
Acta Univ. Palacki. Olomuc., Fac. rer. nat.,
Mathematica 55, 2 (2016) 129–142

Study of Stability in Nonlinear Neutral
Differential Equations with Variable
Delay Using Krasnoselskii–Burton’s

Fixed Point

Mouataz Billah MESMOULI1, Abdelouaheb ARDJOUNI2,

Ahcene DJOUDI3

1Applied Mathematics Lab, Faculty of Sciences, Department of Mathematics,
Badji Mokhtar University of Annaba, P.O. Box 12, Annaba 23000, Algeria

e-mail: mesmoulimouataz@hotmail.com
2Department of Mathematics and Informatics, Mohamed Chérif Messaadia
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Abstract

In this paper, we use a modification of Krasnoselskii’s fixed point the-
orem introduced by Burton (see [6] Theorem 3) to obtain stability results
of the zero solution of the totally nonlinear neutral differential equation
with variable delay

x′ (t) = −a (t)h (x (t)) +
d

dt
Q (t, x (t− τ (t))) +G (t, x (t) , x (t− τ (t))) .

The stability of the zero solution of this eqution provided that h (0) =
Q (t, 0) = G (t, 0, 0) = 0. The Caratheodory condition is used for the
functions Q and G.
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1 Introduction

More than 100 years ago, the world famous mathematician Lyapunov estab-
lished the Lyapunov direct method to study stability problems. From then on,
Lyapunov’s direct method was widely used to study the stability of solutions
of ordinary differential equations and functional differential equations, see e.g.
[5]–[10], [12, 22], [26]–[29] and the references therein. But the expressions of
Lyapunov functional are very complicated and hard to construct.
Recently, many authors have realized that the fixed points theory can be

used to study the stability of the solution. Becker, Furumochi, Zhang and
Burton considered the differential equation (see [1]–[4], [10, 11], [13]–[21] and
[24]). The most striking object is that the fixed point method does not only solve
the problem on stability but has a significant advantage over Liapunov’s direct
method. The conditions of the former are often averages but those of the latter
are usually pointwise (see [7]). While it remains an art to construct a Liapunov’s
functional when it exists, a fixed point method, in one step, yields existence,
uniqueness and stability. All we need, to use the fixed point method, is a
complete metric space, a suitable fixed point theorem and an elementary integral
methods to solve problems that have frustrated investigators for decades.
Recently, in [4], the Krasnoselskii–Burton’s fixed point theorem was used

to establish the stability and asymptotic stability of the zero solution for the
first-order nonlinear neutral differential equation

d

dt
x(t) = −a(t)h(x(t)) + c(t)x′(t− τ (t)) + b(t)G(x(t), x(t− τ (t))). (1.1)

In [21], the authors used Krasnoselskii’s fixed point theorem to establish the
existence of periodic solutions for the nonlinear neutral differential equation

d

dt
x(t) = −a(t)x(t) + d

dt
Q(t, x(t− τ (t))) +G(t, x(t), x(t− τ (t))). (1.2)

Also, the authors used the contraction mapping principle to show the uniqueness
of periodic solutions and stability of the zero solutions of (1.2).
This paper is mainly concerned with the stability and asymptotic stability

of the zero solution of the nonlinear neutral differential equation with functional
delay expressed as follows

d

dt
x(t) = −a(t)h(x(t)) + d

dt
Q(t, x(t− τ (t))) +G(t, x(t), x(t− τ (t))), (1.3)

