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Abstract

In this paper we introduce generalized cyclic contractions through r
number of subsets of a probabilistic 2-metric space and establish two fixed
point results for such contractions. In our first theorem we use the Hadzic
type t-norm. In another theorem we use a control function with minimum
t-norm. Our results generalizes some existing fixed point theorem in 2-
Menger spaces. The results are supported with some examples.

Key words: 2-Menger space, Cauchy sequence, fixed point, control
function, t-norm.

2010 Mathematics Subject Classification: 54E40, 54H25

1 Introduction and mathematical preliminaries

In 1922, S. Banach [1] established the well known Banach contraction principle.
This celebrated work has been generalized by many authors in various spaces
[6, 8, 11, 26]. In particular, the various fixed point theorems are used to demon-
strate the existence and uniqueness of a solution of differential equation, integral
equation, functional equation, partial differential equation and others.

*Corresponding author.

5



6 Binayak S. Choudhury, Samir Kumar Bhandari, Parbati Saha

The following definitions are used in our main results.
The concept of metric spaces has been extended in various ways. One such

extension has been made by Gähler [15] in which a positive real number is
assigned to every three elements of the space.

Definition 1.1 (2-metric space [15, 16]) Let X be a non empty set. A real
valued function d on X ×X ×X is said to be a 2-metric on X if

(i) given distinct elements x, y of X, there exists an element z of X such that
d(x, y, z) �= 0,

(ii) d(x, y, z) = 0 when at least two of x, y, z are equal,

(iii) d(x, y, z) = d(x, z, y) = d(y, z, x) for all x, y, z in X and

(iv) d(x, y, z) ≤ d(x, y, w)+d(x,w, z)+d(w, y, z) for all x, y, z, w in X. When
d is a 2-metric on X, the ordered pair (X, d) is called a 2-metric space.

The following is the example of 2-Metric space.

Example 1.1 [37] Let R2 be the Euclidean space. Let d(x, y, z) denote the area
of the triangle formed by joining the three points x, y, z ∈ R2. Then (R2, d) is
a 2-metric space.

Fixed point theory has developed rapidly in these spaces. Several results of
metric fixed point theory was extended to these spaces. Some of the important
fixed point theorems in 2-metric spaces are [21, 22, 26, 28, 29, 30, 32, 37].

Definition 1.2 [20, 35] A mapping F : R → R+ is called a distribution function
if it is non-decreasing and left continuous with

inf
t∈R

F (t) = 0 and sup
t∈R

F (t) = 1,

where R is the set of real numbers and R+ denotes the set of non-negative real
numbers.

An interpretation of Fx,y(t) is that it is the probability of the event that
the distance between the points x and y is less than t. A metric space becomes
a Menger space if we write Fx,y(t) = H(t − d(x, y)) where H is the Heaviside
function given by

H(t) =

{
1, if t > 0,

0, if t ≤ 0.

Probabilistic metric spaces are probabilistic generalizations of metric spaces
in which every pair of elements is assigned to a distribution function. The theory
of these spaces is an important part of stochastic analysis. Schweizer and Sklar
in their book noted in [35] have given a comprehensive account of several aspects
of such spaces.
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Definition 1.3 (Probabilistic metric space [20, 35]) A probabilistic metric space
(briefly, a PM-space) is an ordered pair (X,F ), where X is a non empty set and
F is a mapping from X×X into the set of all distribution functions. We denote
the distribution function F (x, y) by Fx,y. Fx,y(t) represents the value of Fx,y

at t ∈ R. The function Fx,y is assumed to satisfy the following conditions for
all x, y ∈ X:

(i) Fx,y(0) = 0,

(ii) Fx,y(t) = 1 for all t > 0 if and only if x = y,

(iii) Fx,y(t) = Fy,x(t) for all t ∈ R,

(iv) if Fx,y(t1) = 1 and Fy,z(t2) = 1 then Fx,z(t1 + t2) = 1.

A particular type of probabilistic metric space is Menger space in which the
triangular inequality is postulated with the help of a t-norm.

Shi, Ren and Wang introduced the concept of n-th order t-norm in 2003.

