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Abstract

In this paper we present a method to remove the noise by applying
the Perona Malik algorithm working on an irregular computational grid.
This grid is obtained with a quad-tree technique and is adapted to the
image intensities—pixels with similar intensities can form large elements.
We apply this algorithm to remove the speckle noise present in SAR im-
ages, i.e., images obtained by radars with a synthetic aperture enabling to
increase their resolution in an electronic way. The presence of the speckle
in an image degrades the quality of the image and makes interpretation
of features more difficult. Our purpose is to remove this noise to such
a degree that the edge detection or landscape elements detection can be
performed with relatively simple tools. The progress of smoothing leads to
grids with significantly less number of elements than the original number
of pixels. The results are compared with measurements performed on an
inspected area of interest. At the end we show the possibility to modify
the scheme to the adaptive mean curvature flow filter which can be used
to smooth the boundaries.

Key words: Image processing, linear heat equation, finite volume
method, adaptivity, SAR image, speckle noise.

2010 Mathematics Subject Classification: 65M50, 65M60, 68U10

1 Introduction

When we apply diffusion equation to noisy images, it often happens that with
a progress of smoothing large areas of homogeneous intensity arise. By an
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adaptive algorithm we will understand an algorithm using an adaptive grid,
i.e., the grid where the larger grid elements are used in homogeneous regions
(see e.g., Fig.1). In this paper, our method to remove the noise is based on the
regularized Perona–Malik model representing an evolutionary parabolic PDE
[3]. Adaptive algorithms for this model have been explored, e.g., in [1] for
triangular finite elements grids or in [7], [8] for quad-tree finite volume grids.
The criterion which decides if smaller elements can be merged into larger element
is called coarsening criterion and in the above mentioned papers it was based
on a small intensity difference of pixels to be merged. In the case of a success
the new representative value of a larger element is set to an arithmetic mean.

In [7] and [8] we have noticed that the adaptive algorithm is able to flat-
ten the image better than a nonadaptive algorithm though it can sometimes
introduce weak artificial vertical and horizontal edges which can be removed in
post processing. This effect can be explained by two types of diffusivity: the
Perona–Malik type which represent a weighted averaging between a pixel and
its neighbors and using the arithmetic mean for setting a representative value
of large elements of a quad-tree grid. The quad-tree grid also simplifies the
representation of the images, thus making it faster especially in the last steps of
smoothing process. Moreover this representation can be used in post processing
and can be possibly used by other algorithms. In this paper w e have decided to
explore the use of such an algorithm in detection of landscape elements in SAR
images, i.e. the images obtained by radars with a synthetic aperture enabling
their better resolution. Such images are degraded by the speckle noise: we want
to remove this noise and to explore performance of edge detection and simple
segmentation algorithms on smoothed versions of the images. The results are
included in the section Numerical experiments. For the space discretization
we use the finite volume method (FVM) [4]: the finite volumes correspond to
quad-tree square elements.

In [7] and partially in [8], during the evaluation of the gradients we had
to access to neighbors of a processed finite volume sharing only the vertices.
Because the grid is not stored explicitly [7], finding such neighbors requires a
lot of tests. In FVM each finite volume has a representative point in its center.

In the presented algorithm we use a technique which employs also midpoints
of finite volume edges—to get the gradients and their norms locally. Afterwards
the solution values in these points are obtained using the conservation principle:
all the time for every FV we need only its neighbors sharing a common edge (i.e.
[5], [6]). To achieve a finer work on edges, for every finite volume we evaluate
four gradients ([6]) which are used later to form edge diffusion coefficients. We
derive the schemes semi-implicit in time, leading to solving linear systems. The
decrease of grid elements leads to a decrease of a number of unknowns in this
linear system and can speed up computations significantly.

First, in Section 2 we explain the principles of the adaptive method for the
linear diffusion model which can be understood as a special case of the Perona–
Malik equation. There, no gradients and their norms are needed—they are
explained afterward in Section 3 and Section 4. The section with numerical
experiments and results follow.
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2 Solving the linear heat equation on an adaptive grid

2.1 The basic adaptive grid

Now let our task be exploring the solution of the linear heat equation on an
adaptive grid, i.e., the grid which is adapted to the processed data. We use a
grid which is based on quad-trees with the prescribed ratio of adjacent elements
sides: 1 : 1 or 1 : 2. The methodology of building and traversing the grid is
described e.g. in [7]. There, the following coarsening criterion has been used:
the cells can be merged to a larger square element if an intensity difference of
all pixels within this candidate square is below a prescribed tolerance ε.

