Some Properties of Lorentzian α-Sasakian Manifolds with Respect to Quarter-symmetric Metric Connection

Santu DEY ${ }^{a, *}$, Arindam BHATTACHARYYA ${ }^{b}$
Department of Mathematics, Jadavpur University, Kolkata-700032, India
${ }^{a}$ e-mail: santu.mathju@gmail.com
${ }^{b}$ e-mail: bhattachar1968@yahoo.co.in

(Received June 22, 2015)

Abstract

The aim of this paper is to study generalized recurrent, generalized Ricci-recurrent, weakly symmetric and weakly Ricci-symmetric, semi-generalized recurrent, semi-generalized Ricci-recurrent Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection. Finally, we give an example of 3 -dimensional Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection.

Key words: Quarter-symmetric metric connection, Lorentzian α Sasakian manifold, generalized recurrent manifold, generalized Riccirecurrent manifold, weakly symmetric manifold, weakly Ricci-symmetric manifold, semi-generalized recurrent manifold, Einstein manifold.

2010 Mathematics Subject Classification: 53C25, 53C15

1 Introduction

The idea of a semi-symmetric linear connection on a differentiable manifold was introduced by Friedmann and Schouten [5]. Further, Hayden [7], introduced the idea of metric connection with torsion on a Riemannian manifold. In [32], Yano studied some curvature conditions for semi-symmetric connections in Riemannian manifolds.

[^0]In 1975, Golab [6] defined and studied a quarter-symmetric connection in a differentiable manifold.
A linear connection $\tilde{\nabla}$ on an n-dimensional Riemannian manifold (M^{n}, g) is said to be a quarter-symmetric connection [6] if its torsion tensor \tilde{T} defined by

$$
\begin{equation*}
\tilde{T}(X, Y)=\tilde{\nabla}_{X} Y-\tilde{\nabla}_{Y} X-[X, Y] \tag{1.1}
\end{equation*}
$$

is of the form

$$
\begin{equation*}
\tilde{T}(X, Y)=\eta(Y) \phi X-\eta(X) \phi Y \tag{1.2}
\end{equation*}
$$

where η is a non-zero 1 -form and ϕ is a tensor field of type $(1,1)$. In addition, if a quarter-symmetric linear connection $\tilde{\nabla}$ satisfies the condition

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} g\right)(Y, Z)=0 \tag{1.3}
\end{equation*}
$$

for all $X, Y, \underset{\tilde{\nabla}}{Z} \in \chi(M)$, where $\chi(M)$ is the set of all differentiable vector fields on M, then $\tilde{\nabla}$ is said to be a quarter-symmetric metric connection. In particular, if $\phi X=X$ and $\phi Y=Y$ for all $X, Y \in \chi(M)$, then the quarter-symmetric connection reduces to a semi-symmetric connection [5].
M. M. Tripathi [29] studied semi-symmetric metric connections in a Kenmotsu manifolds. In [31], the semi-symmetric non-metric connection in a Kenmotsu manifold was studied by M. M. Tripathi and N. Nakkar. Also in [30], M. M. Tripathi proved the existence of a new connection and showed that in particular cases, this connection reduces to semi-symmetric connections; even some of them are not introduced so far.

In 2005, Yildiz and Murathan [36] studied Lorentzian α-Sasakian manifolds and proved that conformally flat and quasi conformally flat Lorentzian α-Sasakian manifolds are locally isometric with a sphere. In 2012, Yadav and Suthar [34] studied Lorentzian α-Sasakian manifolds.

After Golab [6], Rastogi ([22], [23]) continued the systematic study of quartersymmetric metric connection. In 1980, Mishra and Pandey [8] studied quartersymmetric metric connection in a Riemannian, Kaehlerian and Sasakian manifold. In 1982, Yano and Imai [33] studied quarter-symmetric metric connection in Hermition and Kaehlerian manifolds. In 1991, Mukhopadhyay et al. [16] studied quarter-symmetric metric connection on a Riemannian manifold with an almost complex structure ϕ.

On the other hand, De and Guha introduced generalized recurrent manifold with the non-zero 1-form α_{1} and another non-zero associated 1-form β_{1}. Such a manifold has been denoted by $G K_{n}$. If the associated 1-form becomes zero, then the manifold $G K_{n}$ reduces to a recurrent manifold introduced by Ruse [24] which is denoted by K_{n}. The idea of Ricci-recurrent manifold was introduced by Patterson [17]. He denoted such a manifold by R^{n}. Ricci-recurrent manifolds have been studied by many authors ([3], [18], [35], [9], [10], [11], [12]).

A non-flat n-dimensional differentiable manifold $\mathrm{M}, n>3$, is called generalized recurrent if its curvature tensor R satisfies the condition

$$
\begin{equation*}
\left(\nabla_{X} R\right)(Y, Z) W=\alpha_{1}(X) R(Y, Z) W+\beta_{1}(X)[g(Z, W) Y-g(Y, W) Z] \tag{1.4}
\end{equation*}
$$

where ∇ is the Levi-Civita connection and α_{1} and β_{1} are two 1 -forms $\left(\beta_{1} \neq 0\right)$ defined by

$$
\begin{equation*}
\alpha_{1}(X)=g(X, A), \beta_{1}(X)=g(X, B) \tag{1.5}
\end{equation*}
$$

and A, B are vector fields related with 1 -forms α_{1} and β_{1} respectively. A nonflat n-dimensional differentiable manifold $M, n>3$, is called generalized Riccirecurrent if its Ricci tensor S satisfies the condition

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z) W=\alpha_{1}(X) S(Y, Z) W+(n-1) \beta_{1}(X) g(Y, Z) \tag{1.6}
\end{equation*}
$$

where α_{1} and β_{1} defined as (1.5).
The notions of weakly symmetric and weakly Ricci-symmetric manifolds were introduced by L. Tamassy and T. Q. Binh in ([27], [28]).

A non-flat n-dimensional differentiable manifold $\mathrm{M}, n>3$, is called pseudosymmetric if there is a 1 -form α_{1} on M such that

$$
\begin{align*}
\left(\nabla_{X} R\right)(Y, Z) V & =2 \alpha_{1}(X) R(Y, Z) V+\alpha_{1}(Y) R(X, Z) V+\alpha_{1}(Z) R(Y, X) V \\
& +\alpha_{1}(V) R(Y, Z) X+g(R(Y, Z) V, X) A \tag{1.7}
\end{align*}
$$

where ∇ is the Levi-Civita connection and X, Y, Z, V are vector fields on M. $A \in \chi(M)$ is the vector field associated with 1-form α_{1} which is defined by $g(X, A)=\alpha_{1}(X)$ in [1]. Later R. Deszcz [4] started to use "pseudosymmetric" term in different sence, see([11], [12] [13]).

A non-flat n -dimensional differentiable manifold $\mathrm{M}, n>3$, is called weakly symmetric ([27], [28]) if there are 1 -forms $\alpha_{1}, \beta_{1}, \gamma_{1}, \sigma_{1}$ such that

$$
\begin{align*}
\left(\nabla_{X} R\right)(Y, Z) V & =\alpha_{1}(X) R(Y, Z) V+\beta_{1}(Y) R(X, Z) V+\gamma_{1}(Z) R(Y, X) V \\
& +\sigma_{1}(V) R(Y, Z) X+g(R(Y, Z) V, X) A \tag{1.8}
\end{align*}
$$

for all vector fields X, Y, Z, V on M. A weakly symmetric manifold M is pseudosymmetric if $\beta_{1}=\gamma_{1}=\sigma_{1}=\frac{1}{2} \alpha_{1}$ and $P=A$, locally symmetric if $\alpha_{1}=\beta_{1}=\gamma_{1}=\sigma_{1}=0$ and $P=0$. A weakly symmetric manifold is said to be proper if at least one of the 1 -forms $\alpha_{1}, \beta_{1}, \gamma_{1}$ and σ_{1} is not zero or $P \neq 0$.