Definition 1.4 (n-th order t-norm [39]) A mapping T : Πn
i=1[0, 1] → [0, 1] is

called a n-th order t-norm if the following conditions are satisfied:

(i) T (0, 0, . . . , 0) = 0, T (a, 1, 1, . . . , 1) = a for all a ∈ [0, 1],

(ii) T (a1, a2,, a3, . . . , an) = T (a2, a1, a3, . . . , an) = T (a2, a3, a1, . . . , an)
= . . . = T (a2, a3, a4, . . . , an, a1),

(iii) ai ≥ bi, i = 1, 2, 3, . . . , n implies T (a1, a2, a3, . . . , an) ≥ T (b1, b2, b3, . . . , bn),

(iv) T (T (a1, a2, a3, . . . , an), b2, b3, . . . , bn)
= T (a1, T (a2, a3, . . . , an, b2), b3, . . . , bn)
= T (a1, a2, T (a3, a4, . . . , an, b2, b3), b4, . . . , bn)
= . . . . . . . . . . . . . . . . . . . . . . . . .
= T (a1, a2, . . . , an−1, T (an, b2, b3, . . . , bn)).

When n = 2, we have a binary t-norm, which is commonly known as t-norm.

Definition 1.5 (t-norm [20, 35]) A t-norm is a function Δ: [0, 1]×[0, 1] → [0, 1]
which satisfies the following conditions for all a, b, c, d ∈ [0, 1]

(i) Δ(1, a) = a,

(ii) Δ(a, b) = Δ(b, a),

(iii) Δ(c, d) ≥ Δ(a, b) whenever c ≥ a and d ≥ b,

(iv) Δ(Δ(a, b), c) = Δ(a,Δ(b, c)).

The following are three examples of 3rd order t-norm:

(i) The minimum t-norm, Δ = Tm, defined by Tm(a, b, c) = min{a, b, c}.

(ii) The product t-norm, Δ = Tp, defined by Tp(a, b, c) = a · b · c.
(iii) The Lukasiewicz t-norm, Δ = TL, defined by

TL(a, b, c) = max{a+ b+ c− 2, 0}.
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Definition 1.6 (Hadzic type t-norm [20]) A t-norm Δ is said to be Hadzic type
t-norm if the family {Δp}p∈N of its iterates, defined for each s ∈ (0, 1) as

Δ0(s) = 1, Δp+1(s) = Δ(Δp(s), s) for all integer p ≥ 0,

is equi-continuous at s = 1, that is, given λ > 0 there exits η(λ) ∈ (0, 1) such
that 1 ≥ s > η(λ) ⇒ Δp(s) ≥ 1− λ for all integer p ≥ 0.

Here we use the Hadzic type t-norm and 3rd-order minimum t-norm.

Definition 1.7 (Menger space [20, 35]) A Menger space is a triplet (X,F,Δ),
where X is a non empty set, F is a function defined on X × X to the set of
distribution functions and Δ is a t-norm, such that the following are satisfied:

(i) Fx,y(0) = 0 for all x, y ∈ X,

(ii) Fx,y(s) = 1 for all s > 0 and x, y ∈ X if and only if x = y,

(iii) Fx,y(s) = Fy,x(s) for all x, y ∈ X, s > 0 and

(iv) Fx,y(u+ v) ≥ Δ(Fx,z(u), Fz,y(v)) for all u, v ≥ 0 and x, y, z ∈ X.

The first fixed point result in probabilistic metric spaces proved by Sehgal
and Bharucha-Reid [36]. After that a lot of results appeared in the literature.
A comprehensive survey upto 2001 is given by Hadzic and Pap in [20].

Probabilistic generalization of 2-metric spaces has been done following the
same ideas behind the introduction of probabilistic metric spaces.

Definition 1.8 (Probabilistic 2-metric space [42]) A probabilistic 2-metric space
is an order pair (X,F ) where X is an arbitrary set and F is a mapping from X3

into the set of distribution functions. The distribution function Fx,y,z(t) will
denote the value of Fx,y,z at the real number t. The function Fx,y,z are assumed
to satisfy the following conditions:

(i) Fx,y,z(t) = 0 for all t ≤ 0 and for all x, y, z ∈ X,

(ii) Fx,y,z(t) = 1 for all t > 0 iff at least two of the three points x, y, z are
equal,

(iii) for distinct points x, y ∈ X there exists a point z ∈ X such that
Fx,y,z(t) �= 1 if t > 0,

(iv) Fx,y,z(t) = Fx,z,y(t) = Fz,y,x(t),

(v) Fx,y,w(t1) = 1, Fx,w,z(t2) = 1 and Fw,y,z(t3) = 1 then

Fx,y,z(t1 + t2 + t3) = 1.

Example 1.2 Fx,y,z(t) =

{ t
t+min{|x−y|,|x−z|,|y−z|} , if t > 0,

0, if t ≤ 0.