with an assumed initial function

x(t) = ψ(t), t ∈ [m0, 0] ,

where ψ ∈ C ([m0, 0] ,R), m0 = inf {t− τ (t) : t ≥ 0}. Throughout this paper we
assume that a ∈ C (R+,R) with a > 0, a ∈ L1 [0,∞) is bounded, τ ∈ C (R+,R)
and h : R → R is continuous, Q : R × R → R and G : R × R × R → R satisfy-
ing the Carathéodory condition. Our purpose here is to use a modification of
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Krasnoselskii’s fixed point theorem due Burton (see [6], Theorem 3) to show the
stability and asymptotic stability of the zero solution of equation (1.3). Clearly,
the present problem is totally nonlinear so that the variation of parameters can
not be applied directly. Then, we resort to the idea of adding and subtracting a
linear term. As noted by Burton in [6], the added term destroys a contraction
already present in part of the equation but it replaces it with the so called a
large contraction mapping which is suitable for fixed point theory. During the
process we have to transform (1.3) into an integral equation written as a sum of
two mappings, one is a large contraction and the other is completely continuous.
After that, we use a variant of Krasnoselskii’s fixed point theorem, to show the
stability and asymptotic stability of the zero solution.
Note that in our consideration the neutral term d

dtQ(t, x(t − τ (t))) of (1.3)
produces nonlinearity in the derivative term d

dtx(t − τ (t)). The neutral term
d
dtx(t − τ (t)) of (1.1) in [4] enters linearly. As a consequence, our analysis is
different form that in [4].
The organization of this paper is as follows. In Section 2, we present

the inversion of nonlinear neutral differential equation (1.3), some definitions
and Krasnoselskii–Burton’s fixed point theorem. For details on Krasnoselskii–
Burton’s theorem we refer the reader to [6]. In Sections 3, we present our main
results on stability of the zero solutions of (1.3).

2 Preliminaries

We begin this section by the following Lemma.

Lemma 1. x is a solution of (1.3) if and only if

x(t)

= [ψ(0)−Q(0, ψ(−τ (0)))] e−
∫ t
0
a(u) du

+

∫ t

0

a(s)e−
∫ t
s
a(u) duH(x(s)) ds+Q(t, x(t− τ (t)))

+

∫ t

0

e−
∫ t
s
a(u) du [−a(s)Q(s, x(s− τ (s))) +G(s, x(s), x(s− τ (s)))]ds, (2.1)

where
H(x) = x− h(x). (2.2)

Proof. Let x be a solution of (1.3). Rewrite the equation (1.3) as

d

dt
[x(t)−Q(t, x(t− τ (t)))] + a(t) [x(t)−Q(t, x(t− τ (t)))]

= a(t) [x(t)−Q(t, x(t− τ (t)))]− a(t)h(x(t))

+G(t, x(t), x(t− τ (t))

= a(t) [x(t)− h(x(t))]

+G(t, x(t), x(t− τ (t)))− a(t)Q(t, x(t− τ (t))).
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Multiply both sides of the above equation by exp
(∫ t

0
a(u) du

)
and then integrate

from 0 to t, we obtain∫ t

0

[
[x(t)−Q(t, x(t− τ (t)))] e

∫ s
0
a(u) du

]′
ds

=

∫ t

0

a(s) [x(s)− h(x(s))] e
∫ s
0
a(u) du ds

+

∫ t

0

[G(s, x(s), x(s− τ (s)))− a(s)Q(s, x(s− τ (s)))] e
∫ s
0
a(u) du ds.

As a consequence, we arrive at

[x(t)−Q(t, x(t− τ (t)))] e
∫ t
0
a(u) du − ψ(0) +Q(0, ψ(−τ (0)))

=

∫ t

0

a(s) [x(s)− h(x(s))] e
∫ s
0
a(u) du ds

+

∫ t

0

[G(s, x(s), x(s− τ (s)))− a(s)Q(s, x(s− τ (s)))] e
∫ s
0
a(u) du ds.

By dividing both sides of the above equation by exp
(∫ t

0
a(u)du

)
we obtain

x(t)−Q(t, x(t− τ (t)))− [ψ(0)−Q(0, x(−τ (0)))] e−
∫ t
0
a(u) du

=

∫ t

0

a(s) [x(s)− h(x(s))] e−
∫ t
s
a(u) du ds

+

∫ t

0

[G(s, x(s), x(s− τ (s)))− a(s)Q(s, x(s− τ (s)))] e−
∫ t
s
a(u) du ds. (2.3)

The converse implication is easily obtained and the proof is complete.

