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Abstract

The article deals with bundles of linear algebra as a specifications of
the case of smooth manifold. It allows to introduce on smooth manifold
a metric by a natural way. The transfer of geometric structure arising
in the linear spaces of associative algebras to a smooth manifold is also
presented.
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1 Introduction

Bundles of linear algebra are specifications of vector bundles on smooth mani-
folds in which the standard layer is a linear algebra. This specification allows for
a smooth manifold introduce some metric is naturally associated with a given
algebra.
Consider a finite-dimensional associative (linear) algebraA and let �1, �2, . . .,

�n any basis for the vector space of the algebra A, and multiplication in this
algebra is given by the structure tensor β, so that �k ·�m = βrkm�r [1]. Introduce
necessary to further the concept of the determinant of an arbitrary element
� ∈ A.

Definition 1 Let �, � ∈ A an arbitrary fixed element and � ∈ A an arbitrary
current element. Then a left determinant element � we call the determinant
ΔL(�) = det(akβrkm), and right determinant element � we call the determinant
ΔR(�) = det(amβrkm).
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Note that ΔL(�) is the determinant of the system of linear scalar equations
akβrkmx

m = br of the equivalent linear algebraic equations � · � = �, and ΔR(�)
is the determinant of the system of linear scalar equations amβrkmx

k = br of
the equivalent linear algebraic equations � · � = �. It follows that inequality
ΔL(�) �= 0 is a necessary and sufficient condition for unique solvability of the
equation � · � = �, and inequality ΔR(�) �= 0 gives the necessary and sufficient
conditions for the unique solvability of the equation � · � = �.
If algebra A is unitary, that is, it has a unit, the inequality ΔL(�) �= 0 and

ΔR(�) �= 0 the equivalent. In other words of inequality ΔL(�) �= 0 follows the
inequality ΔR(�) �= 0 and, on the contrary, of inequality ΔR(�) �= 0 follows
the inequality ΔL(�) �= 0. These inequalities give the conditions of reversibility
element � ∈ A.

Theorem 1 (on the determinant) For any elements �, � ∈ A of the identi-
ties:

ΔL(� · �) = ΔL(�)ΔL(�) and ΔR(� · �) = ΔR(�)ΔR(�). (1)

Proof To prove these identities we consider a system of nonlinear scalar
equations

akbmβrkmβ
v
rwx

w = cv,

equivalent to the linear equation (� · �) · � = �. Then

ΔL(� · �) = det(akbmβrkmβ
v
rw).

On the other hand, by virtue of the associative algebra A, (� · �) · � = � · (� · �),
namely

akbmβrkmβ
v
rwx

w = akbsβrkmβ
m
swx

w,

and that’s why

ΔL(� · �) = det(akbmβrkmβ
v
rw) = det(akβrkmb

sβmsw)

= det(akβrkm) det(bsβmsw) = ΔL(�)ΔL(�).

Similarly we can prove the second of identities (1). �

Take the set of all elements of the algebra A for which ΔL(�) �= 0, and
denote this set RL(A). Theorem of determinant shows that the semigroup
RL(A) under multiplication in A, because if ΔL(�) �= 0 and ΔL(�) �= 0 so
ΔL(� · �) �= 0. In the case where algebra A is unitary, RL(A) is a group.
This group has a subgroup IL(A), elements of which are characterized by the
condition ΔL(�) = 1.
If on the linear space of the algebra A as a metric form to take determinant

ΔL(�), then transform the vector space of the algebra A, which are defined
linear algebraic functions of the general form �′ = � · � · �−1, where �, � ∈ IL(A)
and � arbitrary element of the algebra, will retain this form, as

ΔL(�
′) = ΔL(� · � · �−1) = ΔL(�)ΔL(�)ΔL(�

−1) = ΔL(�).
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At the same time it is easy to see that the set of transformations linear space
of algebra A, determined by linear algebraic functions of general form, forms a
group, so if �′ = �1 · � · �−1

1 and �′′ = �2 · �′ · �−1
2 , where �1, �1, �2, �2 ∈ IL(A)

�′′ = �2 · �1 · � · �−1
1 · �−1

2 = (�2 · �1) · � · (�2 · �1),

where (�2 ·�1), (�2 ·�1) ∈ IL(A); we denote this group D(A). Thus, in the linear
space of the algebra A geometric structure arises from a fundamental metric
form ΔL(�) and a group of D(A) as a group of motions. In this geometry, the
value is accepted for any vector � length