A special case of the above definition is the following.



Cyclic type fixed point results in 2-Menger spaces 9

Definition 1.9 (2-Menger space [38]) Let X be any nonempty set and D the
set of all left-continuous distribution functions. A triplet (X,F,Δ) is said to
be a 2-Menger space if F is a mapping from X3 into D satisfying the following
conditions where the value of F at x, y, z ∈ X3 is represented by Fx,y,z or
F (x, y, z) for all x, y, z ∈ X such that

(i) Fx,y,z(0) = 0,

(ii) Fx,y,z(t) = 1 for all t > 0 if and only if at least two of x, y, z ∈ X are
equal,

(iii) Fx,y,z(t) = Fx,z,y(t) = Fz,y,x(t), for all x, y, z ∈ X,

(iv) Fx,y,z(t) ≥ Δ(Fx,y,w(t1), Fx,w,z(t2), Fw,y,z(t3))

where t1 + t2 + t3 = t and x, y, z, w ∈ X where Δ is the 3rd order t-norm.

Recently many authors established many fixed point results in 2-Menger
spaces. The references [5, 8, 18, 19, 40] are some fixed point results on those
spaces.

Definition 1.10 [19] A sequence {xn} in a 2-Menger space (X,F,Δ) is said to
be converge with limit x if limn→∞ Fxn,x,a(t) = 1 for all t > 0 and for every
a ∈ X.

Definition 1.11 [19] A sequence {xn} in a 2-Menger space (X,F,Δ) is said to
be a Cauchy sequence in X if given ε > 0, λ > 0 there exists a positive integer
Nε,λ such that

Fxn,xm,a(ε) ≥ 1− λ (1.1)

for all m,n > Nε,λ and for every a ∈ X.

Definition 1.11 can be equivalently written by replacing ‘≥’ with ‘>’ in (1.1).
More often than not, they are written in that way. We have given them in the
present form for our convenience in the proofs of our theorems.

Definition 1.12 [19] A 2-Menger space (X,F,Δ) is said to be complete if every
Cauchy sequence is convergent in X.

In recent years cyclic contraction and cyclic contractive type mapping have
appeared in several works.

Definition 1.13 Let A and B be two non-empty sets. A cyclic mapping is a
mapping T : A ∪B → A ∪B which satisfies:

TA ⊆ B and TB ⊆ A.

This line of research was initiated by Kirk, Srinivasan and Veeramani [25],
where they, amongst other results, established the following generalization of
the contraction mapping principle.

Theorem 1.1 [25] Let A and B be two non-empty closed subsets of a complete
metric space X and suppose f : A ∪B → A ∪B satisfies:
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(1) fA ⊆ B and fB ⊆ A,

(2) d(fx, fy) ≤ kd(x, y) for all x ∈ A and y ∈ B where k ∈ (0, 1).

Then f has a unique fixed point in A ∩B.

The problems of cyclic contractions have been strongly associated with
proximity point problems. Some other results dealing with cyclic contractions
and proximity point problems in probabilistic metric and 2-probabilistic metric
spaces may be noted in [6, 7, 10, 11, 17, 23, 41, 43] and [44]. A cyclic contrac-
tion result in generalized menger space was established by the recent result of
Choudhury, Das and Bhandari [12].

A generalization of cyclic mapping is p-cyclic mapping. The definition is the
following:

Definition 1.14 Let {Ai}pi=1 be non-empty sets. A p-cyclic mapping is a map-
ping T :

⋃p
i=1 Ai →

⋃p
i=1 Ai which satisfies the following conditions:

(i) TAi ⊆ Ai+1 for 1 ≤ i < p, TAp ⊆ A1.

In this case where p = 2, this reduces to cyclic mappings. Some fixed point
results of p-cyclic maps have been obtained in [13, 41].

In [24] Khan, Swaleh and Sessa introduced a new category of contractive
fixed point problems in metric space. They introduced the concept of “altering
distance function”, which is a control function that alters the distance between
two points in a metric space. This concept was further generalized in a number of
works. There are several works in fixed point theory involving altering distance
function, some of these are noted in [31, 33] and [34].

Recently Choudhury and Das had extended the concept of altering distance
function in the context of Menger spaces in [2]. The definition is as follows:

Definition 1.15 (Φ-function [2]) A function φ : R → R+ is said to be a Φ-
function if it satisfies the following conditions:

(i) φ(t) = 0 if and only if t = 0,

(ii) φ(t) is strictly monotone increasing and φ(t) → ∞ as t → ∞,

(iii) φ is left continuous in (0,∞),

(iv) φ is continuous at 0.