In our method to form the adaptive grid we store also values of in midpoints
of the edges (denoted later as uσ), so now we use three parameters to steer the
grid creation:

• ε1 – the value for a maximal intensity difference of pixels in a grid element.
If it is satisfied, the subregions are merged into a larger one with the
representative value set to their average.

• ε2 – the value for a maximal intensity difference of uσ1
and uσ2

(the
solution values in edge representative points, see Fig. 2),

• ε3 – the value for a maximal intensity difference between a volume value
and edge values. This criterion enables to keep small elements in the
vicinity of edges (see e.g. Fig. 1).

Figure 1: Example of an adaptive grid. In flat regions the larger elements are
used, in the vicinity of edges the elements are small.
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2.2 The linear heat equation

∂tu(x, t)−Δu(x, t) = 0 in QT ≡ Ω× I, (2.1)

∂
nu(x, t) = 0, ∀x ∈ ∂Ω× I, (2.2)

u(0, x) = u0
x, ∀x ∈ Ω. (2.3)

Here, u(x, t) is an unknown function representing smoothed (filtered) image
intensity defined defined in Ω ⊂ R2, I = [0, T ] is the time interval and u0(x) is
the image we start with.

2.3 The numerical scheme

First we introduce the necessary notation for the finite volume discretization.
Let T be an adaptive grid with finite volumes p of measure |p| and let N(p)
be the set of neighbors q ∈ T for which common interface of p and q is a line
segment σ with a nonzero measure in 1D. Let every finite volume p have a
representative point xp lying in its center.

Let up denote the solution value constant over p. Let εp be a set of all
edges σ of a finite volume p, with their measures denoted by |σ|. As we have
mentioned in the introduction we use also the midpoints of the edges with values
obtained by the conservation principle. Let xσ be the midpoint of an edge σ
belonging to p and uσ be the value in this midpoint. Then dpσ = |xσ − xp| and
npσ is a normal vector to σ outward to p. The derivative in the direction npσ is
approximated by

∇un · npσ ≈
un
σ − un

p

dpσ
.

Having the grid, we can integrate the diffusion equation over a finite volume p
and we use the divergence theorem to obtain∫

p

∂tu dx−
∫
∂p

∇u.np ds = 0, (2.4)

where np = (nx, ny) is the outward unit normal vector to ∂p.
We replace the time derivative by a finite difference using a uniform time step

τ = tn − tn−1, where tn−1, tn are previous and current time steps, respectively.
Let un be the solution in the nth time step and un

p denotes the solution over the
finite volume p in the nth time step. Having the integral form (2.4) for (2.1),
let us denote by

fn
pσ =

∫
σ

∇un.npσ ds (2.5)

the implicit flux through boundary σ of p. Then the implicit scheme can be
rewritten in the following general form

(un
p − un−1

p ) |p| = τ
∑
σ∈εp

fn
pσ, (2.6)
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where un
p is a representative value of approximated solution in the finite volume

p at time step tn.
The flux fn

pσ contains a normal derivative of a solution at the time step tn

evaluated on the boundary σ of p. Because this normal derivative is constant
over σ, the flux can be approximated numerically by:

fn
pσ =

∫
σ

∇un.npσ ds ≈ Fn
pσ =

|σ|
|dpσ |

(
un
σ − un

p

)
dpσ

. (2.7)

After rearranging the terms we come to the following implicit numerical scheme
in the flux form:

(un
p − un−1

p )
|p|
τ

=
∑
σ∈εp

Fn
pσ =

∑
σ∈εp

|σ|
|dpσ |

(
un
σ − un

p

)
. (2.8)

The nonadaptive grid. Elements are squares of the same size, so |σ|
dpσ

= 2.

For every p we have the equation:

(un
p − un−1

p )
|p|
τ

=
∑
σ∈εp

2
(
un
σ − un

p

)
. (2.9)

Figure 2: Notation for a nonconformal situation, i.e., adjacent finite volumes
with nonequal size.

