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Abstract

Our paper deals with the following nonlinear neutral differential equa-
tion with variable delay

d

dt
Dut(t) = p(t)− a(t)u(t)− a(t)g(u(t− τ(t)))− h(u(t), u(t− τ(t))).

By using Krasnoselskii’s fixed point theorem we obtain the existence of
periodic solution and by contraction mapping principle we obtain the
uniqueness. A sufficient condition is established for the positivity of the
above equation. Stability results of this equation are analyzed. Our results
extend and complement some results obtained in the work [13].
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1 Introduction

Delay differential equations have attracted a rapidly growing attention in the
field of nonlinear dynamics and have become a powerful tool for investigating the
complexities of the real-world problems such as infectious diseases, biotic pop-
ulation, neuronal networks, and even economics and finance. When employing
delay differential equations to solve practical problems, it is very crucial to be
able to completely characterize the dynamical properties of the delay differential
equations.
Lyapunov functions and functionals have been successfully used to obtain

boundedness, stability and the existence of periodic solutions of differential and
functional differential equations with functional delays. In the study of differ-
ential equations with functional delays by using Lyapunov functionals, many
difficulties arise if the delay is unbounded or if the differential equation in
question has unbounded terms, see [3, 4, 6, 8]. In recent years, several in-
vestigators have tried stability by using a new technique. Particularly, Burton,
Furumochi, Zhang and others began a study in which they noticed that some
of these difficulties vanish or might be overcome by means of fixed point theory
(see [1, 2, 5, 6, 7, 11, 13, 14]). The most striking object is that the fixed point
method does not only solve the problem but has a significant advantage over
Liapunov’s direct method. While it remains an art to construct a Liapunov’s
functional when it exists, a fixed point method, in one step, yields existence,
uniqueness and stability. All we need, to use the fixed point method, is a com-
plete metric space, a suitable fixed point theorem and an elementary integral
methods to solve problems that have frustrated investigators for decades.
Y. Yuan and Z. Guo in [13], discussed the existence of periodic solutions and

stability for the following neutral functional differential equation

d

dt
Dut(t) = p(t)− au(t)− qau(t− τ )− h(u(t), u(t− τ )), (1.1)

where Dut(t) = u(t) − qu(t − τ ), |q| < 1, a > 0, τ > 0, h ∈ C(R × R,R) and
p ∈ C(R,R). Such a kind of NFDE has been used for the study of distributed
networks containing a transmission line [9, 10].
In this paper, we are interested on the existence of positive periodic solutions

and stability of the following nonlinear neutral differential equation

d

dt
Dut(t) = p(t)− a(t)u(t)− a(t)g(u(t− τ (t)))− h(u(t), u(t− τ (t))). (1.2)

where Dut(t) = u(t)−g(u(t−τ (t))), a, p, τ are real valued continuous functions
with a and τ are positive functions. The functions h : R×R → R and g : R → R
are continuous in their respective arguments. It is easy to see that the equation
(1.2) reduce to the equation (1.1) when, τ (t) = τ is a constant, a(t) = a is a
strictly positive constant and g(u(t− τ (t))) = qu(t− τ ) with |q| < 1.
The outline of this work is as follows. In Section 2, we introduce the func-

tional setting of the problem and fix the different notations and facts needed
in the sequel. Section 3 is devoted to the existene and uniqueness of periodic
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solution of the equation (1.2). In Section 4, we give a sufficient conditions to
ensure the positivity solution of (1.2). The stability of the periodic solution is
the topic of Section 5.

2 Preliminaries

For T > 0, define CT = {ϕ : ϕ ∈ C(R,R), ϕ(t + T ) = ϕ(t)}, where C(R,R) is
the space of all real valued continuous functions. Then CT is a Banach space
when it is endowed with the supremum norm

‖ϕ‖ = max
t∈[0,T ]

|ϕ(t)|.