In [2] Choudhury and Das introduced a new type of contraction mapping in
Menger spaces which is known as φ-contraction. Recently Choudhury, Das and
Bhandari introduce φ-contraction in the context of 2-Menger spaces.

Definition 1.16 [8] Let (X,F,Δ) be a 2-Menger space. A self map f : X → X
is said to be φ-contractive if

Ffx,fy,a(φ(t)) ≥ Fx,y,a

(
φ
(
t
c

))
(1.2)

where 0 < c < 1, , x, y ∈ X and t > 0, for all a ∈ X and the function φ is a
Φ-function.
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The idea of control function has opened possibilities of proving new fixed
point results in Menger spaces. This concept has also applied to a coincidence
point result. Some recent results using Φ-function are noted in [3, 4, 5, 6, 7, 8,
9, 10, 11, 14] and [27].

The purpose of this paper is to establish special type fixed point results in
2-Menger space in which two different types t-norm is used. A control function
is also used in one of the theorems.

Definition 1.17 Let (X,F,Δ) be a complete 2-Menger space, where Δ is the
3rd order t-norm. Let {Ai}ri=1 be non-empty closed subsets of X such that the
mapping T :

⋃r
i=1 Ai →

⋃r
i=1 Ai satisfies the following conditions:

TAi ⊆ Ai+1 for 1 ≤ i < r, TAr ⊆ A1 (1.3)

then the mapping T is called an r-cyclic mapping in 2-Menger space.

The following are illustrations of the above definitions.

Example 1.3 X = R,

Fx,y,z(t) =

{ t
t+min{|x−y|,|x−z|,|y−z|} , if t > 0,

0, if t ≤ 0,

A1 = [−2, 0] = A3 and A2 = [0, 2] = A4 and Y =
⋃4

i=1 Ai. Define T : Y → Y
by Tx = −x

4 for all x ∈ Y . It is easily verified that T (Ai) ⊂ Ai+1 for i = 1, 2, 3
and T (A4) ⊂ A1, so that T is an r-cyclic mapping.

Example 1.4 Let X = { 1
n}
⋃
{0} with F defined as in Example 1.3. Now we

consider the following subsets of X:

A1 =

{
1

n

∖
n is odd

}
∪ {0} and A2 =

{
1

n

∖
n is even

}
∪ {0}.

Consider the mapping T : X → X given by

Tx =

{
0, if x = 0,
1

n+1 if x = 1
n , n ∈ N.

Now A1 and A2 are closed and X =
⋃2

i=1 Ai is a cyclic representation of X with
respect to T .

It may be easily examined that the mapping T is an r-cyclic mapping where
r = 2.

2 Main results

Theorem 2.1 Let (X,F,Δ) be a complete 2-Menger space with a Hadzic type
t-norm Δ such that whenever xn → x and yn → y, for all a ∈ X and

Fxn,yn,a(t) → Fx,y,a(t).
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Let T be an r-cyclic mapping (Definition 1.17) with Hadiz type t-norm in 2-
Menger space which satisfies the following conditions:

FTx,Ty ,a(t) ≥ Fx,y,a

(
t

k

)
(2.1)

whenever x ∈ Ai, y ∈ Ai+1, for all a ∈ X, k ∈ (0, 1), t > 0. Then
⋂r

i=1 Ai is
non-empty and T has a unique fixed point in

⋂r
i=1 Ai.

Proof Let x0 be any arbitrary point in A1. Now we define the sequence
{xn}∞n=0 in X by xn = Txn−1, n ∈ N where N is the set of natural numbers.

By (1.3), we have

xo ∈ A1, x1 ∈ A2, x2 ∈ A3, . . . , xr−1 ∈ Ar and in general

xnr ∈ A1, xnr+1 ∈ A2, . . . , xnr+(r−1) ∈ Ar n ≥ 0. (2.2)

For any n ≥ 1 and for all a ∈ X, t > 0, we have

Fxn,xn+1,a(t) = FTxn−1,Txn,a(t) ≥ Fxn−1,xn,a

(
t

k

)
(xn−1 ∈ An, xn ∈ An+1).