Now, we give some definitions which will be used in this paper.

Definition 1. The map f : [0,∞) × R
n → R is said to satisfy Carathéodory

conditions with respect to L1[0,∞) if the following conditions hold.
(i) For each z ∈ R

n, the mapping t �→ f(t, z) is Lebesgue measurable.
(ii) For almost all t ∈ [0,∞), the mapping z �→ f(t, z) is continuous on R

n.
(iii) For each r > 0, there exists αr ∈ L1([0,∞),R+) such that for almost

all t ∈ [0,∞) and for all z such that |z| < r, we have |f(t, z)| ≤ αr(t).

T. A. Burton studied the theorem of Krasnoselskii (see [7, 25]) and observed
(see [5, 11]) that Krasnoselskii’s result can be more interesting in applications
with certain changes and formulated Theorem 1 below (see [5] for its proof).

Definition 2. Let (M, d) be a metric space and assume that B : M → M.
B is said to be a large contraction, if for ϕ, φ ∈ M, with ϕ �= φ, we have
d(Bϕ,Bφ) < d(ϕ, φ), and if ∀ε > 0, ∃δ < 1 such that

[ϕ, φ ∈ M, d(ϕ, φ) ≥ ε] =⇒ d(Bϕ,Bφ) < δd(ϕ, φ).
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It is proved in [6] that a large contraction defined on a bounded and complete
metric space has a unique fixed point.

Theorem 1. LetM be a closed bounded convex nonempty subset of a Banach
space (X , ‖.‖). Suppose that A and B mapM into M such that

(i) A is continuous and AM is contained in a compact subset ofM,
(ii) B is large contraction,
(iii) x, y ∈ M, implies Ax+By ∈ M,

Then there exists z ∈ M with z = Az +Bz.

Here we manipulate function spaces defined on infinite t-intervals. So, for
compactness we need an extension of the Arzelà-Ascoli theorem. This extension
is taken from ([7], Theorem 1.2.2 p. 20) and is as follows.

Theorem 2. Let q : R+ → R be a continuous function such that q(t) → 0 as
t → ∞. If {ϕn(t)} is an equicontinuous sequence of Rm-valued functions on
R

+ with |ϕn(t)| ≤ q(t) for t ∈ R
+, then there is a subsequence that converges

uniformly on R
+ to a continuous function ϕ(t) with |ϕ(t)| ≤ q(t) for t ∈ R

+,
where |.| denotes the Euclidean norm on R

m.

3 Main results

From the existence theory, which can be found in [7] or [23], we conclude that
for each continuous initial function ψ ∈ C([m0, 0],R), there exists a continuous
solution x(t, 0, ψ) which satisfies (1.3) on an interval [0, σ) for some σ > 0
and x(t, 0, ψ) = ψ(t), t ∈ [m0, 0]. We refer the reader to [7] for the stability
definitions.
To apply Theorem 1, we need to define a Banach space X , a closed bounded

convex subsetM of X and construct two mappings; one large contraction and
the other is compact operator. So, let w : [m0,∞) → [1,∞) be any strictly
increasing and continuous function with w(m0) = 1, w(t) → ∞ as t → ∞. Let
(S, | · |w) be the Banach space of continuous ϕ : [m0,∞) → R for which

|ϕ|w = sup
t∈[m0,∞)

∣∣∣∣ϕ(t)w(t)

∣∣∣∣ <∞.