Since we are searching for the existence of periodic solutions for the equation
(1.2), it is natural to assume that

a(t+ T ) = a(t), p(t+ T ) = p(t), τ (t+ T ) = τ (t), (2.1)

with τ (t) ≥ τ∗ > 0 and ∫ T

0

a(r)dr > 0. (2.2)

The functions g(·), h(·, ·) are also globally Lipschitz continuous in x and in x
and y, respectively. That, there are a positive constants k1, k2 and k3, such
that

|g(x)− g(y)| ≤ k1‖x− y‖ and k1 < 1, (2.3)

|h(x, y)− h(z, w)| ≤ k2‖x− z‖+ k3‖y − w‖. (2.4)

Lemma 1 Suppose (2.1) and (2.2) hold. If u ∈ CT , then u is a solution of the
equation (1.2) if and only if

u(t) = g(u(t− τ (t)))

+ γ

∫ t+T

t

[p(s)− 2a(s)g(u(s− τ (s)))− h(u(s), u(s− τ (s)))]e−
∫ t
s
a(r)drds,

(2.5)

where
γ = (e

∫ T
0
a(r)dr − 1)−1.

Proof Let u ∈ CT be a solution of (1.2). Multiply both sides of the equation
(1.2) by e

∫ t
0
a(r)dr and then integrate from t to t+ T , to obtain

∫ t+T

t

[Dus(s)]
′e

∫
s
0
a(r)drds

=

∫ t+T

t

[ p(s)− a(s)u(s)− a(s)g(u(s− τ (s)))− h(u(s), u(s− τ (s)))]e
∫ s
0
a(r)drds.
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Performing an integration by part, we obtain

Dut(t)e
∫ t
0
a(r)dr(e

∫ T
0
a(r)dr − 1)−

∫ t+T

t

a(s)Dus(s)e
∫ s
0
a(r)drds

= −
∫ t+T

t

a(s)[u(s)− g(u(s− τ (s)))]e
∫ s
0
a(r)drds

+

∫ t+T

t

[ p(s)− 2a(s)g(u(s− τ (s)))− h(u(s), u(s− τ (s)))]e
∫ s
0
a(r)drds.

By dividing both sides of the above equation by e
∫ t
0
a(r)dr(e

∫ T
0
a(r)dr − 1), we

arrive at

u(t) = g(u(t− τ (t))) + (e
∫ T
0
a(r)dr − 1)−1

×
∫ t+T

t

[ p(s)− 2a(s)g(u(s− τ (s)))− h(u(s), u(s− τ (s)))]e−
∫ t
s
a(r)drds.

The converse implication is easily obtained and the proof is complete. �

We end this section by stating the fixed point theorems that we employ to
help us show the existence and stability of solutions to equation (1.2); see [6, 12].

Theorem 1 (Contraction Mapping Principle) Let (X , ρ) a complete met-
ric space and let P : X → X . If there is a constant α < 1 such that for any
x, y ∈ X we have

ρ(Px, Py) ≤ αρ(x, y),

then there is one and only one point z ∈ X with Pz = z.

Theorem 2 (Krasnoselskii) Let M be a closed bounded convex nonempty
subset of a Banach space (X , ‖ · ‖). Suppose that A and B map M into X
such that

(i) A is compact and continuous,
(ii) B is a contraction mapping,
(iii) x, y ∈ M, implies Ax+By ∈ M,

Then there exists z ∈ M with z = Az +Bz.

3 Existence and uniqueness of periodic solution

By applying Theorems 1 and 2, we obtain in this Section the existence and the
uniqueness of periodic solution of (1.2). So, let a Banach space (CT , ‖ · ‖), a
closed bounded convex subset of CT ,

M = {ϕ ∈ CT , ‖ϕ‖ ≤ L}, (3.1)

with L > 0, and by the Lemma 1, we define the mapping P given by
(Pϕ)(t) = g(ϕ(t− τ (t)))

+ γ

∫ t+T

t

[ p(s)− 2a(s)g(ϕ(s− τ (s)))− h(ϕ(s), ϕ(s− τ (s)))]e−
∫ t
s
a(r)drds.