A non-flat n -dimensional differentiable manifold $\mathrm{M}, n>3$, is called weakly Ricci-symmetric ([27], [28]) if there are 1 -forms ρ, μ, v such that

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=\rho(X) S(Y, Z)+\mu(Y) S(Y, Z)+v(Z) S(X, Y) \tag{1.9}
\end{equation*}
$$

for all vector fields X, Y, Z, V on M. If $\rho=\mu=v$, then M is called pseudo Ricci-symmetric(see [2]).
If M is weakly symmetric, from (1.8), we have

$$
\begin{align*}
\left(\nabla_{X} S\right)(Y, Z) & =\alpha_{1}(X) S(Z, V)+\beta_{1}(R(X, Z) V)+\gamma_{1}(Z) S(X, V) \\
& +\sigma_{1}(V) S(X, Z)+p(R(X, V) Z) \tag{1.10}
\end{align*}
$$

where p is defined by $p(X)=g(X, P)$ for any $X \in \chi(M)$ in [28].
Generalizing the notion of recurrency, the author Khan [21] introduced the notion of generalized recurrent Sasakian manifolds. In the paper B. Prasad [19] introduced the notion of semi-generalized recurrent manifold and obtained few interesting results. L. Rachůnek and J. Mikeš studied the similar problems $\operatorname{in}([14],[15],[25])$.

A Riemannian manifold is called a semi-generalized recurrent manifold if its curvature tensor R satisfies the condition

$$
\begin{equation*}
\left(\nabla_{X} R\right)(Y, Z) W=\alpha_{1}(X) R(Y, Z) W+\beta_{1}(X) g(Z, W) Y \tag{1.11}
\end{equation*}
$$

where α_{1} and β_{1} defined as (1.5).
A Riemannian manifold is called a semi-generalized Ricci-recurrent manifold if its curvature tensor R satisfies the condition

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=\alpha_{1}(X) S(Y, Z)+n \beta_{1}(X) g(Y, Z) \tag{1.12}
\end{equation*}
$$

where α_{1} and β_{1} defined as (1.5).
Motivated by the above studies, in the present paper we have proved that $\beta_{1}=\left(\alpha-\alpha^{2}\right) \alpha_{1}$ holds on both generalized recurrent and generalized Riccirecurrent Lorentzian α-Sasakian manifold with respect to the quarter-symmetric metric connection. We also show that there is no weakly symmetric or weakly Ricci-symmetric Lorentzian α-Sasakian manifold with respect to the quartersymmetric metric connection, $n>3$, unless $\alpha_{1}+\sigma_{1}+\gamma_{1}$ or $\rho+\mu+v$ is everywhere zero, respectively. We have also studied semi-generalized recurrent Lorentzian α-Sasakian manifold with respect to the quarter-symmetric metric connection.

2 Preliminaries

A $\mathrm{n}(=2 \mathrm{~m}+1)$-dimensional differentiable manifold M is said to be a Lorentzian α-Sasakian manifold if it admits a $(1,1)$ tensor field ϕ, a contravariant vector field ξ, a covariant vector field η and Lorentzian metric g which satisfy the following conditions

$$
\begin{equation*}
\phi^{2} X=X+\eta(X) \xi \tag{2.1}
\end{equation*}
$$

$$
\begin{gather*}
\eta(\xi)=-1, \phi \xi=0, \eta(\phi X)=0 \tag{2.2}\\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) \tag{2.3}\\
g(X, \xi)=\eta(X) \tag{2.4}\\
\left(\nabla_{X} \phi\right)(Y)=\alpha\{g(X, Y) \xi+\eta(Y) X\} \tag{2.5}
\end{gather*}
$$

$\forall X, Y \in \chi(M)$ and for non-zero smooth functions α on M, ∇ denotes the covariant differentiation with respect to Lorentzian metric g ([20], [37]).
For a Lorentzian α-Sasakian manifold, it can be shown that ([20], [37]):

$$
\begin{gather*}
\nabla_{X} \xi=\alpha \phi X, \tag{2.6}\\
\left(\nabla_{X} \eta\right)(Y)=\alpha g(\phi X, Y) \tag{2.7}
\end{gather*}
$$

for all $X, Y \in \chi(M)$.
Further on a Lorentzian α-Sasakian manifold, the following relations hold [20]

$$
\begin{gather*}
g(R(X, Y) Z, \xi)=\eta(R(X, Y) Z)=\alpha^{2}[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \tag{2.8}\\
R(\xi, X) Y=\alpha^{2}[g(X, Y) \xi-\eta(Y) X] \tag{2.9}\\
R(X, Y) \xi=\alpha^{2}[\eta(Y) X-\eta(X) Y] \tag{2.10}\\
R(\xi, X) \xi=\alpha^{2}[X+\eta(X) \xi] \tag{2.11}\\
S(X, \xi)=S(\xi, X)=(n-1) \alpha^{2} \eta(X) \tag{2.12}\\
S(\xi, \xi)=-(n-1) \alpha^{2} \tag{2.13}\\
Q \xi=(n-1) \alpha^{2} \xi \tag{2.14}
\end{gather*}
$$

where Q is the Ricci operator, i.e.,

$$
\begin{equation*}
g(Q X, Y)=S(X, Y) \tag{2.15}
\end{equation*}
$$

If ∇ is the Levi-Civita connection manifold M, then quarter-symmetric metric connection $\tilde{\nabla}$ in M is denoted by

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) \phi(X) \tag{2.16}
\end{equation*}
$$

3 Curvature tensor and Ricci tensor of Lorentzian α Sasakian manifold with respect to quarter-symmetric metric connection

Let $\tilde{R}(X, Y) Z$ and $R(X, Y) Z$ be the curvature tensors with respect to the quarter-symmetric metric connection $\tilde{\nabla}$ and with respect to the Riemannian connection ∇ respectively on a Lorentzian α-Sasakian manifold M. A relation between the curvature tensors $\tilde{R}(X, Y) Z$ and $R(X, Y) Z$ on M is given by

$$
\begin{align*}
\tilde{R}(X, Y) Z & =R(X, Y) Z+\alpha[g(\phi X, Z) \phi Y-g(\phi Y, Z) \phi X] \\
& +\alpha \eta(Z)[\eta(Y) X-\eta(X) Y] \tag{3.1}
\end{align*}
$$

Also from (3.1), we obtain

$$
\begin{equation*}
\tilde{S}(X, Y)=S(X, Y)+\alpha[g(X, Y)+n \eta(X) \eta(Y)] \tag{3.2}
\end{equation*}
$$

where \tilde{S} and S are the Ricci tensor with respect to $\tilde{\nabla}$ and ∇ respectively. Contracting (3.2), we obtain,

$$
\begin{equation*}
\tilde{r}=r, \tag{3.3}
\end{equation*}
$$

where \tilde{r} and r are the scalar curvature tensor with respect to $\tilde{\nabla}$ and ∇ respectively.
Also we have

$$
\begin{gather*}
\left.\tilde{R}(\xi, X) Y=-\tilde{R}(X, \xi) Y=\alpha^{2}[g(X, Y)) \xi-\eta(Y) X\right]+\alpha \eta(Y)[X+\eta(X) \xi], \\
\eta(\tilde{R}(X, Y) Z)=\alpha^{2}[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)], \tag{3.5}\\
\tilde{R}(X, Y) \xi=\left(\alpha^{2}-\alpha\right)[\eta(Y) X-\eta(X) Y], \tag{3.6}\\
\tilde{S}(X, \xi)=\tilde{S}(\xi, X)=(n-1)\left(\alpha^{2}-\alpha\right) \eta(X), \tag{3.7}\\
\tilde{S}(\xi, \xi)=-(n-1)\left(\alpha^{2}-\alpha\right), \tag{3.8}\\
\tilde{Q} X=Q X-\alpha(n-1) X, \tag{3.9}\\
\tilde{R}(\xi, X) \xi=\left(\alpha^{2}-\alpha\right)[X+\eta(X) \xi] . \tag{3.10}
\end{gather*}
$$

4 Generalized recurrent Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection

A non-flat n-dimensional differentiable manifold $M, n>3$, is called generalized recurrent with respect to the quarter-symmetric metric connection if its curvature tensor \tilde{R} satisfies the condition

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{R}\right)(Y, Z) W=\alpha_{1}(X) \tilde{R}(Y, Z) W+\beta_{1}(X)[g(Z, W) Y-g(Y, W) Z] \tag{4.1}
\end{equation*}
$$

for all $X, Y, Z, W \in \chi(M)$, where $\tilde{\nabla}$ is the quarter-symmetric metric connection and \tilde{R} is the curvature tensor of $\tilde{\nabla}$.