Let R ∈ (0, 1] and define the set

M := {ϕ ∈ S : ϕ is Lipschitzian, |ϕ(t, 0, ψ)| ≤ R, t ∈ [m0,∞)} . (3.1)

Clearly, if {ϕn} is a sequence of l1-Lipschitzian functions converging to some
function ϕ, then

|ϕ(t)− ϕ(s)| = |ϕ(t)− ϕn(t) + ϕn(t)− ϕn(s) + ϕn(s)− ϕ(s)|
≤ |ϕ(t)− ϕn(t)|+ |ϕn(t)− ϕn(s)|+ |ϕn(s)− ϕ(s)|
≤ l1|t− s|,
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as n→ ∞, which implies ϕ is l1-Lipschitzian. It is clear thatM is closed convex
and bounded. For ϕ ∈ M and t ≥ 0, we define by (2.1) the mapping P : M → S
as follows:

(Pϕ) (t)
= [ψ(0)−Q(0, ψ(−τ (0)))] e−

∫ t
0
a(u) du

+

∫ t

0

a(s)e−
∫ t
s
a(u) duH(ϕ(s)) ds+Q(t, ϕ(t− τ (t)))

+

∫ t

0

e−
∫ t
s
a(u) du [G(s, ϕ(s), ϕ(s− τ (s)))− a(s)Q(s, ϕ(s− τ (s)))]ds. (3.2)

Therefore, we express mapping (3.2) as

Pϕ = Aϕ+ Bϕ,
where A,B : M → S are given by
(Aϕ) (t) = Q(t, ϕ(t− τ (t)))

+

∫ t

0

e−
∫ t
s
a(u) du [G(s, ϕ(s), ϕ(s− τ (s)))− a(s)Q(s, ϕ(s− τ (s)))]ds,

(3.3)

and

(Bϕ) (t) = [ψ(0)−Q(0, ψ(−τ (0)))] e−
∫ t
0
a(u) du

+

∫ t

0

a(s)e−
∫ t
s
a(u) duH(ϕ(s)) ds. (3.4)

By applying Theorem 1, we need to prove that P has a fixed point ϕ on
the set M, where ϕ(t) = x(t, 0, ψ) for t ≥ 0 and x(t, 0, ψ) = ψ(t) on [m0, 0],
x(t, 0, ψ) satisfies (1.3) and |ϕ(t, 0, ψ)| ≤ R with R ∈ (0, 1]. For t ≥ 0, we will
assume that the following conditions hold:
The function Q is locally Lipschitz continuous, then for t ≥ 0 and x, y ∈ M
there exist a constants EQ > 0, such that

|Q(t, x)−Q(t, y)| ≤ EQ‖x− y‖. (3.5)

The functionsQ andG satisfy Carathéodory conditions with respect to L1[0,∞),
such that

|Q(t, ϕ(t− τ (t)))| ≤ qR(t) ≤ α1

2
R, (3.6)

|G(t, ϕ(t), ϕ(t− τ (t)))| ≤ g√2R(t) ≤ α2a(t)R, (3.7)

J(α1 + α2) ≤ 1, (3.8)

where αi, i = 1, 2 are positive constants and J > 3. Now, assume that there are
constants l2, l3 > 0 such that for 0 ≤ t1 < t2

|τ (t2)− τ (t1)| ≤ l2 |t2 − t1| , (3.9)
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∣∣∣∣
∫ t2

t1

a(u) du

∣∣∣∣ ≤ l3 |t2 − t1| . (3.10)

By a series of steps we will prove the fulfillment of (i), (ii) and (iii) in
Theorem 1.

Lemma 2. For A defined in (3.3), suppose that (3.5)–(3.10) hold. Then,
A : M → M and A is continuous and AM is contained in a compact sub-
set ofM.

Proof. Let A be defined by (3.3). Then, for any ϕ ∈ M, we have

|Aϕ(t)| ≤ |Q(t, ϕ(t− τ (t)))|+
∫ t

0

e−
∫ t
s
a(u) du [a(s) |Q(s, ϕ(s− τ (s)))|

+ |G(s, ϕ(s), ϕ(s− τ (s)))|] ds

≤ qR(t) +R

∫ t

0

e−
∫ t
s
a(u) du

(
a(s)

qR(s)

R
+
g√2R(s)

R

)
ds

≤ α1

2
R+

α1

2
R+ α2R ≤ R

J
< R.