‖�‖ = n
√
|ΔL(�)|. (2)

A corner is defined between the vectors x and y if they are connected by the
transformation of a one-parameter subgroup of motions; in this case it is taken
as an angle parameter that specifies the transformation taking � to �. This
geometry will be called the natural geometry of the linear algebra.
We note here that in the case of complex and double numbers algebras,

geometric structure defined above coincides with the Euclidean and pseudo-
Euclidean plane geometry, and if you take the quaternion algebra, we obtain in
the presented circuit geometry of four-dimensional Euclidean space. Thus, the
natural geometry of linear algebra is, in a sense, a generalization of Euclidean
and pseudo-Euclidean geometry.
Geometric structure arising in the linear spaces of associative algebras, is

transferred to a smooth manifold, the same way as Euclidean or pseudo-Euclidean
with linear space tolerated in a pseudo-Riemannian or new space. To do this,
take a smooth manifold M, dimM = n, and set on the manifold smooth field
twice covariant and once contravariant tensor β = β(�), � ∈ M. Then on each
tangent space Tx will be determined by the structure of linear algebra. In this
algebra product of vectors ξ,η ∈ Tx is defined using structural tensor as follows:
if �1, �2, . . . , �n is a fixed basis of the tangent space Tx, and ω1,ω2, . . . ,ωn recip-
rocal basis cotangent space T∗

x, and β = βrkmωk⊗ωm⊗ �r, ξ = ξk�k, η = ηk�k,
the product of two vectors ξ,η ∈ Tx is given by the formula:

ξ · η = β(ξ,η) ≡ βrkmξ
kηm�r. (3)

Introducing the product of the vectors of the tangent space at each point of a
smooth manifoldM, we thus transform the tangent vector bundle of TM in the
tangent bundle of linear algebra, structure constants which will be coordinates
structure tensor in touch point in space Tx. But you can do otherwise. If each
tangent space we define the structure of algebra, isomorphic to a fixed algebra
A, we get the tangent bundle of linear algebraAM, standard layer which will be
given algebra. A cutset of this bundle form an infinite dimension linear algebra
A(M) where the multiplication is defined by the formula (3). A restriction of
this algebra in the fixed point � ∈ M will give us an algebra Ax, isomorphic to
the standard algebra A.
Geometric structure arising on the tangent bundle of linear algebra, defined

gauge group I(AM), which each point � ∈ M is the group I(Ax). In this
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geometric structure of vectors of length at each point � ∈ M is calculated by
the formula (2). Thus we can determine the length of the arc line on any smooth
manifold integrating the lengths of infinitesimal elements tangent to this line.
Notice, that arc length is invariant under the action of the gauge group

I(AM).
The gauge group I(AM) generates invariant extension of derivations of al-

gebra A(M), (the general scheme of extensions differentiations are invariant
under a gauge transformation [2]). If ∂ : A(M) → A(M) derivation (i.e. linear
operator satisfying the Leibniz identity) its invariant extension is given by the
formula:

∇{∂}(ξ) = ∂ξ + Γ · ξ − ξ · Γ, (4)

where Γ and Γ are cutset of the bundle AM. They are under the influence of
the gauge group vary according to the following rules:

Γ′ = � · Γ · �−1 − (∂�) · �−1 and Γ
′
= � · Γ · �−1 − b · ∂�−1.

The invariance of the formula (4) can be verified by direct calculation:

∇{∂}(� · ξ · �−1) = ∂(�) · ξ · �−1 + � · ∂(ξ) · �−1 + � · ξ · ∂(�−1)

+ � · Γ · ξ · �−1 − ∂(�) · ξ · �−1 − � · ξ · Γ · �−1 − � · ξ · ∂(�−1)

= � · (∂ξ + Γ · ξ − ξ · Γ) · �−1 = � · (∇{∂}(ξ)) · �−1.

With invariant differentiation represented by the formula (4), we can deter-
mine the curvature and cross-section of the invariant. If there is a Lie algebra
D(M) of derivations of the algebra A(M), then for any pair of derivations de-
fined their commutator [∂1, ∂2] ∈ D(M). Then the invariant curvature of the
cutset can be entered by means of commutators invariant derivations according
to the formula

K{∂1, ∂2} = [∇{∂1},∇{∂2}]−∇{[∂1, ∂2]}

similarly, the curvature is determined to field of spin [3].
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