A non-flat n -dimensional differentiable manifold $\mathrm{M}, n>3$, is called generalized Ricci-recurrent with respect to the quarter-symmetric metric connection if its Ricci tensor \tilde{S} satisfies the condition

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(Y, Z)=\alpha_{1}(X) \tilde{S}(Y, Z)+(n-1) \beta_{1}(X) g(Y, Z) \tag{4.2}
\end{equation*}
$$

for all $X, Y, Z \in \chi(M)$.
In [26] Sular studied that if M be a generalized recurrent Kenmotsu manifold and generalized Ricci recurrent Kenmotsu manifold respect to semi-symmetric metric connection, then $\beta_{1}=2 \alpha_{1}$ holds on M.

Now we consider generalized recurrent and generalized Ricci-recurrent Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection. We start with the following theorem:

Theorem 4.1. If a generalized recurrent Lorentzian α-Sasakian manifold M admits quarter-symmetric metric connection, then $\beta_{1}=\left(\alpha-\alpha^{2}\right) \alpha_{1}$ holds on M.

Proof. Suppose that M is a generalized recurrent Lorentzian α-Sasakian manifold admitting a quarter-symmetric metric connection. Taking $Y=W=\xi$ in (4.1), we get

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{R}\right)(\xi, Z) \xi=\alpha_{1}(X) \tilde{R}(\xi, Z) \xi+\beta_{1}(X)[g(Z, \xi) \xi+Z] \tag{4.3}
\end{equation*}
$$

By using the equation (2.4), (2.10) and (3.6) in (4.3), we have

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{R}\right)(\xi, Z) \xi=\left[\alpha_{1}(X)\left(\alpha^{2}-\alpha\right)+\beta_{1}(X)\right]\{\eta(Z) \xi+Z\} \tag{4.4}
\end{equation*}
$$

On the other hand, it is clear that

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{R}\right)(\xi, Z) \xi=\tilde{\nabla}_{X} \tilde{R}(\xi, Z) \xi-\tilde{R}\left(\tilde{\nabla}_{X} \xi, Z\right)-\tilde{R}\left(\xi, \tilde{\nabla}_{X} Z\right)-\tilde{R}(\xi, Z) \tilde{\nabla}_{X} \xi(4 \tag{4.5}
\end{equation*}
$$

Now using the equation (2.10) and (3.6) in (4.5), we have

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{R}\right)(\xi, Z) \xi=0 \tag{4.6}
\end{equation*}
$$

Hence comparing the right hand sides of the equations (4.4) and (4.6) we obtain

$$
\begin{equation*}
\left[\alpha_{1}(X)\left(\alpha^{2}-\alpha\right)+\beta_{1}(X)\right]\{\eta(Z) \xi+Z\}=0 \tag{4.7}
\end{equation*}
$$

which imply

$$
\begin{equation*}
\beta_{1}(X)=\left(\alpha-\alpha^{2}\right) \alpha_{1}(X) \tag{4.8}
\end{equation*}
$$

for any vector field $X \in M$. So our theorem is proved.
Theorem 4.2. Let M be a generalized Ricci-recurrent Lorentzian α-Sasakian manifold admitting quarter-symmetric metric connection, then $\beta_{1}=\left(\alpha-\alpha^{2}\right) \alpha_{1}$ holds on M.

Proof. Suppose that M is a generalized Ricci-recurrent Lorentzian α-Sasakian Manifold M with respect to quarter-symmetric metric connection. Now putting $Z=\xi$ in (4.2), we get

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(Y, \xi)=\alpha_{1}(X) \tilde{S}(Y, \xi)+(n-1) \beta_{1}(X) g(Y, \xi) \tag{4.9}
\end{equation*}
$$

Then by using the equation (2.4), (2.12) and (3.7) in (4.9), we have

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(Y, \xi)=\alpha_{1}(X)\left[(n-1)\left(\alpha^{2}-\alpha\right) \eta(Y)+(n-1) \beta_{1}(X) \eta(Y)\right. \tag{4.10}
\end{equation*}
$$

On the other hand, by using the definition of covariant derivative of \tilde{S} with respect to the quarter-symmetric metric connection, it is well-known that

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(Y, \xi)=\tilde{\nabla}_{X} \tilde{S}(Y, \xi)-\tilde{S}\left(\tilde{\nabla}_{X} Y, \xi\right)-\tilde{S}\left(Y, \tilde{\nabla}_{X} \xi\right) \tag{4.11}
\end{equation*}
$$

Now using the equation (2.6), (2.7), (2.12), (2.16), (3.2) and (3.7) in (4.11), we obtain

$$
\begin{equation*}
(n-1)\left(\alpha^{2}-\alpha\right) \alpha g(Y, \phi X)-(\alpha-1)[S(Y, \phi X)+\alpha g(Y, \phi X)] \tag{4.12}
\end{equation*}
$$

Hence comparing the right hand sides of the equations (4.10) and (4.12) we obtain

$$
\begin{align*}
\alpha_{1}(X)\left[(n - 1) \left(\alpha^{2}\right.\right. & -\alpha) \eta(Y)+(n-1) \beta_{1}(X) \eta(Y) \\
& =(n-1)\left(\alpha^{2}-\alpha\right) \alpha g(Y, \phi X) \\
& -(\alpha-1)[S(Y, \phi X)+\alpha g(Y, \phi X)] \tag{4.13}
\end{align*}
$$

Now putting $Y=\xi$ in (4.13), we get

$$
\begin{equation*}
\beta_{1}(X)=\left(\alpha-\alpha^{2}\right) \alpha_{1}(X) \tag{4.14}
\end{equation*}
$$

for any vector field $X \in M$. So this completes the proof.

5 Weakly symmetric Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection

A non-flat n -dimensional differentiable manifold $\mathrm{M}, n>3$, is called weakly symmetric with respect to quarter-symmetric metric connection if there are 1 -forms $\alpha_{1}, \beta_{1}, \gamma_{1}, \sigma_{1}$ such that

$$
\begin{align*}
\left(\tilde{\nabla}_{X} \tilde{R}\right)(Y, Z) V & =\alpha_{1}(X) \tilde{R}(Y, Z) V+\beta_{1}(Y) \tilde{R}(X, Z) V+\gamma_{1}(Z) \tilde{R}(Y, X) V \\
& +\sigma_{1}(V) \tilde{R}(Y, Z) X+g(\tilde{R}(Y, Z) V, X) A \tag{5.1}
\end{align*}
$$

for all vector fields X, Y, Z, V on M.
A non-flat n-dimensional differentiable manifold $M, n>3$, is called weakly Ricci-symmetric with respect to quarter-symmetric metric connection if there are 1-forms ρ, μ, v such that