The adaptive grid. In a nonconformal situation, i.e., for non equal adjacent
elements, we use the notation displayed in Fig. 2. The value in uσ will not be
a degree of freedom, but we set it to

uσ =
uσ1

+ uσ2

2
. (2.10)

To balance fluxes, we use

2(uσ − up) = 2(uq1 − uσ1
) + 2(uq2 − uσ2

). (2.11)
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After putting together (2.10) and (2.11) we get:

3
uσ1

+ uσ2

2
= uq1 + uq2 + up,

uσ =
1

3
(uq1 + uq2 + up). (2.12)

Eliminating uσ from the equation (2.9). If p has got two smaller neighbors
q1 and q2 over an edge, then using (2.12) we have

2(un
σ − un

p ) =
2

3
un
q1 +

2

3
un
q2 −

4

3
un
p =

2

3
(un

q1 − un
p ) +

2

3
(un

q2 − un
p ). (2.13)

Finally let us set uσ1
and uσ2

for the element q1 and the element q2 having a
large neighbor p. We set

uσ1
=

1

3
up +

2

3
uq1 , uσ2

=
1

3
up +

2

3
uq2 , (2.14)

(notice that (2.12) holds).
When we eliminate uσ for a finite volume p having a larger neighbor q, we

have

uσ =
1

3
uq +

2

3
up (2.15)

and then

2
(
un
σ − un

p

)
= 2

(
1

3
un
q +

2

3
un
p − un

p

)
=

2

3

(
un
q − un

p

)
. (2.16)

Now the semi-implicit adaptive numerical scheme for (2.1)–(2.3) where all σ are
eliminated can be written in the form:

(un
p − un−1

p )
m(p)

τ
=

∑
q∈N(p)

Tpq

(
un
q − un

p

)
. (2.17)

where

• for q of the different size as p, Tpq = 2
3 .

• for q of the same size as p, Tpq = 1.

The scheme leads to the following linear system:
Let 0 = t0 ≤ t1 ≤ . . . ≤ tNmax

= T denote the time stepping with tn = tn−1 + τ ,
where τ is the time step. For n = 1, . . . , N we look for un

p , p ∈ Th satisfying
(2.17) [14].

2.4 Alternative solution

The linear system can be solved in such a way that for nonconformal situations
uσ is not eliminated from the fluxes. In such a case for p we have the flux like
in (2.9) and we add the equations (2.18)–(2.20) for updating σ to the system
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(only once, i.e., in the situation smaller p versus bigger q). In our method we
eliminate uσ only in the case that over some edge we have a neighbor of the
same size.

uσ =
uσ1

+ uσ2

2
, (2.18)

uσ1
=

1

3
up +

2

3
uq1 , (2.19)

uσ2
=

1

3
up +

2

3
uq2 . (2.20)

The advantage of such an approach is that equations of the linear system has a
fixed number of elements and is easy to manipulated with.

3 The regularized Perona–Malik equation

In this section, we deal with the initial boundary value problem [3]:

∂tu−∇.(g(|∇Gs ∗ u|)∇u) = 0, in QT ≡ Ω× I, (3.1)

∂
nu(x, t) = 0, ∀x ∈ ∂Ω× I, (3.2)

u(0, x) = u0
x, ∀x ∈ Ω. (3.3)

where Ω ⊂ R
2 is a rectangular domain, I = [0, T ] is a scaling interval, and

g(v) is a decreasing smooth function,

g(0) = 1, 0 < g(v) → 0 for v → ∞, (3.4)

Gs ∈ C∞(R2) is a smoothing kernel with
∫
R2

Gs(x) dx = 1 (3.5)

and Gs(x) → δx for s → 0, δx – Dirac function at point x,

u0 ∈ L2(Ω). (3.6)

In our experiments we use the function

g(v) =
1

1 +Kv2
.

This equation is nonlinear: the diffusion is slowed down on edges characterized
by higher value of presmoothed (Gaussian) gradients ∇Gs ∗u. Their norms will
be inputs for the function g. The outputs are called the diffusion coefficients and
for an edge σ of the finite volume p they are denoted by gpσ. The evaluation
of the gradients will be shown later. Now it is important that the diffusion
coefficient is constant over σ, it depends on the solution from the previous time
step, so by similar argument like in (2.7) we can derive the local form of the
semi-implicit numerical scheme:

(un
p − un−1

p )|p| = τ
∑
σ∈εp

gn−1,s
pσ

|σ|
dpσ

(
un+1
σ − un+1

p

)
. (3.7)
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3.1 Evaluation of the gradient for (3.1)

