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Abstract

In the present paper we study characterizations of odd and even dimen-
sional mixed generalized quasi-Einstein manifold. Next we prove that a
mixed generalized quasi-Einstein manifold is a generalized quasi-Einstein
manifold under a certain condition. Then we obtain three and four dimen-
sional examples of mixed generalized quasi-Einstein manifold to ensure the
existence of such manifold. Finally we establish the examples of warped
product on mixed generalized quasi-Einstein manifold.
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1 Introduction

A Riemannian manifold (M, g) with dimension (n ≥ 2) is said to be an Einstein
manifold if the Ricci tensor satisfies the condition S(X,Y ) = r

ng(X,Y ), holds
on M , here S and r denote the Ricci tensor and the scalar curvature of (M, g)
respectively. According to [3] the above equation is called the Einstein metric
condition. Einstein manifolds play an important role in Riemannian Geometry,
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as well as in general theory of relativity. The notion of quasi-Einstien manifold
was defined in [9]. A non-flat Riemannian manifold (M, g), (n ≥ 2) is said to
be an quasi Einstein manifold if the condition

S(X,Y ) = αg(X,Y ) + βρ(X)ρ(Y ),

is fulfilled on M , where α and β are scalars of which β �= 0 and ρ is non-zero
1-form such that g(X, ξ) = ρ(X) for all vector field X and ξ is a unit vector
field.
Note that the subprojective manifolds by Kagan have the Ricci tensor with

the same properties [14, 19].
In [8], U. C. De and G. C. Ghosh introduced generalized quasi-Einstein

manifold, denoted by G(QE)n where the Ricci tensor S of type (0, 2) which is
not identically zero satisfies the condition

S(X,Y ) = αg(X,Y ) + βA(X)A(Y ) + �B(X)B(Y ), (1.1)

where α, β, � are scalars such that β, � are nonzero and A, B are two nonzero
1-forms such that

g(X, ξ1) = A(X), g(X, ξ2) = B(X), ∀X, (1.2)

ξ1, ξ2 being unit vectors which are orthogonal, i.e., g(ξ1, ξ2) = 0.
Here α, β, γ, δ are called the associated scalars, and A, B are called the

associated main and auxiliary 1-forms respectively, ξ1, ξ2 are main and auxiliary
generators of the manifold.
In [6], M. C. Chaki introduced super quasi-Einstein manifold, denoted by

S(QE)n and gave an example of a 4-dimensional semi Riemannian super quasi-
Einstein manifold, where the Ricci tensor S of type (0, 2) which is not identically
zero satisfies the condition

S(X,Y ) = αg(X, Y ) + βA(X)A(Y )

+ γ[A(X)B(Y ) +A(Y )B(X)] + δD(X,Y ), (1.3)

where α, β, γ are scalars such that β, γ, δ are nonzero and A, B are two
nonzero 1-forms such that g(X, ξ1) = A(X) and g(X, ξ2) = B(X), ξ1, ξ2 being
unit vectors which are orthogonal, i.e., g(ξ1, ξ2) = 0 and D is symmetric (0, 2)
tensor with zero trace which satisfies the condition D(X, ξ1) = 0, ∀X ∈ χ(M).
Here α, β, γ, δ are called the associated scalars, and A, B are called the

associated main and auxiliary 1-forms respectively, ξ1, ξ2 are main and auxiliary
generators and D is called the associated tensor of the manifold.
In [4], A. Bhattacharyya and T. De introduced the notion of mixed gener-

alized quasi-Einstein manifold, denoted by MG(QE)n. A non-flat Riemannian
manifold(M, g),(n ≥ 3) is called if its the Ricci tensor S of type (0, 2) is not
identically zero and satisfies the condition

S(X,Y ) = αg(X,Y ) + βA(X)A(Y )

+ �B(X)B(Y ) + γ[A(X)B(Y ) +A(Y )B(X)], (1.4)
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where α, β, �, γ are scalars such that β, �, γ, δ are nonzero and A, B are two
nonzero 1-forms such that

g(X, ξ1) = A(X), g(X, ξ2) = B(X), g(ξ1, ξ2) = 0, ∀X, (1.5)

ξ1, ξ2 being un,it vectors which are orthogonal.
Here α, β, �, γ are called the associated scalars, and A, B are called the

associated main and auxiliary 1-forms respectively, ξ1, ξ2 are main and auxiliary
generators of the manifold.
Let M be an m-dimensional, m ≥ 3, Riemannian manifold and p ∈ M .