(3.2)
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Therefore, we express equation (3.2) as

Pϕ = Aϕ+ Bϕ,
where A and B are given by

(Aϕ)(t)

= γ

∫ t+T

t

[p(s)− 2a(s)g(ϕ(s− τ (s)))− h(ϕ(s), ϕ(s− τ (s)))]e−
∫ t
s
a(r)drds,

(3.3)

and
(Bϕ)(t) = g(ϕ(t− τ (t))). (3.4)

Since ϕ ∈ CT and (2.1) holds, we have for any ϕ ∈ M

(Aϕ)(t+ T ) = γ

∫ t+T+T

t+T

[p(s)− 2a(s)g(ϕ(s− τ (s)))

− h(ϕ(s), ϕ(s− τ (s)))]e−
∫ t+T
s

a(r)drds

= γ

∫ t+T

t

[p(s+ T )− 2a(s+ T )g(ϕ(s+ T − τ (s+ T )))

− h(ϕ(s+ T ), ϕ(s+ T − τ (s+ T )))]e−
∫ t+T
s+T

a(r)drds

= (Aϕ)(t),
and

(Bϕ)(t+ T ) = g(ϕ(t+ T − τ (t+ T ))) = g(ϕ(t− τ (t))) = (Bϕ)(t).
Then

AM,BM ⊂ CT . (3.5)

Theorem 3 Assume that (2.1)–(2.4) hold. Let a constant L > 0 defined inM
such that

k1L+ |g(0)|+ γβT (μ+ 2λk1L+ |g(0)|+ k2L+ k3L+ |h(0, 0)|) ≤ L (3.6)

where
β = e

∫ T
0
a(r)dr, λ = sup

t∈[0,T ]

{a(t)}, μ = sup
t∈[0,T ]

|p(t)|.

Then (1.2) has a T -periodic solution.

Proof First, let A defined by (3.3), we show that A is continuous in the
supremum norm and the image of A is contained in a compact set. Let ϕn ∈ M
where n is a positive integer such that ϕn → ϕ as n→ ∞. Then

|(Aϕn)(t)− (Aϕ)(t)|

≤ 2γ

∫ t+T

t

a(s)|g(ϕn(s− τ (s)))− g(ϕ(s− τ (s)))|e−
∫

t
s
a(r)drds

+ γ

∫ t+T

t

|h(ϕn(s), ϕn(s− τ (s)))− h(ϕ(s), ϕ(s− τ (s)))|e−
∫ t
s
a(r)drds.
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Since g and h are continuous, the Dominated Convergence Theorem implies,

lim
n→∞ |(Aϕn)(t)− (Aϕ)(t)| = 0,

then A is continuous. Now, by (2.3) and (2.4), we obtain
|g(y)| ≤ k1|y|+ |g(0)|,

|h(x, y)| ≤ k2|x|+ k3|y|+ |h(0, 0)|.
Then, let ϕn ∈ M where n is a positive integer, we have

|(Aϕn)(t)|

≤ γ

∫ t+T

t

[p(s)− a(s)g(ϕn(s− τ (s)))− h(ϕn(s), ϕn(s− τ (s)))]e−
∫ t
s
a(r)drds

≤ γ

∫ t+T

t

[|p(s)|+ 2a(s)(k1‖ϕn‖+ |g(0)|)

+ k2‖ϕn‖+ k3‖ϕn‖+ |h(0, 0)|]e−
∫ t
s
a(r)drds

≤ γβT (μ+ 2λ(k1L+ |g(0)|) + k2L+ k3L+ |h(0, 0)|) ≤ L,

by (3.6). Next, we calculate (Aϕn)′(t) and show that it is uniformly bounded.
By making use of (2.1) we obtain by taking the derivative in (3.3) that

(Aϕn)′(t) = −a(t)(Aϕn)(t)
+ p(t)− 2a(t)g(ϕn(t− τ (t)))− h(ϕn(t), ϕn(t− τ (t))).