Let us denote by Vp the set of all vertices of a finite volume p, e.g., in 2-
dimensional case Vp = {y1, y2, y3, y4} (see Fig. 3)). For y ∈ Vp, we denote
by (p, y) the rectangle whose faces are parallel to those of p, and whose set of
vertices contains xp and y. Let Vσ denote the endpoints of the edge σ. We
denote by εp,y the set of all σ ∈ εp such that y ∈ Vσ. In our case it has two
elements, for example, in Fig. 3 εp,y1

= {σ1, σ2}. The norm of the gradient
evaluated on the part (p, y) is denoted by |∇p,yu| and holds [5]

|∇p,yu| =
√

4

h2

∑
σ∈εp,y

(uσ − up)
2
. (3.8)

Then in the semi-implicit scheme (3.7) the diffusion coefficient gn,spσ is based on
the relationship

gn,spσ =
∑
y∈Vσ

g(|∇p,y(Gs ∗ un|). (3.9)

Figure 3: Notation for evaluation of the gradient. xσi
– the midpoints of σi are

denoted by circles on the edges, the solution value in xσi
is denoted by uσi

.

Remark 1 If s = 0 we have the basic Perona–Malik equation and we apply
(3.8) directly. For s > 0, to get the Gaussian gradient ∇(Gs ∗u), we can replace
performing the convolution by solving the linear heat equation (2.1) for time t
corresponding to s (t =

√
s
2 ). We apply (2.1) to un and using (2.11) for uσ we

evaluate the norm of this presmoothed gradient applying (3.8). In the following
notation we omit s and write only the time index to stress that the diffusion
coefficient depends on the solution from the previous time step.
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Like before, the values in uσ are set using the conservation principle. In a
regular grid we have:

un
σ =

gn−1
pσ un

p + gn−1
qσ un

q

gn−1
pσ + gn−1

qσ

(3.10)

Let gpσgq1σ (gpσgq2σ) be diffusion coefficient for q1 (q2) evaluated on a portion
of σ common to a finite volume p and q1 (q2). In the adaptive scheme, in a
nonconformal situation, in a similar manner like for the heat equation, we can
derive:

un
σ1

=
gn−1
pσ un+1

p + 2gn−1
q1σ un+1

q1

gn−1
pσ + 2gn−1

q1σ

(3.11)

un
σ2

=
gn−1
pσ un+1

p + 2gn−1
q2σ un+1

q2

gn−1
pσ + 2gn−1

q2σ

(3.12)

and
uσ =

uσ1
+ uσ2

2
. (3.13)

If g ≡ 1, we have the linear heat equation and (3.11) and (3.12) correspond to
(2.19) and (2.20).

3.2 Construction of the linear system

Now we describe the construction of the fluxes in the basic equation (3.7). Let
us write it in a form:

(un
p − un−1

p )|p| = τ
∑
σ∈εp

Fn
pσ. (3.14)

Like before we distinguish two cases: the conformal situation with a neighbor
of the same size and the nonconformal one between two elements of non equal
size.

1. The conformal situation. On the edge σ between p and q, we eliminate
uσ and get:

Fn
pσ =

2gn−1
pσ gn−1

qσ

gn−1
pσ + gn−1

qσ

(un
q − un

p ). (3.15)

2. The nonconformal situation. We use the local flux

Fn
pσ = gn−1

pσ (un
q − un

p ) (3.16)

and add equations (3.11), (3.12) and (3.13) to the system(once).

The advantage of this approach is that every equation of the linear system
has the same number of entries and it is easy to organize. The matrix of the
linear system is the M-matrix, so it can be solved iteratively, e.g., using the
Gauss-Seidel method or its modification—the SOR method, both with a good
convergence.
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Now uσ can be expressed as a weighted mean of up,uq1 and uq2 : omitting
the time indices we have

uσ = w1 · up + w2 · uq1 + w3 · uq2 , (3.17)

where

w1 =
g2pσ + gpσgq1σ + gpσgq2σ

g2pσ + 2gpσgq1σ + 2gpσgq2σ + 4gq1σgq2σ
,

w2 =
gpσgq1σ + 2gq1σgq2σ

g2pσ + 2gpσgq1σ + 2gpσgq2σ + 4gq1σgq2σ
,

w3 =
gpσgq2σ + 2gq1σgq2σ

g2pσ + 2gpσgq1σ + 2gpσgq2σ + 4gq1σgq2σ
,

where gqiσ is a diffusion coefficient evaluated on a portion of σ common to a
finite volume p and qi.