That is |Aϕ(t)| < R. Second we show that, for any ϕ ∈ M the function Aϕ is
Lipschitzian. Let ϕ ∈ M, and let 0 ≤ t1 < t2, then

|Aϕ(t2)−Aϕ(t1)|
≤ |Q(t2, ϕ(t2 − τ (t2)))−Q(t1, ϕ(t1 − τ (t1)))|

+

∣∣∣∣
∫ t2

0

e−
∫ t2
s

a(u) du [−a(s)Q(s, ϕ(s− τ (s))) +G(s, ϕ(s), ϕ(s− τ (s)))]ds

−
∫ t1

0

e−
∫ t1
s

a(u) du [−a(s)Q(s, ϕ(s− τ (s))) +G(s, ϕ(s), ϕ(s− τ (s)))] ds

∣∣∣∣ .
(3.11)

By hypotheses (3.5), (3.9) and (3.10), we have

|Q (t2, ϕ (t2 − τ (t2)))−Q (t1, ϕ (t1 − τ (t1)))|
≤ EQl1 |(t2 − t1)− (τ (t2)− τ (t1))|
≤ (EQl1 + EQl1l2) |t2 − t1| , (3.12)

where l1 is the Lipschitz constant of ϕ. In the same way, by (3.6), (3.7) and
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(3.10), we have

∣∣∣∣
∫ t2

0

e−
∫ t2
s

a(u) du [−a(s)Q(s, ϕ(s− τ (s))) +G(s, ϕ(s), ϕ(s− τ (s)))]ds

−
∫ t1

0

e−
∫ t1
s

a(u) du [−a(s)Q(s, ϕ(s− τ (s))) +G(s, ϕ(s), ϕ(s− τ (s)))]ds

∣∣∣∣
≤
∣∣∣∣
∫ t1

0

[−a(s)Q(s, ϕ(s− τ (s))) +G(s, ϕ(s), ϕ(s− τ (s)))]

× e−
∫ t1
s

a(u) du
(
e−

∫ t2
t1

a(u) du − 1
)
ds
∣∣∣

+

∣∣∣∣
∫ t2

t1

e−
∫ t2
s

a(u) du [−a(s)Q(s, ϕ(s− τ (s))) +G(s, ϕ(s), ϕ(s− τ (s)))] ds

∣∣∣∣
≤
(α1

2
+ α2

)
R
∣∣∣e− ∫ t2

t1
a(u) du − 1

∣∣∣ ∫ t1

0

a(s)e−
∫ t1
s

a(u) du ds

+

∫ t2

t1

e−
∫ t2
s

a(u) du
(
g√2R(s) + a(s)qR(s)

)
ds

≤
(α1

2
+ α2

)
R

∫ t2

t1

a(s) ds

+

∫ t2

t1

a(s)e−
∫ t2
s

a(u) dud

(∫ s

t1

(
g√2R(r) + a(r)qR(r)

)
dr

)
ds

≤
(α1

2
+ α2

)
R

∫ t2

t1

a(s) ds+

[
e−

∫ t2
s

a(u) du

∫ s

t1

(
g√2R(r) + a(r)qR(r)

)
dr

]t2
t1

+

∫ t2

t1

a(s)e−
∫ t2
s

a(u) du

∫ s

t1

(
g√2R(r) + a(r)qR(r)

)
drds

≤
(α1

2
+ α2

)
R

∫ t2

t1

a(s) ds

+

∫ t2

t1

(
g√2R(s) + a(s)qR(s)

)
ds

(
1 +

∫ t2

t1

a(s)e−
∫ t2
s

a(u) du ds

)

≤
(α1

2
+ α2

)
R

∫ t2

t1

a(s) ds+ 2

∫ t2

t1

(
g√2R(s) + a(s)qR(s)

)
ds

≤
(α1

2
+ α2

)
R

∫ t2

t1

a(s) ds+ 2
(α1

2
+ α2

)
R

∫ t2

t1

a(s) ds

≤ 3R
(α1

2
+ α2

)
l3 |t2 − t1| . (3.13)