Then, by (2.4) and (3.6) we have

|(Aϕn)′(t)| ≤ λL+ μ+ 2λ(k1L+ |g(0)|) + k2L+ k3L+ |h(0, 0)| = Q,

Thus the sequence (Aϕn) is uniformly bounded and equicontinuous. Hence by
Ascoli–Arzela’s theorem AM is compact.
Second, let B be defined by (3.4). Then for ϕ1, ϕ2 ∈ M we have by (2.3)

|(Bϕ1)(t)− (Bϕ2)(t)| = |g(ϕ1(t− τ (t)))− g(ϕ2(t− τ (t)))|
≤ k1‖ϕ1 − ϕ2‖.

Hence B is contraction because k1 < 1.
Finally, we show that if ϕ, φ ∈ M, then ‖Aϕ+Bφ‖ ≤ L. Let ϕ, φ ∈ M with

‖ϕ‖, ‖φ‖ ≤ L, then

‖Aϕ+Bφ‖ ≤ k1‖φ‖+ |g(0)|+ γ

∫ t+T

t

[|p(s)|+ 2a(s)(k1‖ϕ‖+ |g(0)|)

+ k2‖ϕ‖+ k3‖ϕ‖+ |h(0, 0)|]e−
∫ t
s
a(r)drds ≤ k1L+ |g(0)|

+ γβT (μ+ 2λ(k1L+ |g(0)|) + k2L+ k3L+ |h(0, 0)|) ≤ L,

by (3.6). Clearly, all the hypotheses of the Krasnoselskii’s theorem are satisfied.
Thus there exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 1
this fixed point is a solution of (1.2). Hence (1.2) has a T -periodic solution. �
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Remark 1 Note that, when τ (t) = τ is a positive constant, a(t) = a is a strictly
positive constant and g(u(t−τ (t))) = qu(t−τ ) with |q| < 1. Theorem 3 reduces
to Theorem 2 in [13].

Theorem 4 Suppose (2.1)–(2.4) hold. If

k1 + γβT (2λk1 + k2 + k3) < 1, (3.7)

then equation (1.2) has a unique T -periodic solution.

Proof Let the mapping P be given by (3.2). For any ϕ1, ϕ2 ∈ CT , we have
|(Pϕ1)(t)− (Pϕ2)(t)|
≤ |g(ϕ1(t− τ (t)))− g(ϕ2(t− τ (t)))|

+ 2γ

∫ t+T

t

a(s)|g(ϕ1(s− τ (s)))− g(ϕ2(s− τ (s)))|e−
∫ t
s
a(r)drds

+ γ

∫ t+T

t

|h(ϕ1(s), ϕ1(s− τ (s)))− h(ϕ2(s), ϕ2(s− τ (s)))|e−
∫ t
s
a(r)drds

≤ k1‖ϕ1 − ϕ2‖+ γ

∫ t+T

t

(2λk1 + k2 + k3)‖ϕ1 − ϕ2‖e−
∫ t
s
a(r)drds

≤ [k1 + γβT (2λk1 + k2 + k3)]‖ϕ1 − ϕ2‖,
Since (3.7) hold, the contraction mapping principle completes the proof. �

Corollary 1 Suppose (2.1)–(2.4) hold and let β, λ, μ be a constant defined in
Theorem 3. Let M defined by (3.1). Suppose there are positive constants k∗1 ,
k∗2 and k

∗
3 , such that for any x, y, z, w ∈ M, we have

|g(x)− g(y)| ≤ k∗1‖x− y‖ and k∗1 < 1, (3.8)

|h(x, y)− h(z, w)| ≤ k∗2‖x− z‖+ k∗3‖y − w‖, (3.9)

and

k∗1L+ |g(0)|+ γβT (μ+ 2λ(k∗1L+ |g(0)|) + k∗2L+ k∗3L+ |h(0, 0)|) ≤ L. (3.10)

If ‖Pϕ‖ ≤ L, for any ϕ ∈ M, then (1.2) has a T -periodic solution in M.
Moreover, if

k∗1 + γβT (2λk∗1 + k∗2 + k∗3) < 1, (3.11)

then (1.2) has a unique solution inM.
Proof Let the mapping P defined by (3.2). Then the proof follow immediately
from Theorem 3 and Theorem 4. �

Notice that the constants k∗1 , k
∗
2 and k

∗
3 may depend on L.