3.3 The stability condition

We want to show that the scheme (3.14) is unconditionally stable, i.e., for any
choice of a time step τ it holds that if umin ≤ un

p ≤ umax, then it also holds
umin ≤ un+1

p ≤ umax.

Proof Let us write the scheme (3.14) in the following form:

un+1
p − τ

|p|
∑
σ∈εp

Fn+1
pσ = un

p . (3.18)

Let us show (3.18) for the maximum. Let un
max denote the maximum in the nth

time step. We want to show that

∀p un
p ≤ un

max ⇒ ∀p un+1
p ≤ un

max. (3.19)

Let the maximum in the nth time step be achieved in a finite volume pM with
a value un

pM (there can be more such finite volumes). Substituting pM for p
into (3.18) we get

un+1
pM − τ

|p|
∑

σ∈εpM

Fn+1
pM,σ = un

pM . (3.20)

Now, let us explore the fluxes FpM,σ (3.15) and (3.16). The diffusion coefficients
and their combinations we use are positive, un+1

q − un+1
pM is always negative or

equal to zero, and such is also un+1
σ − un+1

pM , due to (3.17), so −
∑

σ∈εp
Fn+1
pσ is

nonnegative and it it holds
un+1
pM ≤ un

pM .

Then (3.19) and the fact that in pM we have the maximum in the nth time step
imply that

∀p un+1
p ≤ un+1

pM = max
r

un+1
r ≤ un

pM ≤ max
r

un
r = un

max
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and thus
∀p un+1

p ≤ un
max.

The left inequality of (3.18) can be shown in a similar manner. Also the stability
condition for a linear heat equation and the mean curvature flow equation,
mentioned in the following paragraph can be shown likewise. �

Example 1 In this example we take an image of the size 128 × 128 degraded
by the additive noise (see Fig. 4). We have performed 20 time steps with τ = 1,
for the Perona–Malik function we set K = 500 and to create the adaptive grid
ε1 = 0.015, ε2 = 0.02 and ε3 = 0.005. The initial number of finite volumes was
16 384, after 5 time steps we had 10 147 finite volumes and at the end the grid
had 5176 elements.

Figure 4: Left: the original noisy image. Middle: the filtered image. Right: the
final adaptive grid.

4 Diffusion of multichannel images

First let us consider a RGB image. It can be viewed as a composition of three
grayscale images, representing levels of intensity for red, green and blue colors.
In [9] we propose a model which synchronizes the diffusion in each channel
by computing a common diffusion coefficient depending on information coming
from all three channels. This can often lead to a better preservation of edges.
If we have multiple SAR images, i.e., images of the same area taken in different
time periods, we can do the same (see Fig. 5). Of course such images can
have a different set of edges because of different land cover: we can expect an
improvement for dubbed edges in the same position. We introduce formulas
(4.1) and (4.2) showing two possible ways how to obtain common diffusion
coefficients. We consider two images, for more images the generalization is
straightforward [14].

gnpσ = 2g
( ∑

σ∈εp,y

|∇1
p,yu

n|+ |∇2
p,yu

n|
)

(4.1)

gnpσ =
1

2

∑
σ∈εp,y

g(|∇1
p,yu

n|) + g(|∇2
p,yu

n|), (4.2)
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where the upper indices of the nabla operator are related to image1 and image2.
Results are displayed in Fig. 6.

Figure 5: The images taken in different seasons of the same year ( c© 2012.

Figure 6: The right image from Fig. 5 is processed as a single image (on the
left) and as a multichannel image by (4.1) and by (4.2). The black ellipse marks
the area when we can observe the positive effect of multichannel diffusion.

5 The mean curvature flow (MCF) filter in a level set
formulation

This filter can be used to solve problems of unsmooth boundaries and to remove
the noise with a high curvature, like e.g. salt and pepper noise, see Fig. 7. The
performance of this filter is similar to the median filter. Both averaging and
median filters have been used since the beginning of SAR imaging. Though the
equation of MCF is based on different principles, its scheme can be obtained
by a simple modification of the Perona–Malik scheme. It has been used in
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Experiment 2 as a fast post processing step, because the quad-tree structure of
the image created by the Perona–Malik filter can be used.