Thus, by substituting (3.12) and (3.13) in (3.11), we obtain

|Aϕ (t2)−Aϕ (t1)| ≤ (EQl1 + EQl1l2) |t2 − t1|+ 3R
(α1

2
+ α2

)
l3 |t2 − t1|

= K |t2 − t1| ,
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for some constant K > 0. This shows that Aϕ is Lipschitzian if ϕ is. This
completes the proof of A : M → M.
Since Aϕ is Lipschitzian, then AM is equicontinuous, which implies that

the set AM resides in a compact set in the space (S, | · |w).
Now, we show that A is continuous in the weighted norm, let ϕn ∈ M where

n is a positive integer such that ϕn → ϕ as n→ ∞. Then∣∣∣∣Aϕn(t)−Aϕ(t)
w(t)

∣∣∣∣
≤ |Q(t, ϕn(t− τ (t)))−Q(t, ϕ(t− τ (t)))|w
+

∫ t

0

a(s)e−
∫ t
s
a(u) du |Q(s, ϕn(s− τ (s)))−Q(s, ϕ(s− τ (s)))|w ds

+

∫ t

0

e−
∫ t
s
a(u) du |G(s, ϕn(s), ϕn(s− τ (s)))−G(s, ϕ(s), ϕ(s− τ (s)))|w ds.

By the dominated convergence theorem, limn→∞ |(Aϕn)(t)− (Aϕ)(t)|w = 0.
Then A is continuous. This completes the proof of A : M → M is continuous
and AM is contained in a compact subset ofM.
Now, we state an important result implying that the mapping H given by

(2.2) is a large contraction on the setM. This result was already obtained in [1,
Theorem 3.4] and for convenience we present below its proof. We shall assume
that

(H1) h : R → R is continuous on [−R,R] and differentiable on (−R,R),
(H2) The function h is strictly increasing on [−R,R],
(H3) supt∈(−R,R) h

′(t) ≤ 1.

Theorem 3. Let h : R → R be a function satisfying (H1)–(H3). Then the
mapping H in (2.2) is a large contraction on the set M.
Proof. Let ϕ, φ ∈ M with ϕ �= φ. Then ϕ(t) �= φ(t) for some t ∈ R. Let us
denote the set of all such t by D(ϕ, φ), i.e.,

D(ϕ, φ) = {t ∈ R : ϕ(t) �= φ(t)} .

For all t ∈ D(ϕ, φ), we have

|(Hϕ)(t)− (Hφ)(t)| ≤ |ϕ(t)− φ(t)− h(ϕ(t)) + h(φ(t))|
≤ |ϕ(t)− φ(t)|

∣∣∣∣1− h(ϕ(t))− h(φ(t))

ϕ(t)− φ(t)

∣∣∣∣ . (3.14)

Since h is a strictly increasing function we have

h(ϕ(t))− h(φ(t))

ϕ(t)− φ(t)
> 0 for all t ∈ D(ϕ, φ). (3.15)
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For each fixed t ∈ D(ϕ, φ) define the interval It ⊂ [−R,R] by

It =

{
(ϕ(t), φ(t)) if ϕ(t) < φ(t),

(φ(t), ϕ(t)) if φ(t) < ϕ(t).

The mean value theorem implies that for each fixed t ∈ D(ϕ, φ) there exists a
real number ct ∈ It such that

h(ϕ(t))− h(φ(t))

ϕ(t)− φ(t)
= h′(ct).

By (H2), (H3) we have

0 ≤ inf
s∈(−R,R)

h′(s) ≤ inf
s∈It

h′(s) ≤ h′(ct) ≤ sup
s∈It

h′(s) ≤ sup
s∈(−R,R)

h′(s) ≤ 1.

(3.16)
Hence, by (3.14)–(3.16) we obtain

|(Hϕ)(t)− (Hφ)(t)| ≤ |ϕ(t)− φ(t)|
∣∣∣∣1− inf

s∈(−R,R)
h′(s)

∣∣∣∣ , (3.17)

for all t ∈ D(ϕ, φ). This implies a large contraction in the supremum norm. To
see this, choose a fixed ε ∈ (0, 1) and assume that ϕ and φ are two functions in
M satisfying

ε ≤ sup
t∈(−R,R)

|ϕ(t)− φ(t)| = ‖ϕ− φ‖ .