Remark 2 Y. Yuan and Z. Guo are not obtained the uniqueness of the solution
for the equation (1.1). But here, the equation (1.1) is special case for our results
in Theorem 4 and Corollary 1.
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4 Existence of positive periodic solution

It is for sure that existence of positive solutions is important for many applied
problems. In this Section, by applying the Krasnoselskii’s fixed point theorem
and some techniques, to establish a set of sufficient conditions which guaran-
tee the existence of positive periodic solutions of (1.2). So, we let (X , ‖.‖) =
(CT , ‖.‖) and M(E,K) = {ϕ ∈ CT : E ≤ ϕ(t) ≤ K, ∀t ∈ [0, T ]}, for any
0 < E < K. We assume that, there exist constants E, K, a1, a2, g1 and g2 such
that for all (t, (x, y)) ∈ [0, T ]× [E,K]2 we have

0 ≤ g1, 0 ≤ g2 < 1, −g1y ≤ g(y) ≤ g2y, (4.1)

0 < a1 ≤ a(t) ≤ a2, (4.2)

(E + g1K)a2 ≤ p(t)− 2a(t)g(y)− h(x, y) ≤ (1− g2)Ka1. (4.3)

Theorem 5 Assume that (2.1)–(2.4) and (4.1)–(4.3) hold. Then (1.2) has at
least one positive T -periodic solution inM(E,K).

Proof By Lemma 1, it is obvious that (1.2) has a solution ϕ if and only if the
equation Pϕ = ϕ has a solution ϕ. Let A, B defined by (3.3), (3.4) respectively.
A change of variable t → t+T in (3.3) and (3.4) show that for any ϕ ∈ M(E,K)
and t ∈ R

A(M(E,K)) ⊆ CT , B(M(E,K)) ⊆ CT . (4.4)

Arguing as in the Theorem 3, the operator A is continuous. Next, we claim that
A is compact. It is sufficient to show that A(M(E,K)) is uniformly bounded
and equicontinuous in [0, T ]. Notice that (4.2) and (4.3) ensure that

‖Aϕ‖ ≤ sup
t∈[0,T ]

|γ
∫ t+T

t

[p(s)− 2a(s)g(ϕ(s− τ (s)))

− h(ϕ(s), ϕ(s− τ (s)))]e−
∫ t
s
a(r)drds|

≤ (1− g2)Kγa1 sup
t∈[0,T ]

∫ t+T

t

e−
∫ t
s
a(r)drds

≤ (1− g2)K, ∀ϕ[E,K],

and

|(Aϕ)′(t)| ≤ a(t)(Aϕ)(t) + |p(t)− 2a(t)g(ϕ(t− τ (t)))− h(ϕ(t), ϕ(t− τ (t)))|
≤ a2(1− g1)K + (1− g1)a1K

= (a1 + a2)(1− g1)K, ∀(t, ϕ) ∈ [0, T ]× [E,K],

which give that A(M(E,K)) is uniformly bounded and equicontinuous in [0, T ].
Hence by Ascoli–Arzela’s theorem A is compact. Next, let B defined by (3.4), for
all ϕ1, ϕ2 ∈ M(E,K) and t ∈ R, we obtain by (2.3) ‖Bϕ1−Bϕ2‖ ≤ k1‖ϕ1−ϕ2‖.
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Thus B is a contraction. Moreover, by (4.1)–(4.3), we infer that for all ϕ, φ ∈
M(E,K) and t ∈ R

(Aϕ)(t) + (Bφ)(t) = g(φ(t− τ (t)))

+ γ

∫ t+T

t

[p(s)− 2a(s)g(ϕ(s− τ (s)))− h(ϕ(s), ϕ(s− τ (s)))]e−
∫ t
s
a(r)drds

≤ g2K + (1− g2)Kγ

∫ t+T

t

a(s)e−
∫ t
s
a(r)dr = K,

on the other hand,

(Aϕ)(t) + (Bφ)(t) ≥ g(φ(t− τ (t)))