(2.3)
By successive application of the above inequality, for all a ∈ X, we have for
t > 0 and n ≥ 0,

Fxn,xn+1,a(t) ≥ Fx0,x1,a

(
t

kn

)
. (2.4)

Taking n → ∞ in the above inequality, we have

lim
n→∞Fxn,xn+1,a(t) = 1. (2.5)

Again, by repeated applications of (2.3), it follows that for all a ∈ X, t > 0
and n ≥ 0 and each i ≥ 1,

Fxn+i,xn+i+1,a(t) ≥ Fxn,xn+1,a

(
t

ki

)
. (2.6)

We next prove that {xn} is a Cauchy sequence (Definition 1.11), that is, we
prove that for arbitrary ε > 0 and 0 < λ < 1, there exists N(ε, λ) such that for
all a ∈ X,

Fxn,xm,a(ε) ≥ 1− λ for all m,n ≥ N(ε, λ).

Without loss of generality we can assume that m > n.
Now,

ε = ε
1− k

1− k
> ε(1− k)(1 + k + k2 + · · ·+ km−n−1).

Then, by the monotone increasing property of F , and for all a ∈ X, we have

Fxn,xm,a(ε) ≥ Fxn,xm,a(ε(1− k)(1 + k + k2 + · · ·+ km−n−1)),
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that is,

Fxn,xm,a(ε) ≥ Δ(Fxn,xn+1,a(ε(1− k)),Δ(Fxn+1,xn+2,a(εk(1− k)),Δ(. . . ,

Δ(Fxm−2,xm−1,a(εk
m−n−2(1− k)), Fxm−1,xm,a(εk

m−n−1(1− k))) . . .))).

(2.7)

Putting t = (1− k)εki in (2.6), for all a ∈ X, we get

Fxn+i,xn+i+1,a((1− k)εki) ≥ Fxn,xn+1,a((1− k)ε).

Then, by (2.7), for all a ∈ X, we have

Fxn,xm,a(ε) ≥ Δ(Fxn,xn+1,a(ε(1− k)),Δ(Fxn,xn+1,a(ε(1− k)),Δ(. . . ,

Δ(Fxn,xn+1,a(ε(1− k)), Fxn,xn+1,a(ε(1− k))) . . .))),

that is,
Fxn,xm,a(ε) ≥ Δ(m−n)Fxn,xn+1,a(ε(1− k)). (2.8)

Since the t-norm Δ is a Hadzic type t-norm, the family {Δp} of its iterates is
equi-continuous at the point s = 1, that is, there exists η(λ) ∈ (0, 1) such that
for all m > n,

Δ(m−n)(s) ≥ 1− λ whenever η(λ) < s ≤ 1. (2.9)

Since, Fx0,x1,a(t) → 1 as t → ∞ and 0 < k < 1, there exists an positive integer
N(ε, λ) such that for all a ∈ X,

Fx0,x1,a

(
(1− k)ε

kn

)
> η(λ) for all n ≥ N(ε, λ). (2.10)

From (2.10) and (2.6), with n = 0, i = n and t = (1− k)ε, for all a ∈ X, we get

Fxn,xn+1,a(ε(1− k)) > Fx0,x1,a

(
(1− k)ε

kn

)
> η(λ) for all n ≥ N(ε, λ).

Then, from (2.9) with s = Fxn,xn+1,a(ε(1− k)), we have

Δ(m−n)(Fxn,xn+1,a(ε(1− k))) ≥ 1− λ.

It then follows from (2.8) that for all a ∈ X,

Fxn,xm,a(ε) ≥ 1− λ for all m,n ≥ N(ε, λ).

Thus {xn} is a Cauchy sequence.

By the construction of the sequence {xn}, we have xr ∈ A1, x2r ∈ A1, . . . ,
xnr ∈ A1. Therefore the subsequence {xnr} of {xn} which belongs to A1 also
converges to z in A1, since A1 is closed. Similarly subsequence {xnr+1} belongs
to A2 also converges to z in A2. Since A3, A4, . . . , Ar are closed sets, similarly
we get z ∈ A3, A4, . . . , Ar. Therefore z ∈ A1 ∩ A2 ∩ A3 · · · ∩ Ar.
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Now, we prove that Tz = z. For this we have

Fz,Tz,a(t) ≥ Δ(Fz,Tz,xn
(s1), Fz,xn,a(s2), Fxn,Tz,a(t− s1 − s2)), (2.11)

(where s1, s2 > 0 and t > s1 + s2).
Now, we can choose ξ > 0 such that t − s1 − s2 = ξ. Using the above

assumption, from (2.11), we get

Fz,Tz,a(t) ≥ Δ(Fz,Tz,Txn−1
(s1), Fz,xn,a(s2), FTxn−1,Tz,a(ξ))

= Δ(FTz,Txn−1,z(s1), Fz,xn,a(s2), FTz,Txn−1,a(ξ)).