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(Y, Z)=\rho(X) \tilde{S}(Y, Z)+\mu(Y) \tilde{S}(Y, Z)+v(Z) \tilde{S}(X, Y) \tag{5.2}
\end{equation*}
$$

for all vector fields X, Y, Z, V on M. If M is weakly symmetric with respect to the quarter-symmetric metric connection, by a contraction from (1.8), we have

$$
\begin{align*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(Z, V) & =\alpha_{1}(X) \tilde{S}(Z, V)+\beta_{1}(\tilde{R}(X, Z) V)+\gamma_{1}(Z) \tilde{S}(X, V) \\
& +\sigma_{1}(V) \tilde{S}(X, Z)+p(\tilde{R}(X, V) Z) \tag{5.3}
\end{align*}
$$

In [26], Sular studied weakly symmetric and weakly Ricci-symmetric Kenmotsu manifold with respect to semi-symmetric metric connection and obtained some results.
i) If M be a weakly symmetric Kenmotsu manifold with respect to quartersymmetric metric connection then there is no weakly symmetric $n>3$, unless $\alpha_{1}+\sigma_{1}+\gamma_{1}$ is everywhere zero.
ii) If M be a weakly Ricci-symmetric Kenmotsu manifold with respect to semisymmetric metric connection then there is no weakly Ricci-symmetric $n>3$, unless $\rho+\mu+v$ is everywhere zero.

Now we consider weakly symmetric and weakly Ricci-symmetric Lorentzian α Sasakian manifold with respect to quarter-symmetric metric connection. We start with the following theorem:

Theorem 5.1. There is no weakly symmetric Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection $n>3$, unless $\alpha_{1}+\sigma_{1}+\gamma_{1}$ is everywhere zero, provided $\alpha \neq 0,1$.

Proof. Let M be a weakly symmetric Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection $\tilde{\nabla}$. By the covariant differentiation of the Ricci tensor \tilde{S} of the quarter-symmetric metric connection with respect to X, we have

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(Z, V)=\tilde{\nabla}_{X} \tilde{S}(Z, V)-\tilde{S}\left(\tilde{\nabla}_{X} Z, V\right)-\tilde{S}\left(Z, \tilde{\nabla}_{X} V\right) \tag{5.4}
\end{equation*}
$$

Putting $V=\xi$ in (5.4) and using (2.6), (2.7), (2.12), (2.16) and (3.7), it follows that

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(Z, \xi)=(n-1)\left(\alpha^{2}-\alpha\right)\left(\nabla_{X} \eta\right) Z-(\alpha-1) \tilde{S}(Z, \phi X) \tag{5.5}
\end{equation*}
$$

Replacing $V=\xi$ in (5.3), we get

$$
\begin{align*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(Z, \xi) & =\alpha_{1}(X) \tilde{S}(Z, \xi)+\beta_{1}(\tilde{R}(X, Z) \xi)+\gamma_{1}(Z) \tilde{S}(X, \xi) \\
& +\sigma_{1}(\xi) \tilde{S}(X, Z)+p(\tilde{R}(X, \xi) Z) \tag{5.6}
\end{align*}
$$

Now using (2.6), (2.7), (2.12), (2.16), (3.6) and (3.7) in (5.6), we obtain

$$
\begin{align*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(Z, \xi) & =\alpha_{1}(X)(n-1)\left(\alpha^{2}-\alpha\right) \eta(Z) \\
& +\left(\alpha^{2}-\alpha\right)\left[\eta(Z) \beta_{1}(X)-\eta(X) \beta_{1}(Z)\right] \\
& +\gamma_{1}(Z)(n-1)\left(\alpha^{2}-\alpha\right) \eta(X)+\sigma_{1}(\xi) \tilde{S}(X, Z) \\
& -\alpha^{2}[g(X, Z) p(\xi)-\eta(Z) p(X)]-\alpha_{1} \eta(Z)[p(X) \\
& +\eta(X) p(\xi)] . \tag{5.7}
\end{align*}
$$

Thus, comparing the right hand sides of the equations (5.5) and (5.7) we obtain

$$
\begin{align*}
(n-1)\left(\alpha^{2}-\alpha\right)\left(\nabla_{X} \eta\right) Z & -(\alpha-1) \tilde{S}(Z, \phi X)=\alpha_{1}(X)(n-1)\left(\alpha^{2}-\alpha\right) \eta(Z) \\
& +\left(\alpha^{2}-\alpha\right)\left[\eta(Z) \beta_{1}(X)-\eta(X) \beta_{1}(Z)\right] \\
& +\gamma_{1}(Z)(n-1)\left(\alpha^{2}-\alpha\right) \eta(X)+\sigma_{1}(\xi) \tilde{S}(X, Z) \\
& -\alpha^{2}[g(X, Z) p(\xi)-\eta(Z) p(X)]-\alpha_{1} \eta(Z)[p(X) \\
& +\eta(X) p(\xi)] \tag{5.8}
\end{align*}
$$

Then taking $X=Z=\xi$ in (5.8) and using (2.1), (2.2), (2.4), (2.12) and (3.8), we get

$$
\begin{equation*}
(n-1)\left(\alpha^{2}-\alpha\right)\left[\alpha_{1}(\xi)+\gamma_{1}(\xi)+\sigma_{1}(\xi)\right]=0 \tag{5.9}
\end{equation*}
$$

Now as $n>3$ and $\alpha \neq 0,1$, So,

$$
\begin{equation*}
\alpha_{1}(\xi)+\gamma_{1}(\xi)+\sigma_{1}(\xi)=0 \tag{5.10}
\end{equation*}
$$

Now putting $Z=\xi$ in (5.3), we get

$$
\begin{align*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(\xi, V) & =\alpha_{1}(X) \tilde{S}(\xi, V)+\beta_{1}(\tilde{R}(X, \xi) V)+\gamma_{1}(\xi) \tilde{S}(X, V) \\
& +\sigma_{1}(\xi) \tilde{S}(X, \xi)+p(\tilde{R}(X, V) \xi \tag{5.11}
\end{align*}
$$

Also putting $Z=\xi$ in (5.4) and using (2.6), (2.7), (2.12), (2.16) and (3.7), it follows that

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(\xi, V)=(n-1)\left(\alpha^{2}-\alpha\right)\left(\nabla_{X} \eta\right) V-(\alpha-1) \tilde{S}(V, \phi X) \tag{5.12}
\end{equation*}
$$

Similarly using (2.6), (2.7), (2.12), (2.16), (3.6) and (3.7) in (5.11), we obtain

$$
\begin{align*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(\xi, V) & =\alpha_{1}(X)(n-1)\left(\alpha^{2}-\alpha\right) \eta(V)-\alpha^{2}\left[g(X, V) \beta_{1}(\xi)\right. \\
& \left.-\eta(V) \beta_{1}(X)\right]-\alpha \eta(V)\left[\beta_{1}(X)+\eta(X) \beta_{1}(\xi)\right] \\
& +\gamma_{1}(\xi) \tilde{S}(X, V)+\sigma_{1}(V)(n-1)\left(\alpha^{2}-\alpha\right) \eta(X) \\
& +\left(\alpha^{2}-\alpha\right)[\eta(V) p(X)-\eta(V) p(X)] . \tag{5.13}
\end{align*}
$$

Thus, comparing the right hand sides of the equations (5.12) and (5.13), we obtain

$$
\begin{align*}
(n-1)\left(\alpha^{2}-\alpha\right)\left(\nabla_{X} \eta\right) V & -(\alpha-1) \tilde{S}(V, \phi X)=\alpha_{1}(X)(n-1)\left(\alpha^{2}-\alpha\right) \eta(V) \\
& -\alpha^{2}\left[g(X, V) \beta_{1}(\xi)-\eta(V) \beta_{1}(X)\right]-\alpha \eta(V)\left[\beta_{1}(X)\right. \\
& \left.+\eta(X) \beta_{1}(\xi)\right]+\gamma_{1}(\xi) \tilde{S}(X, V)+\sigma_{1}(V)(n-1)\left(\alpha^{2}\right. \\
& -\alpha) \eta(X)+\left(\alpha^{2}-\alpha\right)[\eta(V) p(X) \\
& -\eta(V) p(X)] . \tag{5.14}
\end{align*}
$$