If |ϕ(t)− φ(t)| ≤ ε
2 for some t ∈ D(ϕ, φ), then we get by (3.16) and (3.17) that

|(Hϕ)(t)− (Hφ)(t)| ≤ 1

2
|ϕ(t)− φ(t)| ≤ 1

2
‖ϕ− φ‖. (3.18)

Since h is continuous and strictly increasing, the function h
(
s+ ε

2

)−h(s) attains
its minimum on the closed and bounded interval [−R,R]. Thus, if ε

2 ≤ |ϕ(t)−
φ(t)| for some t ∈ D(ϕ, φ), then by (H2) and (H3) we conclude that

1 ≥ h(ϕ(t))− h(φ(t))

ϕ(t)− φ(t)
> λ,

where

λ :=
1

2R
min

{
h
(
s+

ε

2

)
− h(s) : s ∈ [−R,R]

}
> 0.

Hence, (3.14) implies

|(Hϕ)(t)− (Hφ)(t)| ≤ (1− λ)‖ϕ− φ‖. (3.19)

Consequently, combining (3.18) and (3.19) we obtain

|(Hϕ)(t)− (Hφ)(t)| ≤ δ‖ϕ− φ‖, (3.20)

where

δ = max

{
1

2
, 1− λ

}
.

The proof is complete.
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The next result shows the relationship between the mappings H and B in
the sense of large contractions, for this assume that

max {|H(−R)|, |H(R)|} ≤ 2R

J
. (3.21)

Choose γ > 0 small enough such that

[1 + EQ]γe
− ∫ t

0
a(u) du +

R

J
+

2R

J
≤ R. (3.22)

The chosen in the relation (3.22) will be used below in Lemma 3 and Theorem 4
to show that if ε = R and if ‖ψ‖ < γ, then the solutions satisfies |x(t, 0, ψ)| < ε.

Lemma 3. Let B be defined by (3.4), suppose (3.9), (3.10), (H1)–(H3), (3.21)
and (3.22) hold. Then B : M → M and B is a large contraction.
Proof. Let B be defined by (3.4). Obviously, B is continuous with the weighted
norm. Let ϕ ∈ M

|Bϕ(t)| ≤ |ψ(0)−Q(0, ψ(−τ (0)))|e−
∫ t
0
a(u) du

+

∫ t

0

a(s)e−
∫

t
s
a(u) du|H(ϕ(s))| ds

≤ [1 + EQ]γe
− ∫ t

0
a(u) du

+

∫ t

0

a(s)e−
∫ t
s
a(u) du max {|H(−R)|, |H(R)|} ds < R,

and we use a method like in Lemma 2, we deduce that, for any ϕ ∈ M the
function Bϕ is Lipschitzian, which implies B : M → M.
By Theorem 3, H is large contraction on M, then for any ϕ, φ ∈ M, with

ϕ �= φ and for any ε > 0, from the proof of that Theorem, we have found a
δ < 1, such that∣∣∣∣Bϕ(t)− Bφ(t)

w(t)

∣∣∣∣ ≤
∫ t

0

a(s)e−
∫ t
s
a(u) du |H(ϕ(u))−H(φ(u))|w du ≤ δ|ϕ− φ|w.

The proof is complete.

Theorem 4. Assume the hypothesis of Lemmas 2 and 3. Let M defined by
(3.1). Then the equation (1.3) has a solution inM.
Proof. By Lemmas 2, 4, A : M → M is continuous and A(M) is contained
in a compact set. Also, from Lemma 3, the mapping B : M → M is a large
contraction. Next, we show that if ϕ, φ ∈ M, we have ‖Aϕ+ Bφ‖ ≤ R. Let
ϕ, φ ∈ M with ‖ϕ‖ , ‖φ‖ ≤ R. By (3.6)–(3.8)

‖Aϕ+ Bϕ‖ ≤ (1 + EQ)γe
− ∫ t

0
a(u) du + (α1 + α2)R+

2R

J

≤ (1 + EQ) γe
− ∫ t

0
a(u) du +

R

J
+

2R

J
≤ R.
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Clearly, all the hypotheses of the Krasnoselskii–Burton’s theorem are satisfied.
Thus there exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 1
this fixed point is a solution of (1.3). Hence (1.3) is stable.

