in G_3$, $a \neq 0$. Then clearly we have: $\frac{n-3}{2} \text{ is the number of blocks of } \mathcal{D}_5(G) \text{ through } \{a, -a, 0\};$ if $g \in G_3 \setminus \langle a \rangle$, there are $\frac{n-5}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\};$ if $g \in G \setminus G_3$, there are $\frac{n-7}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{a, -a, g\}.$

Therefore

$$N_{a,-a} = \frac{n-3}{2} + (|G_3| - 3) \cdot \frac{n-5}{2} + (n - |G_3|) \cdot \frac{n-7}{2}.$$
 (2.1)

Note that if G is an elementary abelian 3-group, then $G = G_3$ and (2.1) can be rewritten as

$$N_{a,-a} = \frac{n-3}{2} + (n-3) \cdot \frac{n-5}{2}.$$
(2.2)

Suppose $|G_5| \neq 1$ and choose $\alpha \in G_5$, $\alpha \neq 0$. Then we obtain: if $g \in \{0, 2\alpha, -2\alpha\}$, there are $\frac{n-3}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{\alpha, -\alpha, g\}$; if $0 \neq g \in G_3$, there are $\frac{n-5}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{\alpha, -\alpha, g\}$; if $g \in G \setminus G_3$ and $g \notin \{\alpha, -\alpha, -2\alpha, 2\alpha\}$, there are $\frac{n-7}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{\alpha, -\alpha, g\}.$

Therefore

$$N_{\alpha,-\alpha} = 3 \cdot \frac{n-3}{2} + (|G_3| - 1) \cdot \frac{n-5}{2} + (n-4 - |G_3|) \cdot \frac{n-7}{2}.$$
 (2.3)

Combining (2.1) and (2.3) we deduce that $N_{a,-a} \neq N_{\alpha,-\alpha}$ and hence, by Lemma 1, $\mathcal{D}_5(G)$ is not a 2-design.

Suppose $|G_5| = 1$, $G_3 \neq G$ and choose $\beta \in G \setminus G_3$. Then we find: $\frac{n-3}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ through $\{\beta, -\beta, 0\}$; if $0 \neq g \in \{2\beta, -2\beta\}$, there are $\frac{n-5}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{\beta, -\beta, g\}$; if $\gamma \in G$ with $2\gamma = -\beta$, there are $\frac{n-5}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{\beta, -\beta, \gamma\}$;

there are $\frac{n-5}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{\beta, -\beta, -\gamma\}$; if $0 \neq g \in G_3$, there are $\frac{n-5}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{\beta, -\beta, g\}$; if $g \in G \setminus G_3$ and $g \notin \{\beta, -\beta, 2\beta, -2\beta, \gamma, -\gamma\}$, there are $\frac{n-7}{2}$ blocks $\mathcal{D}_5(G)$ through $\{\beta, -\beta, g\}$.

Therefore

$$N_{\beta,-\beta} = \frac{n-3}{2} + (|G_3|+3) \cdot \frac{n-5}{2} + (n-6-|G_3|) \cdot \frac{n-7}{2}.$$
 (2.4)

Combining (2.1) and (2.4) we find $N_{a,-a} \neq N_{\beta,-\beta}$ and hence, by Lemma 1, $\mathcal{D}_5(G)$ is not a 2-design.

We can now assume that $G = G_3$. Then for any $g \in G \setminus \langle a \rangle$ there are $\frac{n-7}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{0, a, g\}$. Therefore

$$N_{0,a} = \frac{n-3}{2} + (n-3) \cdot \frac{n-7}{2}.$$
(2.5)

Combining (2.2) and (2.5) we find $N_{a,-a} \neq N_{0,a}$ and hence, by Lemma 1, $\mathcal{D}_5(G)$ is not a 2-design.

2. By **1** we may assume that *n* and 15 are (odd integers) relatively prime. Choose $x \in G$, $x \neq 0$ and let y, z be elements of G such that 2y = x, 2z = 7x. Then clearly we have:

 $\frac{n-3}{2} \text{ is the number of blocks of } \mathcal{D}_5(G) \text{ through the 3-set } \{x, -x, 0\}; \\ \text{if } g \in \{2x, -2x, y, -y\}, \text{ there are } \frac{n-5}{2} \text{ blocks of } \mathcal{D}_5(G) \text{ through } \{x, -x, g\}; \\ \end{cases}$ if $0 \neq g \in G \setminus \{x, -x, 2x, -2x, y, -y\}$, there are $\frac{n-7}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{x, -x, g\}.$

Therefore

$$N_{x,-x} = \frac{n-3}{2} + 4 \cdot \frac{n-5}{2} + (n-7) \cdot \frac{n-7}{2}.$$
 (2.6)

On the other hand we have:

if $g \in \{6x, 11x, z\}$, there are $\frac{n-5}{2}$ blocks of $\mathcal{D}_5(G)$ through the 3-set $\{x, -4x, g\}$; if $g \in G \setminus \{x, -4x, 6x, 11x, z\}$, there are $\frac{n-7}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{x, -4x, g\}$. Therefore

$$N_{x,-4x} = 3 \cdot \frac{n-5}{2} + (n-5) \cdot \frac{n-7}{2}.$$
(2.7)

Combining (2.6) and (2.7) we obtain $N_{x,-x} \neq N_{x,-4x}$ and hence, by Lemma 1, $\mathcal{D}_5(G)$ is not a 2-design. Now the Proposition 3 is proved.