Now putting $V=\xi$ in (5.14), we obtain

$$
\begin{align*}
-\alpha_{1}(X)(n-1)\left(\alpha^{2}-\alpha\right) & -\left(\alpha^{2}-\alpha\right)\left[\eta(X) \beta_{1}(\xi)+\beta_{1}(X)\right] \\
& +\left(\sigma_{1}(\xi)+\gamma_{1}(\xi)\right)(n-1)\left(\alpha^{2}-\alpha\right) \eta(X) \\
& -\left(\alpha^{2}-\alpha\right)[p(X)+\eta(X) p(\xi)]=0 . \tag{5.15}
\end{align*}
$$

Taking $X=\xi$ in (5.14), we obtain

$$
\begin{align*}
\alpha_{1}(\xi)(n-1)\left(\alpha^{2}-\alpha\right) \eta(V) & +\gamma_{1}(\xi)(n-1)\left(\alpha^{2}-\alpha\right) \eta(V) \\
& -\sigma_{1}(V)(n-1)\left(\alpha^{2}-\alpha\right)+\left(\alpha^{2}\right. \\
& -\alpha)[p(V)+\eta(V) p(\xi)]=0 . \tag{5.16}
\end{align*}
$$

In (5.16) taking $V=X$ and summing with (5.15), by virtue of (5.10) we find

$$
\begin{align*}
-(n-1)\left(\alpha^{2}-\alpha\right)\left[\alpha_{1}(X)\right. & \left.+\sigma_{1}(X)\right]-\left(\alpha^{2}-\alpha\right)\left[\eta(X) \beta_{1}(\xi)+\beta_{1}(X)\right] \\
& +(n-1)\left(\alpha^{2}-\alpha\right) \eta(X) \gamma_{1}(\xi)=0 . \tag{5.17}
\end{align*}
$$

Again putting $X=\xi$ in (5.8), we obtain

$$
\begin{align*}
\alpha_{1}(\xi)(n-1)\left(\alpha^{2}-\alpha\right) \eta(Z) & +\left(\alpha^{2}-\alpha\right)\left[\eta(Z) \beta_{1}(\xi)+\beta_{1}(Z)\right] \\
& -\gamma_{1}(Z)(n-1)\left(\alpha^{2}-\alpha\right) \\
& +\sigma_{1}(\xi)(n-1)\left(\alpha^{2}-\alpha\right) \eta(Z)=0 . \tag{5.18}
\end{align*}
$$

Now in the equation (5.18) taking $Z=X$, we obtain

$$
\begin{align*}
\alpha_{1}(\xi)(n-1)\left(\alpha^{2}-\alpha\right) \eta(X) & +\left(\alpha^{2}-\alpha\right)\left[\eta(X) \beta_{1}(\xi)+\beta_{1}(X)\right] \\
& -\gamma_{1}(X)(n-1)\left(\alpha^{2}-\alpha\right) \\
& +\sigma_{1}(\xi)(n-1)\left(\alpha^{2}-\alpha\right) \eta(X)=0 . \tag{5.19}
\end{align*}
$$

Then adding (5.17) and (5.19), we find

$$
\begin{align*}
(n-1)\left(\alpha^{2}-\alpha\right) \eta(X)\left[\alpha_{1}(\xi)\right. & \left.+\gamma_{1}(\xi)+\sigma_{1}(\xi)\right]-(n-1)\left(\alpha^{2}-\alpha\right)\left[\alpha_{1}(X)\right. \\
& \left.+\gamma_{1}(X)+\sigma_{1}(X)\right]=0 . \tag{5.20}
\end{align*}
$$

Since $n>3, \alpha \neq 0,1$, and

$$
\alpha_{1}(\xi)+\gamma_{1}(\xi)+\sigma_{1}(\xi)=0,
$$

so we get

$$
\alpha_{1}(X)+\gamma_{1}(X)+\sigma_{1}(X)=0
$$

for all $X \in M$.
So our proof is completed.
Theorem 5.2. There is no weakly Ricci-symmetric Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection $n>3$, unless $\rho+\mu+v$ is everywhere zero, provided $\alpha \neq 0,1$.

Proof. Assume that M is a weakly Ricci-symmetric Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection $\tilde{\nabla}$. Now taking $Z=\xi$ in (5.2) and using (3.2) and (3.7), we obtain

$$
\begin{align*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(Y, \xi) & =\rho(X)(n-1)\left(\alpha^{2}-\alpha\right) \eta(Y)+\mu(X)(n-1)\left(\alpha^{2}-\alpha\right) \eta(X) \\
& +v(\xi)[S(X, Y)+\alpha\{g(X, Y)+n \eta(X) \eta(Y)\}] \tag{5.21}
\end{align*}
$$

Also we have

$$
\begin{align*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(Y, \xi) & =(n-1)\left(\alpha^{2}-\alpha\right)\left(\nabla_{X} \eta\right)(Y)-(\alpha-1)[S(Y, \phi X) \\
& +\alpha g(X, \phi Y)] \tag{5.22}
\end{align*}
$$

Now equating (5.21) and (5.22), we obtain

$$
\begin{align*}
\rho(X)(n-1)\left(\alpha^{2}-\alpha\right) \eta(Y) & +\mu(X)(n-1)\left(\alpha^{2}-\alpha\right) \eta(X)+v(\xi)[S(X, Y) \\
& +\alpha\{g(X, Y)+n \eta(X) \eta(Y)\}]=(n-1)\left(\alpha^{2}\right. \\
& -\alpha)\left(\nabla_{X} \eta\right)(Y)-(\alpha-1)[S(Y, \phi X) \\
& +\alpha g(X, \phi Y)] . \tag{5.23}
\end{align*}
$$

Now putting $X=Y=\xi$ in (5.23), we find

$$
\begin{equation*}
(n-1)\left(\alpha^{2}-\alpha\right)[\rho(\xi)+\mu(\xi)+v(\xi)]=0 \tag{5.24}
\end{equation*}
$$

As $n>3$ and $\alpha \neq 0,1$, So

$$
\begin{equation*}
\rho(\xi)+\mu(\xi)+v(\xi)=0 \tag{5.25}
\end{equation*}
$$

Taking $X=\xi$ in (5.23), we find

$$
\begin{equation*}
(n-1)\left(\alpha^{2}-\alpha\right) \eta(Y)[\rho(\xi)+v(\xi)]+\mu(Y)(n-1)\left(\alpha^{2}-\alpha\right)=0 \tag{5.26}
\end{equation*}
$$

So in view of (5.25), the above equation turns into

$$
\begin{equation*}
-\eta(Y) \mu(\xi)=\mu(Y) \tag{5.27}
\end{equation*}
$$

Similarly in (5.23), taking $Y=\xi$, we find

$$
\begin{equation*}
-\rho(X)(n-1)\left(\alpha^{2}-\alpha\right)+\left(\alpha^{2}-\alpha\right) \eta(X)[\mu(\xi)(n-1)+v(\xi)]=0 \tag{5.28}
\end{equation*}
$$

So in view of (5.25), we get finally

$$
\begin{equation*}
\rho(X)=-\rho(\xi) \eta(X) \tag{5.29}
\end{equation*}
$$

Since $\left(\tilde{\nabla}_{\xi} \tilde{S}\right)(Y, \xi)=0$, then from (5.2), we get

$$
\begin{equation*}
[\rho(\xi)+\mu(\xi)] \eta(X)=v(X) \tag{5.30}
\end{equation*}
$$

that is

$$
\begin{equation*}
-v(\xi) \eta(X)=v(X) \tag{5.31}
\end{equation*}
$$

Thus replacing Y with X in (5.27) and then summing of the equations (5.27), (5.29) and (5.31) we get

$$
\begin{equation*}
\rho(X)+\mu(X)+v(X)=-\eta(X)[\rho(\xi)+\mu(\xi)+v(\xi)] . \tag{5.32}
\end{equation*}
$$

From the equation (5.25), it is clear that

$$
\begin{equation*}
\rho(X)+\mu(X)+v(X)=0 \tag{5.33}
\end{equation*}
$$

for any vector field X holds on M, which means that

$$
\rho+\mu+v=0 .
$$

Hence our proof is completed.