Figure 7: MCF filter smooths the boundaries and removes noise with a high
curvature.

The equation for this filter is

∂tu− |∇u|∇ ·
(

∇u

|∇u|

)
= 0. (5.1)

Because in flat regions the norm of a gradient can be equal to zero, we use
Evans–Spruck regularization

|∇u| ≈ |∇u|ε =
√
|∇u|2 + ε2 (5.2)

For this equation we use a simpler evaluation of gradients which is sufficient for
this equation (see Remark 2). Let us denote:

|∇up|2 =
2

|p|
∑
σ∈εp

(uσ − up)
2 (5.3)

and
fp =

√
|∇up|2 + ε2. (5.4)

For our adaptive grid we use the following numerical scheme

(un+1
p − un

p )

fp
|p| = τ

∑
σ∈εp

2

fp

(
un+1
σ − un+1

p

)
. (5.5)

If two elements share the same edge, to balance the fluxes, in a conformal
situation we have

un+1
σ =

fn
q u

n+1
p + fn

q u
n+1
p

fn
q + fn

p

. (5.6)

The mathematical and numerical properties of this scheme working on a regular
square grid have been studied in [6]. For examples with a known analytical
solution, EOC for the semi-implicit scheme has been reported as 2.
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Like before, we can write the adaptive scheme as follows

(un+1
p − un

p )

fp
|p| = τ

∑
σ∈εp

Fn+1
pσ . (5.7)

with a following setting of fluxes Fn+1
pσ :

1. The conformal situation. We eliminate uσ and get:

Fn+1
pσ =

2

fn
p + fn

q

(un+1
q − un+1

p )

2. The nonconformal situation. We use the local flux Fn+1
pσ = 2

fn
p
(un+1

q −
un+1
p ) and add equations (5.8),(5.9) and (5.10)to the system(once):

un+1
σ1

=
fn
q1u

n+1
p + 2fn

p u
n+1
q1

fn
q1 + 2fn

p

(5.8)

un+1
σ2

=
fn
q2u

n+1
p + 2fn

p u
n+1
q2

fn
q2 + 2fn

p

(5.9)

and

uσ =
uσ1

+ uσ2

2
. (5.10)

Remark 2 For the Perona–Malik model, if we use only one volume gradient
and evaluate its norm by (5.3), we get a faster algorithm, but the noise on edges
is not removed so well (see Fig. 8).

Figure 8: Comparing two ways of the gradient evaluation for the Perona-Malik
equation, mentioned in Remark 2. Left: the noisy image. Middle: one volume
gradient with a norm evaluated by (5.3) is used. Right: the four gradients
evaluation and the diffusion coefficients (Fig. 3) and (3.9) method is used.
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6 Numerical experiments—filtering of SAR images

In this section we explore the use of the presented algorithm in filtering of SAR
images with the aim to detect landscape elements. First, let us note that SAR
images are images of the Earth obtained by spaceborn or airborn radar systems.
Because the resolution of the resulting image depends on the antenna’s length
which has its physical limits, the length of the antenna is increased synthetically
with a help of electronic systems (SAR is an acronym for Synthetic Aperture
Radar). These images are degraded by grainy multiplicative noise called speckle
that alters the real intensity values of features: the lighter is the image the
greater is the variance of the noise. Due to the speckle we can never rely on
a single pixel value; one way how to solve this problem is spatial filtering (i.e.
[10]). Our images contain measurements of the amplitude of the backscattered
radiation. The details about the images are given in Remark 3.

Due to speckle we can never rely on a single pixel value: one way how to solve
this problem is spatial filtering. Many filters to remove the speckle have been
designed. However, these mostly statistical filters try to preserve features of the
image with respect to backscattering coefficient or polarimetric properties and
cannot be always successfully used in detection features like edges or boundaries
of areas of interest etc. We explore the ability of the presented algorithm to
remove noise in such a way that the edges in images representing boundaries
are preserved as much as possible and the interior is smooth sufficiently for
automatic edge detection and segmentation algorithms. To detect edges we
use either the Canny edge detector based on the second derivative or we use
the Fuzzy select tool for a selection based on a region growing method which
is incorporated in Gimp (Gnu Image Manipulation Program)—well available
software for work with images.