+ γ

∫ t+T

t

[p(s)− 2a(s)g(ϕ(s− τ (s)))− h(ϕ(s), ϕ(s− τ (s)))]e−
∫ t
s
a(r)drds

≥ −g1K + (E + g1)Kγ

∫ t+T

t

a(s)e−
∫ t
s
a(r)dr = E,

which imply that

(Aϕ)(t) + (Bφ)(t) ∈ M(E,K) for all ϕ, φ ∈ M(E,K) and t ∈ R. (4.5)

Clearly, all the hypotheses of the Krasnoselskii’s theorem are satisfied. Thus
there exists a fixed point z ∈ M(E,K) such that z = Az + Bz. By Lemma
1 this fixed point is a solution of (1.2). Hence (1.2) has a positive T -periodic
solution. This completes the proof. �

Theorem 6 Assume that (2.1)–(2.4) hold. Suppose that there exist constants
E, K, a1, a2, g1, g2 and t0 ∈ [0, T ] satisfying (4.1)–(4.3) with

0 ≤ E < K, (4.6)

and either

(E + g1K)a2 < p(t0)− 2a(t0)g(y)− h(x, y), ∀x, y ∈ [E,K], (4.7)

or

a(t0) < a2. (4.8)

Then (1.2) has at least one positive T -periodic solution in M(E,K) with
E < u(t) ≤ K for each t ∈ [0, T ].

Proof As in the proof of Theorem 5, we conclude similarly that (1.2) has an
T -periodic solution u ∈ M(E,K). Now we assert that u(t) > E for all t ∈ [0, T ].
Otherwise, there exists t∗ ∈ [0, T ] satisfying u(t∗) = E. In view of (2.5), (3.2)
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and (4.1), (4.6), we have

E = g(u(t∗ − τ (t∗)))

+ γ

∫ t∗+T

t∗
[p(s)− 2a(s)g(u(s− τ (s)))

− h(u(s), u(s− τ (s)))]e−
∫ t∗
s
a(r)drds

≥ γ

∫ t∗+T

t∗
[p(s)− 2a(s)g(u(s− τ (s)))

− h(u(s), u(s− τ (s)))]e−
∫ t∗
s
a(r)drds− g1K,

which implies that

0 ≥ γ

∫ t∗+T

t∗
[p(s)− 2a(s)g(u(s− τ (s)))

− h(u(s), u(s− τ (s)))]e−
∫ t∗
s
a(r)drds− (E + g1K)

= γ

∫ t∗+T

t∗
[p(s)− 2a(s)g(u(s− τ (s)))

− h(u(s), u(s− τ (s)))− (E + g1K)a(s)]e−
∫

t∗
s
a(r)drds (4.9)

Assume that (4.7) holds. By means of (4.2), (4.3), (4.7), and the continuity
of h, g, a, p, τ , and u, we get that

γ

∫ t∗+T

t∗
[p(s)− 2a(s)g(u(s− τ (s)))

− h(u(s), u(s− τ (s)))− (E + g1K)a(s)]e−
∫ t∗
s
a(r)drds

≥
∫ t∗+T

t∗
e−

∫ t∗
s
a(r)dr[p(s)− 2a(s)g(u(s− τ (s)))

− h(u(s), u(s− τ (s)))− (E + g1K)a2]ds > 0,

which contradicts (4.9).
Assume that (4.8) holds. In light of (4.2), (4.3), (4.8), and the continuity of

h, g, a, p, τ , and u, we get that

γ

∫ t∗+T

t∗
[p(s)− 2a(s)g(u(s− τ (s)))

− h(u(s), u(s− τ (s)))− (E + g1K)a(s)]e−
∫ t∗
s
a(r)drds

>

∫ t∗+T

t∗
e−

∫ t∗
s
a(r)dr

∫ t∗+T

t∗
e−

∫ t∗
s
a(r)dr[p(s)− 2a(s)g(u(s− τ (s)))

− h(u(s), u(s− τ (s)))− (E + g1K)a2]ds ≥ 0,

which contradicts (4.9). This completes the proof. �
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Example 1 Consider (1.2), where

p(t) = 10 +
cos t

10
, a(t) = 1 +

sin t

5
, τ (t) = 3 sin t,

g(x) = −x cosx
60

, ∀x ∈ R,

h(y, x) = −2− cos2 y − sin2(y), ∀(y, x) ∈ R2.