6 On semi-generalized recurrent Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection

A Lorentzian α-Sasakian manifold is called a semi-generalized recurrent manifold with respect to quarter-symmetric metric connection if its curvature tensor \tilde{R} satisfies the condition

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{R}\right)(Y, Z) W=\alpha_{1}(X) \tilde{R}(Y, Z) W+\beta_{1}(X) g(Z, W) Y, \tag{6.1}
\end{equation*}
$$

where α_{1} and β_{1} defined as (1.5) for any vector field and $\tilde{\nabla}$ denotes the operator of covarient differentiation with respect to the metric.

Taking $Y=W=\xi$ in (6.1), we have

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{R}\right)(\xi, Z) \xi=\alpha_{1}(X) \tilde{R}(\xi, Z) \xi+\beta_{1}(X) g(Z, \xi) \xi \tag{6.2}
\end{equation*}
$$

From (4.5), the left hand side of (6.2) can be written in the form

$$
\left(\tilde{\nabla}_{X} \tilde{R}\right)(\xi, Z) \xi=X \tilde{R}(\xi, Z) \xi-\tilde{R}\left(\tilde{\nabla}_{X} \xi, Z\right)-\tilde{R}\left(\xi, \tilde{\nabla}_{X} Z\right)-\tilde{R}(\xi, Z) \tilde{\nabla}_{X} \xi \cdot \text { (6.3) }
$$

Now using (2.6), (2.16), (3.4), (3.6) and (3.11), the right hand site of the equation (6.3) becomes

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{R}\right)(\xi, Z) \xi=-\left(\alpha^{2}-\alpha\right)(\alpha-1) \eta(Z) \phi X-\left(\alpha^{2}-\alpha\right) \eta(Z) \phi X . \tag{6.4}
\end{equation*}
$$

Now using (3.11), the right hand side of (6.2) can be written in the form

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{R}\right)(\xi, Z) \xi=\alpha_{1}(X)\left(\alpha^{2}-\alpha\right)[Z+\eta(Z) \xi]+\beta_{1}(X) \eta(Z) \xi \tag{6.5}
\end{equation*}
$$

Now from (6.4) and (6.5), we have

$$
\begin{align*}
-\left(\alpha^{2}-\alpha\right)(\alpha & -1) \eta(Z) \phi X-\left(\alpha^{2}-\alpha\right) \eta(Z) \phi X \\
& =\alpha_{1}(X)\left(\alpha^{2}-\alpha\right)[Z+\eta(Z) \xi] \\
& +\beta_{1}(X) \eta(Z) \xi \tag{6.6}
\end{align*}
$$

Now putting $Z=\xi$ in (6.6), we obtain

$$
\begin{equation*}
\left(\alpha^{2}-\alpha\right) \tilde{\nabla}_{X} \xi+\alpha \tilde{\nabla}_{X} \xi=-\beta_{1}(X) \xi \tag{6.7}
\end{equation*}
$$

that is

$$
\begin{equation*}
\alpha^{2} \tilde{\nabla}_{X} \xi=-\beta_{1}(X) \xi \tag{6.8}
\end{equation*}
$$

Hence we can state the following theorem:
Theorem 6.1. If a semi-generalized recurrent Lorentzian α-Sasakian manifold admits quarter-symmetric metric connection, the associated vector field ξ is not constant and $\nabla_{X} \xi$ is parallel to ξ, provided $\alpha \neq 0$.

Permutting equation (6.1) with respect to X, Y, Z and adding the three equations and using Bianchi identity, we have

$$
\begin{align*}
\alpha_{1}(X) \tilde{R}(Y, Z) W & +\beta_{1}(X) g(Z, W) Y+\alpha_{1}(Y) \tilde{R}(Z, X) W+\beta_{1}(Y) g(X, W) Z \\
& +\alpha_{1}(Z) \tilde{R}(X, Y) W+\beta_{1}(Z) g(Y, W) X=0 \tag{6.9}
\end{align*}
$$

Contracting (6.9) with respect to Y, we get

$$
\begin{align*}
\alpha_{1}(X) \tilde{S}(Z, W) & +n \beta_{1}(X) g(Z, W)+\tilde{R}^{\prime}(Z, X, W, A)+\beta_{1}(Z) g(X, W) \\
& -\alpha_{1}(Z) \tilde{S}(X, W)+\beta_{1}(Z) g(X, W)=0 \tag{6.10}
\end{align*}
$$

In view of $\tilde{S}(Z, W)=g(\tilde{Q} Z, W)$, the equation (6.10) becomes

$$
\begin{align*}
\alpha_{1}(X) g(\tilde{Q} Z, W) & +n \beta_{1}(X) g(Z, W)-g(\tilde{R}(Z, X) A, W)+\beta_{1}(Z) g(X, W) \\
& -\alpha_{1}(Z) g(\tilde{Q} X, W)+\beta_{1}(Z) g(X, W)=0 . \tag{6.11}
\end{align*}
$$

From (6.11), we have

$$
\begin{align*}
\alpha_{1}(X) \tilde{Q} Z & +n \beta_{1}(X) Z-\tilde{R}(Z, X) A+\beta_{1}(Z) X \\
& -\alpha_{1}(Z) \tilde{Q} X+\beta_{1}(Z) X=0 \tag{6.12}
\end{align*}
$$

Contracting (6.12) with respect to Z, we obtain

$$
\begin{equation*}
\alpha_{1}(X) \tilde{r}+\left(n^{2}+2\right) \beta_{1}(X)-2 \tilde{S}(X, A)=0 \tag{6.13}
\end{equation*}
$$

Putting $X=\xi$ in (6.13), we get

$$
\begin{equation*}
\eta(A) \tilde{r}+\left(n^{2}+2\right) \eta(B)-2(n-1)\left(\alpha^{2}-\alpha\right) \eta(A)=0 \tag{6.14}
\end{equation*}
$$

that is

$$
\begin{equation*}
\tilde{r}=\frac{1}{\eta(A)}\left[2(n-1)\left(\alpha^{2}-\alpha\right) \eta(A)-\left(n^{2}+2\right) \eta(B)\right] \tag{6.15}
\end{equation*}
$$

where \tilde{r} is the scalar curvature with respect to quarter-symmetric metric connection.
Hence we can state the following theorem:
Theorem 6.2. The scalar curvature of a semi-generalized recurrent Lorentzian α-Sasakian manifold admitting a quarter-symmetric metric connection is related in terms of contact forms $\eta(A)$ and $\eta(B)$ as given by (6.15).