Because in the areas with stronger reflected intensity speckle is stronger,
we logarithm the image, thus transforming the multiplicative noise into addi-
tive one, for which the algorithms mentioned above can be applied. The use
of logarithm suppresses high returns much more than low returns. Averaging
the logarithmic values, and then taking inverse logarithm is not identical to
averaging of pixel values directly, so we do not preserve the radiometric proper-
ties of the image, but for edge detection, clusterization, and segmentation this
algorithm appears to be useful.

To estimate the stopping time we used Gaussian Blur filter in Gimp to find
the radius of the Gaussian to achieve a sufficient smoothness for selected sub-
images. The radius was transformed to the time like in Remark 1. At this time
also the decrease of elements was slowed down significantly. Because the method
is unconditionally stable we have no restriction on the time step. Though the
larger time steps increase the number of iterations, they are faster. In Exper-
iment 3, τ = 20 leads to smoother edges than for τ = 10, but the sharpening
effect is smaller. The parameter ε1, ε2 and ε3 depend on intensity differences
we want to tolerate. The values introduced in Experiment 1 could be used in all
experiments. The algorithms produce a family of images: at the end the selected
time—the size and the number of time steps were tuned by a visual inspection.
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Experiment 1 This experiment works on a relatively small detail of a SAR
image (Fig. 9) to which the Perona–Malik diffusion by (3.14)–(3.16) is applied.
First of all we can observe the poor quality of edges and then the smooth quality
of the result. We can also see that in the grid the resulting edge is characterized
by a relatively thin band of small elements which depends on setting ε1, ε2
and ε3. Below the original image we see the region selected by the fuzzy select
tool based on similarity: we determine the seed by clicking in a region we
want to select and set the threshold for admissible intensity difference. The
resulting edge is unsmoothed, but such is also the SAR intensity information.
This problem is discussed in the next experiment. The best results were achieved
for the following setting of parameters:K = 100 after 15 time steps it was
increased to 2000,τ = 10 and to create the adaptive grid ε1 = 0.015, ε2 = 0.02
and ε3 = 0.005.

Figure 9: Left: the original data with the speckle, below border of detected
regions are displayed as well. Middle: the data after 10 time steps, with the
adaptive grid below. Right: the data after 30 time steps, with the adaptive grid
below. The high value of K caused the sharpening effect.

Experiment 2 In this experiment we use the same algorithm to filter a similar
detail of the same image, but this time we apply the edge detector based on
the second derivative—the Canny edge detector [2], which looks for edge points
in maxima of the norm of the gradient and produces thin edges. On the left
of Fig. 10 and Fig. 11 we see the result of filtration and edge detection. The
unsmoothed boundary is caused by the speckle and also by the fact that in the
Perona Malik model the diffusion is slowed down on edges. However we expect



Quad-tree based finite volume method. . . 57

that the real boundaries are smooth so we apply the adaptive numerical scheme
for the MCF (5.7)–(5.10) and let it work on the adaptive grid created in the
last step of the diffusion. We see the results on Fig. 10 and Fig. 11 on the right.
The boundaries are smoothed but because the gradient can be weakened some
small parts of the edges can be lost.

Figure 10: Left: the image filtered by the Perona–Malik filter. Right: Applying
of the mean curvature flow filter.

Figure 11: Canny edge detector applied to the image in Fig. 10 on the left
and Canny edge detector applied to the same image smoothed by the mean
curvature flow model in Fig. 10 on the right.

In the following experiments we work with two subsets of the SAR image
displayed in Fig. 12 denoted as 1 and 2. The red dots frame the area of interest
(AOI) and are results of in situ measurements performed in 2015. The field
in bounded in the northeast (NE) by an asphalt road framed by trees, in the
northwest (NW) by an alley of trees with grass below and the southeast (SE) side
is bounded by various border types as trees, field roads and more agricultural
fields. The different borders are essential for ability of our algorithms to detect
the edges of landscape elements.
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Figure 12: The data for Experiments 3 and 4 (the data is described in Remark 3).
The area of interest (AOI)—the field described by red circles. They denote the
positions obtained by insitu measurements. The marked subregion 1 denotes
the sub-image for Experiment 4 and the subregion 2 for Experiment 3.