Let T = 2π, K = 40, E = 1, g1 = g2 = 1
60 , a1 = 4

5 , a2 = 6
5 , k1 = 43

60 . It is easy
to see that (2.3), (2.4) hold. Notice that

(E + g1K)a2 =
9

5
< 10− 1

10
+

(
2− 1

5

)(−1

60

)
+ 2

≤ p(t)− 2a(t)g(y)− h(x, y)

≤ 10 +
1

10
+

(
2 +

1

5

)
1

60
· 40 + 4

<
118

5
= (1− g2)Ka1, ∀(t, x, y) ∈ R3.

That is, (4.3) is satisfied. Thus Theorem 5 yields, that (1.2) has a positive
2π-periodic solution inM(1, 40).

5 Stability of periodic solution

This Section concerned with the stability of a T -periodic solution u∗ of (1.2).
Let v = u− u∗ then (1.2) is transformed as

d

dt
Dvt(t) = −a(t)v(t)− a(t)G(v(t− τ (t)))−H(v(t), v(t− τ (t))), (5.1)

where
Dvt(t) = v(t)−G(v(t− τ (t))),

G(v(t− τ (t))) = g(u∗(t− τ (t)) + v(t− τ (t)))− g(u∗(t− τ (t))),

and

H(v(t), v(t− τ (t))) = h(u∗(t) + v(t), u∗(t− τ (t)) + v(t− τ (t)))

− h(u∗(t) + u∗(t− τ (t))).

Clearly, (5.1) has trivial solution v ≡ 0, and the conditions (2.3), (2.4) hold for
G, H respectively. To arrive at the Lemma 1, as in the proof of this Lemma,
multiply both sides of the equation (5.1) by e

∫ t
0
a(r)dr and then integrate from

0 to t, to obtain

v(t) = (v(0)−G(v(−τ (0))))e−
∫ t
0
a(r)dr +G(v(t− τ (t)))

−
∫ t

0

[2a(t)G(v(t− τ (t))) +H(v(s), v(s− τ (s)))]e−
∫ t
s
a(r)drds. (5.2)
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Thus, we see that v is a solution of (5.1) if and only if it satisfies (5.2). Assumed
initial function

ψ(t) = v(t), t ∈ [m0, 0],

with ψ ∈ C([m0, 0],R), [m0, 0] = {s ≤ 0 | s = t− τ (t), t ≥ 0}.
For the stability definition we refer the reader to the book [6].
Define the set Sψ by

Sψ = {ϕ : ϕ ∈ CT , ‖ϕ‖ ≤ R, ϕ(t) = ψ(t) if t ∈ [m0, 0], ϕ(t) → 0 as t→ ∞},
(5.3)

for some positive constant R. Then, (Sψ, ‖ · ‖) is a complete metric space where
‖ · ‖ is the supremum norm.

Theorem 7 If (2.1), (2.3), (2.4) and

∫ t

0

a(r)dr > 0 and e−
∫ t
0
a(r)dr → 0 as t→ ∞, (5.4)

t− τ (t) → ∞ as t→ ∞, (5.5)

k1 +

∫ t

0

(2λk1 + k2 + k3)e
− ∫ t

s
a(r)drds ≤ α < 1, (5.6)

hold. Then every solution v(t, 0, ψ) of (5.1) with small continuous initial func-
tion ψ, is bounded and asymptotically stable.