7 On semi-generalized Ricci-recurrent Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection

A Lorentzian α-Sasakian manifold is called a semi-generalized Ricci-recurrent manifold with respect to quarter-symmetric metric connection if its Ricci tensor S satisfies the condition

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(Y, Z)=\alpha_{1}(X) \tilde{S}(Y, Z)+n \beta_{1}(X) g(Y, Z) \tag{7.1}
\end{equation*}
$$

where α_{1} and β_{1} defined as (1.5).
Taking $Z=\xi$ in (7.1), we have

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(Y, \xi)=\alpha_{1}(X) \tilde{S}(Y, \xi)+n \beta_{1}(X) g(Y, \xi) \tag{7.2}
\end{equation*}
$$

The left hand side of (7.2), clearly can be written in the form

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(Y, \xi)=X \tilde{S}(Y, \xi)-\tilde{S}\left(\tilde{\nabla}_{X} Y, \xi\right)-\tilde{S}\left(Y, \tilde{\nabla}_{X} \xi\right) \tag{7.3}
\end{equation*}
$$

Using (3.2) and (3.7), the right hand site of the equation (7.3) becomes

$$
\begin{equation*}
-\tilde{S}\left(Y, \tilde{\nabla}_{X} \xi\right)+(n-1) \alpha\left(\alpha^{2}-\alpha\right) g(\phi X, Y) \tag{7.4}
\end{equation*}
$$

The right hand site of (7.2) can be written as using (3.7)

$$
\begin{equation*}
\alpha_{1}(X)(n-1)\left(\alpha^{2}-\alpha\right) \eta(Y)+n \beta_{1}(X) \eta(Y) \tag{7.5}
\end{equation*}
$$

From (7.4) and (7.5), we get

$$
\begin{align*}
\tilde{S}\left(Y, \tilde{\nabla}_{X} \xi\right) & +(n-1) \alpha\left(\alpha^{2}-\alpha\right) g(\phi X, Y)=\alpha_{1}(X)(n-1)\left(\alpha^{2}\right. \\
& -\alpha) \eta(Y)+n \beta_{1}(X) \eta(Y) \tag{7.6}
\end{align*}
$$

Now putting $Y=\xi$ in (7.6), we obtain

$$
\begin{equation*}
\alpha_{1}(X)(n-1)\left(\alpha^{2}-\alpha\right)+n \beta_{1}(X)=0 \tag{7.7}
\end{equation*}
$$

that is

$$
\begin{equation*}
\alpha_{1}(X)=-\frac{n}{(n-1)\left(\alpha^{2}-\alpha\right)} \beta_{1}(X) . \tag{7.8}
\end{equation*}
$$

This leads to the following theorem:
Theorem 7.1. If a semi-generalized Rici-Recurrent Lorentzian α-Sasakian manifold admits a quarter-symmetric metric connection, then

$$
\alpha_{1}(X)=-\frac{n}{(n-1)\left(\alpha^{2}-\alpha\right)} \beta_{1}(X)
$$

holds, that is, the 1-form α_{1} and β_{1} are in opposite direction.
A Lorentzian α-Sasakian manifold $\left(M^{n}, g\right)$ with respect to quarter-symmetric metric connection is said to be an Einstein manifold if its Ricci tensor \tilde{S} is of the form

$$
\begin{equation*}
\tilde{S}(X, Y)=k g(X, Y) \tag{7.9}
\end{equation*}
$$

where k is constant. For an Einstein manifold,

$$
\left(\tilde{\nabla}_{U} \tilde{S}\right)=0
$$

$\forall U \in \chi(M)$. From (7.1), we have

$$
\begin{align*}
{\left[k \alpha_{1}(X)\right.} & \left.+n \beta_{1}(X)\right] g(Y, Z)+\left[k \alpha_{1}(y)+n \beta_{1}(y)\right] g(Z, X) \\
& +\left[k \alpha_{1}(Z)+n \beta_{1}(Z)\right] g(X, Y)=0 \tag{7.10}
\end{align*}
$$

Putting $Y=\xi$ in (7.10) and using (1.5) and (2.4), we obtain

$$
\begin{align*}
{\left[k \alpha_{1}(X)\right.} & \left.+n \beta_{1}(X)\right] \eta(Y)+\left[k \alpha_{1}(y)+n \beta_{1}(y)\right] \eta(X) \\
& +\left[k \alpha_{1}(Z)+n \beta_{1}(Z)\right] g(X, Y)=0 \tag{7.11}
\end{align*}
$$

Now putting $X=Y=\xi$ in (7.11) and using (1.5), (2.2) and (2.4), we obtain

$$
\begin{equation*}
k \eta(A)+n \eta(B)=0 \tag{7.12}
\end{equation*}
$$

that is

$$
\begin{equation*}
\eta(A)=-\frac{n}{k} \eta(B) \tag{7.13}
\end{equation*}
$$

Using (1.5) and (2.4) in the above relation, we have

$$
\begin{equation*}
\alpha_{1}(\xi)=-\frac{n}{k} \beta_{1}(\xi) . \tag{7.14}
\end{equation*}
$$

So, we have the following theorem:
Theorem 7.2. If a semi-generalized Ricci-recurrent Lorentzian α-Sasakian manifold M admitting a quarter-symmetric metric connection is an Einstein manifold, then the contact form $\eta(A)$ and $\eta(B)$ and the 1 -form α_{1} and β_{1} are both in opposite direction.

8 Example of 3-dimensional Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection

We consider a 3 -dimensional manifold $M=\left\{(x, y, u) \in R^{3}\right\}$, where (x, y, u) are the standard coordinates of R^{3}. Let e_{1}, e_{2}, e_{3} be the vector fields on M^{3} given by

$$
e_{1}=e^{-u} \frac{\partial}{\partial x}, \quad e_{2}=e^{-u} \frac{\partial}{\partial y}, \quad e_{3}=e^{-u} \frac{\partial}{\partial u} .
$$

Clearly, $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a set of linearly independent vectors for each point of M and hence a basis of $\chi(M)$. The Lorentzian metric g is defined by

$$
\begin{aligned}
& g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{3}\right)=g\left(e_{1}, e_{3}\right)=0, \\
& g\left(e_{1}, e_{1}\right)=1, \quad g\left(e_{2}, e_{2}\right)=1, \quad g\left(e_{3}, e_{3}\right)=-1 .
\end{aligned}
$$

Let η be the 1 -form defined by $\eta(Z)=g\left(Z, e_{3}\right)$ for any $Z \in \chi(M)$ and the (1, 1) tensor field ϕ is defined by

$$
\phi e_{1}=e_{1}, \quad \phi e_{2}=e_{2}, \quad \phi e_{3}=0
$$

From the linearity of ϕ and g, we have

$$
\begin{gathered}
\eta\left(e_{3}\right)=-1, \\
\phi^{2} X=X+\eta(X) e_{3}
\end{gathered}
$$

and

$$
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y)
$$

for any $X \in \chi(M)$. Then for $e_{3}=\xi$, the structure (ϕ, ξ, η, g) defines a Lorentzian paracontact structure on M.
Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g. Then we have

$$
\left[e_{1}, e_{2}\right]=0, \quad\left[e_{1}, e_{3}\right]=e_{1} e^{-u}, \quad\left[e_{2}, e_{3}\right]=e_{2} e^{-u}
$$

Koszul's formula is defined by

$$
\begin{aligned}
& 2 g\left(\nabla_{X} Y, Z\right)=X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \\
& \quad-g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y])
\end{aligned}
$$

Then from above formula we can calculate the followings:

$$
\begin{array}{cl}
\nabla_{e_{1}} e_{1}=e_{3} e^{-u}, \quad \nabla_{e_{1}} e_{2}=0, & \nabla_{e_{1}} e_{3}=e_{1} e^{-u} \\
\nabla_{e_{2}} e_{1}=0, \quad \nabla_{e_{2}} e_{2}=e_{3} e^{-u}, & \nabla_{e_{2}} e_{3}=e_{2} e^{-u} \\
\nabla_{e_{3}} e_{1}=0, \quad \nabla_{e_{3}} e_{2}=0, & \nabla_{e_{3}} e_{3}=0
\end{array}
$$