Experiment 3 In this experiment we work with a sub-image 2 (black square
in Fig. 12) of the size 1024× 1024. This sub-image 2 is filtered by the adaptive
Perona–Malik filter (3.14)–(3.16) with the following setting of parameters: T =
40, τ = 20, K = 200 and after 15 time steps it is set to 3000. The grid
parameters are same as in the previous example. The results are depicted in
Fig. 13. First, using the fuzzy select tool, we detect the area of AOI (the dotted
region from Fig. 12.) We can see, that the NW border matches well with the
measurements despite the low contrast of the neighboring regions. We consider
this ability to be the strong side of our algorithm. The NE border if framed
except of the asphalt road with trees. In the upper part the road is preserved
though the intensity and width are not, in the second part of the border we see
the shadow caused by trees and this is what is detected by the fuzzy select tool
(see also Fig. 15).

Time step 1 3 5 8 10
No. of elements 1047367 299548 150658 100501 84148
% of elements 99.9 28.6 14.14 9.6 8.8

Time step 15 20 30 35 40
No. of elements 63952 54622 46069 43126 40762
% of elements 6.1 5.2 4.4 4.1 3.9

Table 1: The number of elements in the adaptive grid in particular time step
for Experiment 3.
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Figure 13: Left: The original image with red circles marking the measured
points. Right: The detected AOI framed by a yellow line. The detail of the
heavy noise on the northwest border, which is detected very well.

The detection of the road is better described in Experiment 4. The above
thin line separating the regions of the same quality is not preserved at all—this
algorithm in its basic version is not able to catch thin lines. In Table 1 we show
number of elements in selected time steps. http://www.math.sk/wiki/

Experiment 4 In this experiment we filter the sub-image 1 with (3.14)–(3.16)
(red square in Fig. 12). The result is depicted in Fig. 14. First, the detected
boundaries of AOI are found by the fuzzy select tool (green line, on the right of
Fig. 14). It confirms observations from the previous experiment. Then we tried
to detect the road (yellow line, on the left of Fig. 14). It was detected by the
fuzzy select tool—the seed was selected as a point on the road, the similarity
threshold was low. We see that the road fits well with measured points.

Figure 14: Left: The filtered image with detection of the road obtained by
the fuzzy select tool (yellow line). Right: Detection of selected regions regions
overlaying the original data.
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Figure 15: The detail of the road with trees (Experiment 4). The detected line
shows what is detected if AOI is detected automatically.

Remark 3 The test image is a 4518× 2793 pixel subset from a detected SAR
image. Subset was separated from the dataset of the project ID LAN1583: Ob-
jekt Recognition Based on High-Resolution Radar Imagery, kindly supported
by the German Aerospace Center (DLR) [12]. The image was acquired by the
satellite TerraSAR-X (TSX) [13], which was launched in June 2007. The satel-
lites carry a high frequency X-band SAR sensor (31 mm wavelength), which
can be operated in flexible imaging modes in order to meet the requirements of
versatile applications. Selected image was acquired on December 3, 2008 within
Imaging Spotlight acquisition mode and single VV polarization in ascending
pass direction. Spotlight imaging modes use phased array beam steering in az-
imuth direction to increase the illumination time, i.e. the size of the synthetic
aperture. Spatial resolution is 1.2 m in slant range direction and 1.7 m in az-
imuth direction. The images correspond to the CEOS Level 1b quality and it
was delivered in the Enhanced Ellipsoid Corrected (EEC) version which offer
the highest level of geometric correction available for TerraSAR-X Basic Image
Products (TerraSAR-X Image Product Guide, 2014). The performance of stan-
dard despeckling algorithms and adaptive Perona–Malik algorithm on this data
has been studied in [15].

Conclusion We see the advantage of our algorithm in several aspects: we
obtain the quad-tree representation of the image which is fine on edges and
in details which have been preserved. The post-processing can be done on this
structure The last steps of the algorithm are fast. From the last steps we can se-
lect that step which suits best the edge detector we want to used. Thanks to the
fast diffusion on large regions we are able to preserve also edges between regions
with a relatively small difference of a mean intensity, like e.g. the NW border
of AOI. In such cases, also edge http://www.math.sk/wiki/detectors based on
the first derivative were successful and produced thin edges. To mention other
commonly used edge detectors, good localization of edges (and also detection of
the road) was achieved with applying Difference of Gaussians.
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0714/15 and VEGA 1/0642/13. TerraSAR-X data for this work were provided
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