Using (1.3) and (2.1), we get

Fz,Tz,a(t) ≥ Δ

(
Fz,xn−1,z

(s1
k

)
, Fz,xn,a(s2), Fz,xn−1,a

(
ξ

k

))
. (2.12)

[since z ∈ An−1, xn−1 ∈ An]
Taking limit as n → ∞ in (2.12), by virtue of the properties of F , we get

Fz,Tz,a(t) ≥ Δ(1, 1, 1) = 1. Therefore, Fz,Tz,a(t) = 1.
Hence z = Tz, that is, z is a fixed point of T in A1 ∩ A2 ∩A3 · · · ∩ Ar.
Let v be another fixed point of T , that is, Tv = v. Now,

Fz,v,a(t) = FTz,Tv,a(t) ≥ Fz,v,a

(
t

k

)
= FTz,Tv,a

(
t

k

)
≥ Fz,v,a

(
t

k2

)
.

Repeating this process n times, we get

Fz,v,a(t) = FTz,Tv,a(t) ≥ Fz,v,a

(
t

kn

)
.

Letting n → ∞ on both sides we get from the above inequality,

Fz,v,a(t) ≥ Fz,v,a

(
t

kn

)
→ 1.

Hence, Fz,v,a(t) = 1, which implies that z = v.
Hence T have a unique fixed point in A1 ∩A2 ∩ A3 · · · ∩ Ar. �

Taking r = 2 we get the following corollary.

Corollary 2.1 Let (X,F,Δ) be a complete 2-Menger space with the Hadzic
type t-norm Δ and let there exist two non-empty closed subsets A and B of X
such that the mapping T : A∪B → A∪B which satisfies the following conditions:
(i) TA ⊆ B and TB ⊆ A

and

(ii) FTx,Ty,a(t) ≥ Fx,y,a(
t
k )

for all x ∈ A, y ∈ B and a is an element, different from x, y where 0 < k < 1.
Then A ∩B is non-empty and T has a unique fixed point in A ∩B.



Cyclic type fixed point results in 2-Menger spaces 15

Example 2.1 Let X = {α, β, γ, δ}, A = {α, β, γ}, B = {γ, δ}, the t-norm Δ is
a 3rd order minimum t-norm and F be defined as

Fα,β,γ(t) = Fα,β,δ(t) =

⎧⎨
⎩

0, if t ≤ 0,
0.40, if 0 < t < 7,
1, if t ≥ 7,

Fα,γ,δ(t) = Fβ,γ,δ(t) =

⎧⎨
⎩

0, if t ≤ 0,
0.95, if 0 < t < 1,
1, if t ≥ 1,

Then (X,F,Δ) is a complete 2-Menger space. If we define T : A ∪ B → A ∪ B
as follows: Tα = γ, Tβ = δ, Tγ = γ, Tδ = γ then the mappings T satisfies
all the conditions of the Corollary 2.1, for k = 0.5, where γ is the unique fixed
point of T in A ∩B.

We use the control function φ (Definition 1.15) in our next theorem in the
inequality (2.1). Here we use the 3rd-order minimum t-norm. We also prove
our second theorem by different arguments from the first theorem.

Theorem 2.2 Let T be an r-cyclic mapping (Definition 1.17 ) in 2-Menger
space with 3rd-order minimum t-norm which satisfies the following conditions:

FTx,Ty ,a(φ(t)) ≥ Fx,y,a

(
φ

(
t

c

))
(2.13)

whenever x ∈ Ai, y ∈ Ai+1, for all a ∈ X, c ∈ (0, 1), t > 0 and φ is a φ-function
(Definition 1.15). Then

⋂r
i=1 Ai is non-empty and T has a unique fixed point

in
⋂r

i=1 Ai.

Proof Let x0 be any arbitrary point in A1. Now we define the sequence
{xn}∞n=0 in X by xn = Txn−1, n ∈ N where N is the set of natural numbers.

By (1.3), we have xo ∈ A1, x1 ∈ A2, x2 ∈ A3, . . . , xr−1 ∈ Ar and in general

xnr ∈ A1, xnr+1 ∈ A2, . . . , xnr+(r−1) ∈ Ar for all n ≥ 0. (2.14)

For any n ≥ 1 and for all a ∈ X, t > 0, we have

Fxn,xn+1,a(φ(t)) = FTxn−1,Txn,a(φ(t))

≥ Fxn−1,xn,a

(
φ

(
t

c

))
(xn−1 ∈ An, xn ∈ An+1). (2.15)

By successive application of the above inequality, we have for t > 0 and n ≥ 0,

Fxn,xn+1,a(φ(t)) ≥ Fx0,x1,a

(
φ

(
t

cn

))
.