We can now state our main result.

Theorem 2 $\mathcal{D}_5(G)$ is a 2-design if and only if G is an elementary abelian 5-group. When this is so, there are

$$\lambda = \frac{|G| - 3}{2} + \frac{(|G| - 5) \cdot (|G| - 7)}{6}$$

blocks of $\mathcal{D}_5(G)$ through any given 2-set $\{x, y\} \subset G$.

Proof Suppose $\mathcal{D}_5(G)$ is a 2-design. By Theorem 1 and Proposition 3, n = |G| must be an odd integer multiple of 5 not divisible by 3. Let $a \in G_5$, $a \neq 0$. Then we find: if $g \in \langle a \rangle$ with $0 \neq g \neq a$, then $\frac{n-3}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ through $\{0, a, g\}$; if $g \in G \setminus \langle a \rangle$, there are $\frac{n-7}{2}$ blocks of $\mathcal{D}_5(G)$ through $\{0, a, g\}$.

Therefore

$$N_{0,a} = 3 \cdot \frac{n-3}{2} + (n-5) \cdot \frac{n-7}{2}$$
(2.8)

Assume that $5b \neq 0$ for some $b \in G$ and let β be the unique element in G such that $2\beta = 7b$. Then $(\beta \in G \setminus \{b, -4b, 6b, 11b\}$ and) we obtain:

if $g \in \{6b, 11b, \beta\}$, then $\frac{n-5}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ through $\{b, -4b, g\}$; if $g \in G \setminus \{b, -4b, 6b, 11b, \beta\}$, then $\frac{n-7}{2}$ is the number of blocks of $\mathcal{D}_5(G)$ through $\{b, -4b, g\}$.

Therefore

$$N_{b,-4b} = 3 \cdot \frac{n-5}{2} + (n-5) \cdot \frac{n-7}{2}$$

and thus, since $\mathcal{D}_5(G)$ is a 2 design, we find (by Lemma 1)

$$3 \cdot \frac{n-3}{2} + (n-5) \cdot \frac{n-7}{2} = N_{0,a} = N_{b,-4b} = 3 \cdot \frac{n-5}{2} + (n-5) \cdot \frac{n-7}{2}$$

and this gives n-3 = n-5 a contradiction. Such a contradiction shows that 5g = 0 for all $g \in G$: in other words, G is an elementary abelian 5-group. Furthermore, from Lemma 1 and equation (2.8) we know that

$$3 \cdot \frac{n-3}{2} + (n-5) \cdot \frac{n-7}{2} = N_{0,a} = 3\lambda$$

from which it follows that $\lambda = \frac{|G|-3}{2} + (|G|-5) \cdot \frac{|G|-7}{6}$ is the number of blocks of $\mathcal{D}_5(G)$ through any given two distinct elements $x, y \in G$.

To finish, assume that G is an elementary abelian 5-group. If we regard G as a vector space over the field with five elements, then we see that the affine group $\operatorname{Aff}(G)$ acts 2-homogeneously on G and the block-set \mathcal{B} of $\mathcal{D}_5(G)$ may be written as $\mathcal{B} = C^{\operatorname{Aff}(G)}$ (i.e. $\mathcal{B} = \{C^{\gamma} \mid \gamma \in \operatorname{Aff}(G)\}$ is the $\operatorname{Aff}(G)$ -orbit of a fixed block $C \in \mathcal{B}$). Hence, by [1, Proposition 4.6], $\mathcal{D}_5(G)$ is a 2-design. The Theorem is proved.

References

- Beth, T., Jungnickel, D., Lenz, H.: Design Theory. 2nd ed., Cambridge University Press, Cambridge, 1999.
- [2] Caggegi, A., Di Bartolo, A., Falcone, G.: Boolean 2-designs and the embedding of a 2-design in a group. arxiv 0806.3433v2, (2008), 1–8.
- [3] Caggegi, A., Falcone, G., Pavone, M.: On the additivity of block design. submitted.
- [4] Caggegi, A.: Some additive $2 (v, 4, \lambda)$ designs. Boll. Mat. Pura e Appl. 2 (2009), 1–3.
- [5] Colbourn, C. J., Dinitz, J. H.: The CRC Handbook of Combinatorial Designs. Discrete Mathematics and Its Applications, 2nd ed., *Chapman & Hall/CRC Press*, 2007.