From the above calculations, we see that the manifold under consideration satisfies $\eta(\xi)=-1$ and $\nabla_{X} \xi=\alpha \phi X$ for $\alpha=e^{-u}$.
Hence the structure (ϕ, ξ, η, g) is a Lorentzian α-Sasakian manifold.
Using (2.16), we find $\tilde{\nabla}$, the quarter-symmetric metric connection on M following:

$$
\begin{gathered}
\tilde{\nabla}_{e_{1}} e_{1}=e_{3} e^{-u}, \quad \tilde{\nabla}_{e_{1}} e_{2}=0, \quad \tilde{\nabla}_{e_{1}} e_{3}=e_{1}\left(e^{-u}-1\right), \\
\tilde{\nabla}_{e_{2}} e_{1}=0, \quad \tilde{\nabla}_{e_{2}} e_{2}=e_{3} e^{-u}, \quad \tilde{\nabla}_{e_{2}} e_{3}=e_{2}\left(e^{-u}-1\right), \\
\tilde{\nabla}_{e_{3}} e_{1}=0, \quad \tilde{\nabla}_{e_{3}} e_{2}=0, \quad \tilde{\nabla}_{e_{3}} e_{3}=0
\end{gathered}
$$

Using (1.2), the torson tensor T, with respect to quarter-symmetric metric connection $\tilde{\nabla}$ as follows:

$$
\begin{gathered}
\tilde{T}\left(e_{i}, e_{i}\right)=0, \quad \forall i=1,2,3 \\
\tilde{T}\left(e_{1}, e_{2}\right)=0, \quad \tilde{T}\left(e_{1}, e_{3}\right)=-e_{1}, \quad \tilde{T}\left(e_{2}, e_{3}\right)=-e_{2}
\end{gathered}
$$

Also,

$$
\left(\tilde{\nabla}_{e_{1}} g\right)\left(e_{2}, e_{3}\right)=0, \quad\left(\tilde{\nabla}_{e_{2}} g\right)\left(e_{3}, e_{1}\right)=0, \quad\left(\tilde{\nabla}_{e_{3}} g\right)\left(e_{1}, e_{2}\right)=0
$$

Thus M is Lorentzian α-Sasakian manifold with quarter-symmetric metric connection $\tilde{\nabla}$.

Acknowledgement The authors wish to express their sincere thanks and gratitude to the referee for valuable suggestions towards the improvement of the paper.

References

[1] Chaki, M. C.: On pseudo symmetric manifolds. An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 33, 1 (1987), 53-58.
[2] Chaki, M. C.: On pseudo Ricci symmetric manifolds. Bulgar. J. Phys. 15, 6 (1988), 526-531.
[3] Chaki, M. C.: Some theorems on recurrent and Ricci-recurrent spaces. Rend. Sem. Math. Delta Univ. Padova 26 (1956), 168-176.
[4] Deszcz, R., Kowalczyk, D.: On some class of pseudosymmetric warped products. Colloq. Math. 97, 1 (2003), 7-22.
[5] Friedmann, A., Schouten, J. A.: Uber die Geometrie der halbsymmetrischen Ubertragung. Math. Zeitschr. 21 (1924), 211-223.
[6] Golab, S.: On semi-symmetric and quarter-symmetric linear connections. Tensor, N.S. 29 (1975), 249-254.
[7] Hayden, H. A.: Subspaces of a space with torsion. Proc. London Math. Soc. 34 (1932), 27-50.
[8] Mishra, R. S., Pandey, S. N.: On quarter-symmetric metric F-connection. Tensor, N.S. 34 (1980), 1-7.
[9] Mikeš, J.: Geodesic Ricci mappings of two-symmetric Riemann spaces. Math. Notes 28 (1981), 622-624.
[10] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78, 3 (1996), 311-333.
[11] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic mappings and some generalizations. Palacký University, Olomouc, 2009.
[12] Mikeš et al., J.: Differential geometry of special mappings. Palacky University, Olomouc, 2015.
[13] Mikeš, J.: Geodesic mappings of special Riemannian spaces. Topics in differential geometry, Vol. II, Colloq. Math. Soc. János Bolyai, Debrecen 46 (1984), North-Holland, Amsterdam.
[14] Mikeš, J., Rachůnek, L.: Torse-forming vector fields in T-semisymmetric Riemannian spaces. In: Steps in Differential Geometry. Proc. Colloq. Diff. Geometry, Univ. Debrecen, Inst. Math. and Inf., Debrecen, 2001, 219-229.
[15] Mikeš, J., Rachůnek, L.: T-semisymmetric spaces and concircular vector fields. Rend. Circ. Mat. Palermo, II. Suppl. 69 (2002), 187-193.
[16] Mukhopadhyay, S., Roy, A. K., Barua, B.: Some properties of a quartersymmetric metric connection on a Riemannian manifold. Soochow J. Math. 17 (1991), 205-211.
[17] Patterson, K. M.: Some theorem on Ricci-recurrent spaces. London Math. Soc. 27 (1952), 287-295.
[18] Prakash, N.: A note on Ricci-recurrent and recurrent spaces. Bulletin of the Calcutta Mathematical Society 54 (1962), 1-7.
[19] Prasad, B.: On semi-generalized recurrent manifold. Mathematica Balkanica, New series 14 (2000), 77-82.
[20] Prakashs, D. G., Bagewadi, C. S., Basavarajappa, N. S.: On pseudosymmetric Lorentzian α-Sasakian manifolds. IJPAM 48, 1 (2008), 57-65.
[21] Khan, Q.: On generalized recurrent Sasakian manifolds. Kyungpook Math. J. 44 (2004), 167-172.
[22] Rastogi, S. C.: On quarter-symmetric connection. C. R. Acad. Sci. Bulgar 31 (1978), 811-814.
[23] Rastogi, S. C.: On quarter-symmetric metric connection. Tensor 44 (1987), 133-141.
[24] Ruse, H. S.: A classification of K^{*}-spaces. London Math. Soc. 53 (1951), 212-229.
[25] Rachůnek, L., Mikeš, J.: On tensor fields semiconjugated with torse-forming vector fields. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 44 (2005), 151-160.
[26] Sular, S.: Some properties of a Kenmotsu manifold with a semi symmetric metric connection. Int. Electronic J. Geom. 3 (2010), 24-34.
[27] Tamassy, L., Binh, T. Q.: On weakly symmetric and weakly projective symmetric Riemannian manifolds. Coll. Math. Soc. J. Bolyai 56 (1992), 663-670.
[28] Tamassy, L., Binh, T. Q.: On weak symmetries of Einstein and Sasakian manifolds. Tensor, N.S. 53 (1993), 140-148.
[29] Tripathi, M. M.: On a semi-symmetric metric connection in a Kenmotsu manifold. J. Pure Math. 16 (1999), 67-71.
[30] Tripathi, M. M.: A new connection in a Riemannian manifold. Int. Electronic J. Geom. 1 (2008), 15-24.
[31] Tripathi, M. M., Nakkar, N.: On a semi-symmetric non-metric connection in a Kenmotsu manifold. Bull. Cal. Math. Soc. 16, 4 (2001), 323-330.
[32] Yano, K.: On semi-symmetric metric connections. Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.
[33] Yano, K., Imai, T.: Quarter-symmetric metric connections and their curvature tensors. Tensor, N.S. 38 (1982), 13-18.
[34] Yadav, S., Suthar, D. L.: Certain derivation on Lorentzian α-Sasakian manifolds. Mathematics and Decision Science 12, 2 (2012), 1-6.
[35] Yamaguchi, S., Matsumoto, M.: On Ricci-recurrent spaces. Tensor, N.S. 19 (1968), 64-68.
[36] Yildiz, A., Murathan, C.: On Lorentzian α-Sasakian manifolds. Kyungpook Math. J. 45 (2005), 95-103.
[37] Yildiz, A., Turan, M., Acet, B. F.: On three dimensional Lorentzian α-Sasakian manifolds. Bull. Math. Anal. Appl. 1, 3 (2009), 90-98.

[^0]: *First author is supported by DST/INSPIRE Fellowship/2013/1041, Govt. of India.