Taking n → ∞ in the above inequality, we have

lim
n→∞Fxn,xn+1,a(φ(t)) = 1. (2.16)
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Again, by virtue of a property of φ and F given s > 0, we can find t > 0 such
that s > φ(t). Thus the above limit implies that for all s > 0,

lim
n→∞Fxn,xn+1,a(s) = 1. (2.17)

We next prove that {xn} is a Cauchy sequence. If possible, let {xn} be not
a Cauchy sequence. Then there exist ε > 0 and 0 < λ < 1 for which we can find
subsequences {xm(k)} and {xn(k)} of {xn} with m(k) > n(k) > k such that

Fxm(k),xn(k),a(ε) < 1− λ. (2.18)

We take m(k) corresponding to n(k) to be the smallest integer satisfying (2.18),
so that

Fxm(k)−1,xn(k),a(ε) ≥ 1− λ. (2.19)

If ε1 < ε then we have

Fxm(k),xn(k),a(ε1) ≤ Fxm(k),xn(k),a(ε).

We conclude that it is possible to construct {xm(k)} and {xn(k)} with m(k) >
n(k) > k and satisfying (2.18), (2.19) whenever ε is replaced by a smaller positive
value. As φ is continuous at 0 and strictly monotone increasing with φ(0) = 0,
it is possible to obtain ε2 > 0 such that φ(ε2) < ε.

Then, by the above argument, it is possible to obtain an increasing sequence
of integers {m(k)} and {n(k)} with m(k) > n(k) > k such that

Fxm(k),xn(k),a(φ(ε2)) < 1− λ, (2.20)

and
Fxm(k)−1,xn(k),a(φ(ε2)) ≥ 1− λ. (2.21)

Now, from (2.20), we get

1− λ > Fxm(k),xn(k),a(φ(ε2))

≥ Δ(Fxm(k),xn(k),xm(k)−1
(ε

′
), Fxm(k),xm(k)−1,a(ε

′′
), Fxm(k)−1,xn(k),a(φ(ε2)−ε

′
−ε

′′
))

(where ε
′
, ε

′′
> 0 and ε

′
+ ε

′′
< φ(ε2))

= Δ(Fxm(k),xm(k)−1,xn(k)
(ε

′
), Fxm(k),xm(k)−1,a(ε

′′
), Fxm(k)−1,xn(k),a(φ(ε2)−ε

′
−ε

′′
)).

(2.22)
Now by (2.17) for sufficiently large k and by the property of φ, we can get
0 < ε

′
, ε

′′
< φ(ε2) and 0 < λ1, λ2 < λ such that

Fxm(k),xm(k)−1,xn(k)
(ε

′
) ≥ 1− λ1, (2.23)

Fxm(k),xm(k)−1,a(ε
′′
) ≥ 1− λ2. (2.24)

Again, using (2.21) and by the left continuity property of F we can get

Fxm(k)−1,xn(k),a(φ(ε2)− ε
′
− ε

′′
) ≥ 1− λ. (2.25)
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Now, using (2.23), (2.24), (2.25) in (2.22), we get

1− λ > Δ(1− λ1, 1− λ2, 1− λ) = 1− λ,

which is a contradiction. Hence {xn} is a Cauchy sequence.

By the construction of the sequence {xn}, we have xr ∈ A1, x2r ∈ A1, . . . ,
xnr ∈ A1. Therefore the subsequence {xnr} of {xn} which belongs to A1 also
converges to z in A1, since A1 is closed. Similarly subsequence {xnr+1} belongs
to A2 also converges to z in A2. Since A3, A4, . . . , Ar are closed sets, similarly
we get z ∈ A3, A4, . . . , Ar. Therefore z ∈ A1 ∩ A2 ∩ A3 · · · ∩ Ar.