Now, for the asymptotic stability, defineM0 by

M0 : = {ϕ ∈ S : ϕ is Lipschitzian, |ϕ(t, 0, ψ)| ≤ R, t ∈ [m0,∞),

ϕ(t) = ψ(t) if t ∈ [m0, 0] and |ϕ(t)| → 0 as t→ ∞} . (3.23)

All of the calculations in the proof of Theorem 4 hold with w(t) = 1 when | · |w
is replaced by the supremum norm ‖ · ‖. Now, assume that

t− τ (t) → ∞ as t→ ∞ and
∫ t

0

a(s) ds→ ∞ as t→ ∞, (3.24)

qR(t) → 0 as t→ ∞, (3.25)

g√2R(t)

a(t)
→ 0 as t→ ∞. (3.26)

Lemma 4. Let (3.5)–(3.10) and (3.24)–(3.26) hold. Then, the operator A
mapsM into a compact subset ofM.
Proof. First, we deduce by the Lemma 2 that A(M) is equicontinuous. Next,
we notice that for arbitrary ϕ ∈ M we have

|Aϕ(t)| ≤ qR(t) +

∫ t

0

e−
∫ t
s
a(u) dua(s)

(
qR(s) +

g√2R(s)

a(s)

)
ds := q(t).

We see that q(t) → 0 as t → ∞ which implies that the set AM resides in a
compact set in the space (S, ‖ · ‖) by Theorem 2.

Theorem 5. Assume the hypothesis of Lemmas 2, 4 and 3 hold. Let M0

defined by (3.23). Then the equation (1.3) has a solution inM0.

Proof. Note that, all of the steps in the proof of Theorem 4 hold with w(t) = 1
when | · |w is replaced by the supremum norm ‖ · ‖. It is sufficient to show, for
ϕ ∈ M0 then Aϕ → 0 and Bϕ → 0. Let ϕ ∈ M be fixed, we will prove that
|Aϕ(t)| → 0 as t→ ∞, as above we have

|Aϕ(t)| ≤ |Q(t, ϕ(t− τ (t)))|

+

∫ t

0

e−
∫ t
s
a(t) du [a(s) |Q(s, ϕ(s− τ (s)))|+ |G(s, ϕ(s), ϕ(s− τ (s)))|] ds.

First, we have
|Q(t, ϕ(t− τ (t)))| ≤ qR(t) → 0 as t→ ∞,
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Second, let ε > 0 be given. Find T such that |ϕ (t− τ (t))| , |ϕ (t)| < ε, for t ≥ T .
Then we have∫ t

0

e−
∫ t
s
a(u) du [a(s) |Q(s, ϕ(s− τ (s)))|+ |G(s, ϕ(s), ϕ(s− τ (s)))|] ds

= e−
∫ t
T
a(u) du

×
∫ T

0

e−
∫ T
s

a(u) du [a(s) |Q(s, ϕ(s− τ (s)))|+ |G(s, ϕ(s), ϕ(s− τ (s)))|] ds

+

∫ t

T

e−
∫ t
s
a(u) du [a(s) |Q(s, ϕ(s− τ (s)))|+ |G(s, ϕ(s), ϕ(s− τ (s)))|] ds

≤ e−
∫ t
T
a(u) du

(α1

2
+ α2

)
R +

(α1

2
+ α2

)
ε.

By (3.24) the term e−
∫ t
T
a(u)du

(
α1

2 + α2

)
R is, as t → ∞, arbitrarily small. In

the same way, we obtain Bϕ→ 0. This completes the proof.
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