Proof Let the mapping F defined by ψ(t) if t ≤ 0 and

(Fϕ)(t) = (ψ(0)−G(ψ(−τ (0))))e−
∫ t
0
a(r)dr +G(ϕ(t− τ (t)))

−
∫ t

0

[2a(s)G(ϕ(s− τ (s))) +H(ϕ(s), ϕ(s− τ (s)))]e−
∫ t
s
a(r)drds, (5.7)

if t ≥ 0. Since H, H, is continuous, it is easy to show that F is. Let ψ be a
small given continuous initial function with ‖ψ‖ < δ (δ > 0). Then using the
condition (5.6) and the definition of F in (5.7), we have for ϕ ∈ Sψ

|(Fϕ)(t)| ≤ k1R + |ψ(0)−G(ψ(−τ (0)))|e−
∫ t
0
a(r)dr

+R

∫ t

0

(2λk1 + k2 + k3)e
− ∫ t

s
a(r)drds

≤ (1 + k1)δ + k1R+R

∫ t

0

(2λk1 + k2 + k3)e
− ∫

t
s
a(r)drds

≤ (1 + k1)δ + αR ≤ R,

which implies ‖Fϕ‖ ≤ R, for the right δ. Next we show that (Fϕ)(t) → 0 as
t → ∞. The first term on the right side of (5.7) tends to zero, by condition
(5.4). Also, the second term on the right side tends to zero, because of (5.5)
and the fact that ϕ ∈ Sψ. Let ε > 0 be given, then there exists a t1 > 0 such
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that for t > t1, ϕ(t − τ (t)) < ε. By the condition (5.4), there exists a t2 > t1
such that for t > t2 implies that

e
− ∫ t

t2
a(r)dr

<
ε

αR
.

Thus for t > t2, we have∣∣∣∣
∫ t

0

[2a(s)G(ϕ(s− τ (s))) +H(ϕ(s), ϕ(s− τ (s)))]e−
∫ t
s
a(r)drds

∣∣∣∣
≤ R

∫ t1

0

(2λk1 + k2 + k3)e
− ∫ t

s
a(r)drds

+ ε

∫ t

t1

(2λk1 + k2 + k3)e
− ∫ t

s
a(r)drds

≤ Re
− ∫ t

t2
a(r)dr

∫ t1

0

(2λk1 + k2 + k3)e
− ∫ t2

s
a(r)drds+ αε

≤ αRe
− ∫ t

t2
a(r)dr

α+ αε < αε+ ε.

Hence, (Fϕ)(t) → 0 as t→ ∞. It is natural now to prove that F is contraction
under the supremum norm. Let , ϕ1, ϕ2 ∈ Sψ. Then

|(Fϕ1)(t)− (Fϕ2)(t)|
≤ |G(ϕ1(t− τ (t)))−G(ϕ2(t− τ (t)))|

+ 2λ

∫ t

0

|G(ϕ1(s− τ (s)))−G(ϕ2(s− τ (s)))|e−
∫

t
s
a(r)drds

+

∫ t

0

|H(ϕ1(s), ϕ1(s− τ (s)))−H(ϕ2(s), ϕ2(s− τ (s)))|e−
∫ t
s
a(r)drds

≤ k1‖ϕ1 − ϕ2‖+
∫ t

0

(2λk1 + k2 + k3)‖ϕ1 − ϕ2‖e−
∫ t
s
a(r)drds

≤ [k1 +

∫ t

0

(2λk1 + k2 + k3)e
− ∫ t

s
a(r)dr]‖ϕ1 − ϕ2‖

≤ α‖ϕ1 − ϕ2‖,
Hence, the contraction mapping principle implies, F has a unique fixed point
in Sψ which solves (5.1), bounded and asymptotically stable. �

Theorem 8 If (2.1), (2.3), (2.4) and

k1 +

∫ t

0

(2λk1 + k2 + k3)e
− ∫ t

s
a(r)drds ≤ α < 1, (5.8)

hold. Then, the zero solution is stable.

Proof The stability of the zero solution of (5.1) follows simply by replacing
R by ε in the above Theorem. �
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Remark 3 Notice that
(i) Our analysis of stability also applies to the more general case, when v is

not periodic.
(ii) When τ (t) = τ is a positive constant, a(t) = a is a strictly positive

constant and
g(u(t− τ (t))) = qu(t− τ )

with |q| < 1, Theorems 7 and 8 reduce to Theorems 2 and 4 in [13] respectively.

Remark 4 The authors of this paper have studied the asymptotic stability
of the zero solution of (5.1) using fixed point theory. However, the question
of uniform and exponential asymptotic stability of the zero solution of (5.1)
remains open.
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