Now, we prove that Tz = z. For this we have

Fz,Tz,a(φ(t)) ≥ Δ(Fz,Tz,xn
(s1), Fz,xn,a(s2), Fxn,Tz,a(φ(t)− s1 − s2)) (2.26)

(where s1, s2 > 0 and φ(t) > s1 + s2).
Now, by the property of φ, we can choose ξ1, ξ2 > 0 such that s1 = φ(ξ1)

and φ(t)− s1 − s2 = φ(ξ2). Now, from (2.26) and using (2.13), we get

Fz,Tz,a(φ(t)) ≥ Δ(Fz,Tz,Txn−1
(φ(ξ1)), Fz,xn,a(s2), FTxn−1,Tz,a(φ(ξ2))

= Δ(FTz,Txn−1,z(φ(ξ1)), Fz,xn,a(s2), FTz,Txn−1,a(φ(ξ2)).

Using (1.3), we get

Fz,Tz,a(φ(t)) ≥ Δ(Fz,xn−1,z

(
φ

(
ξ1
c

))
, Fz,xn,a(s2), Fz,xn−1,a

(
φ

(
ξ2
c

))
.

(2.27)
[since z ∈ An−1, xn−1 ∈ An]

Taking limit as n → ∞ in (2.27), by virtue of the properties of φ and F , we
get

Fz,Tz,a(φ(t)) ≥ Δ(1, 1, 1) = 1.

Therefore,
Fz,Tz,a(φ(t)) = 1.

Hence z = Tz, that is, z is a fixed point of T in A1 ∩ A2 ∩ A3 · · · ∩ Ar.
Let v be another fixed point of T , that is, Tv = v. Now,

Fz,v,a(φ(t)) = FTz,Tv,a(φ(t)) ≥ Fz,v,a

(
φ

(
t

c

))

= FTz,Tv,a

(
φ

(
t

c

))
≥ Fz,v,a

(
φ

(
t

c2

))
.

Repeating this process n times, we get

Fz,v,a(φ(t)) = FTz,Tv,a(φ(t)) ≥ Fz,v,a

(
φ

(
t

cn

))
.

Letting n → ∞ on both sides we get from the above inequality,

Fz,v,a(φ(t)) ≥ Fz,v,a

(
φ

(
t

cn

))
→ 1
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(since φ is strictly increasing and φ(t) → ∞ as t → ∞). Hence, Fz,v,a(φ(t)) = 1,
which implies that z = v.

Hence T have a unique fixed point in A1 ∩A2 ∩ A3 · · · ∩ Ar. �

Taking r = 2, we get the following Corollary which was established by
Choudhury, Das and Bhandari in [10].

Corollary 2.2 [10] Let (X,F,Δ) be a complete 2-Menger space with the 3rd
order minimum t-norm Δ and let there exist two non-empty closed subsets A
and B of X such that the mapping T : A ∪ B → A ∪ B which satisfies the
following conditions:

(i) TA ⊆ B and TB ⊆ A

and

(ii) FTx,Ty,a(φ(t)) ≥ Fx,y,a(φ(
t
c ))

for all x ∈ A, y ∈ B and a ∈ X where 0 < c < 1, φ is a φ-function. Then A∩B
is non-empty and T has a unique fixed point in A ∩B.

The following example satisfied the Theorem 2.2 taking r = 2.

Example 2.2 Let X = {α, β, γ, δ}, A = {α, β, δ}, B = {γ, δ}, the t-norm Δ is
a 3rd order minimum t-norm and F be defined as

Fα,β,γ(t) = Fα,β,δ(t) =

⎧⎨
⎩

0, if t ≤ 0,
0.40, if 0 < t < 4,
1, if t ≥ 4,

Fα,γ,δ(t) = Fβ,γ,δ(t) =

{
0, if t ≤ 0,
1, if t > 0.

Then (X,F,Δ) is a complete 2-Menger space. If we define T : A ∪ B → A ∪ B
as follows: Tα = δ, Tβ = γ, Tγ = δ, Tδ = δ then the mapping T satisfies all
the conditions of the Theorem 2.2 where φ(t) = t, 0 < c < 1 and δ is the unique
fixed point of T in A

⋂
B.

The above example also satisfied Theorem 2.1 where we take the 3rd-order
minimum t-norm in place of Hadzic type t-norm.

Remark 2.1 It is to be noted that the method of proof of theorem 2.2 is
different from that of Theorem 2.1. This is due to the use of the control function
in Theorem 2.2 that the method in the proof of Theorem 2.1 can not be adopted
here. Also the Theorem 2.2 could be proved here only with minimum t-norm.

Open problem It remains an open problem whether the proof of Theorem
2.2 can be accomplished with Hadzic type t-norm as in Theorem 2.1. Moreover,
the results may possibly by connected with proximity point problems. This will
be a new introduction in the context of probabilistic 2-metric spaces.
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