Denote by K(π) or K(U ∧ V ) the sectional curvature of M associated with
a plane section π ⊆ TpM , where {U, V } is an orthonormal basis of π. For a
n-dimensional subspace L ⊆ TpM , 2 ≤ n ≤ m, its scalar cuvrvature τ (L) is de-
noted by τ (L) =

∑
1≤i<j≤nK(ei∧ej), where {e1, e2, . . . , en} is any orthonormal

basis of L ([9]).
The notion of warped product generalizes that of a surface of revolution. It

was introduced in [5], for studying manifolds of negative curvature. Let (B, gB),
(F, gF ) be two Riemannian manifolds with dim B = m > 0, dimF = k > 0
and f : B → (0,∞), f ∈ C∞(B). The warped product M = B ×f F is the
Riemannian manifold B × F furnished with the metric gM = gB + f2gF . B is
called the base of M , F is the fibre and the warped product is called a simply
Riemannian product if f is a constant function. The function f is called the
warping function of the warped product[15].
Singer and Thorpe gave the well-known characterization of 4-dimensional

Einstein spaces in [20]. Later we have seen that in [7] Chen obtained the gener-
alization of 4-dimensional Einstein spaces. In [10] the result for odd dimensional
Einstein spaces was obtained by Dumitru. Also in [2] Bejan generalized these
results (both odd and even dimensions)to quasi Einstein manifold. Also charac-
terization of super quasi-Einstein manifold for both of odd and even dimensions
was studied in [12]. From above studies, we have given characterization of mixed
generalized quasi-Einstein manifold for both of odd and even dimensions with
three and four dimensional examples of mixed generalized quasi-Einstein man-
ifold to ensure the existence of such manifold. Next we obtain that a mixed
generalized quasi-Einstein manifold is generalized quasi-Einstein manifold if ei-
ther of generators is parallel vector field. In the last section we have given
examples of warped product on mixed generalized quasi-Einstein manifold.
Geodesic mappings of Einstein spaces were studied in [18, 16, 11, 13, 19],

and others. In [11, 17, 19] there are metrics of Einstein spaces.

2 Characterization of mixed generalized quasi-Einstein
manifold manifold

In this section we establish the characterization of odd and even dimensional
MG(QE)n.

Theorem 2.1. A Riemannian manifold of dimension (2n+1) with n ≥ 2 is
mixed generalized quasi-Einstein manifold if and only if the Ricci operator Q
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has eigen vector fields ξ1 and ξ2 such that at any point p ∈M , there exist three
real numbers a, b and c satisfying

τ (P ) + a = τ (P⊥); ξ1, ξ2 ∈ TpP
⊥,

τ (N) + b = τ (N⊥); ξ1 ∈ TpN, ξ2 ∈ TpN
⊥,

τ (R) + c = τ (R⊥); ξ1 ∈ TpR, ξ2 ∈ TpR
⊥,

for any n-plane sections P , N and (n+ 1)-plane section R where P⊥, N⊥ and
R⊥ denote the orthogonal complements of P , N and R in TpM respectively and

a = {α+ β + �}/2, b = {α− β + �}/2, c = {�− α− β}/2,
where α, β, � are scalars.

Proof. First suppose that M is a (2n+1) dimensional mixed generalized quasi-
Einstein manifold, so

S(X,Y ) = αg(X,Y ) + βA(X)A(Y ) + �B(X)B(Y )

+ γ[A(X)B(Y ) +A(Y )B(X)], (2.1)

where α, β, �, γ are scalars such that β, �, γ are nonzero and A, B are two
nonzero 1-forms such that g(X, ξ1) = A(X) and g(X, ξ2) = B(X), ∀X ∈ χ(M),
ξ1, ξ2 being unit vectors which are orthogonal, i.e., g(ξ1, ξ2) = 0.
Let P ⊆ TpM be an n-dimensional plane orthogonal to ξ1, ξ2 and let

{e1, e2, . . . , en} be orthonormal basis of it. Since ξ1 and ξ2 are orthogonal to P ,
we can take orthonormal basis {en+1, en+2, . . . , e2n+1} of P⊥ such that e2n = ξ1
and e2n+1 = ξ2. Thus {e1, e2, . . . , en, en+1, en+2, . . . , e2n+1} is an orthonormal
basis of TpM . Then we can take X = Y = ei in (2.1), we have

S(ei, ei) =
2n+1∑
j=1

R(ej , ei, ei, ej) =

⎧⎨
⎩

α, for 1 ≤ i ≤ 2n− 1
α+ β, for i = 2n
α+ �, for i = 2n+ 1

By use of (2.1) for any 1 ≤ i ≤ 2n+ 1, we can write

S(e1, e1) = K(e1∧e2)+K(e1∧e3)+· · ·+K(e1∧e2n−1)+K(e1∧ξ1)+K(e1∧ξ2) = α,

S(e2, e2) = K(e2∧e1)+K(e2∧e3)+· · ·+K(e2∧e2n−1)+K(e2∧ξ1)+K(e2∧ξ2) = α,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S(e2n−1, e2n−1)

= K(e2n−1 ∧ e1) +K(e2n−1 ∧ e2) +K(e2n−1 ∧ e3) + · · ·+K(e2n−1 ∧ ξ2) = α,

S(ξ1, ξ1) = K(ξ1 ∧ e1) +K(ξ1 ∧ e2) + · · ·+K(ξ1 ∧ e2n−1) +K(ξ1 ∧ ξ2) = α+ β,

S(ξ2, ξ2) = K(ξ2 ∧ e1) +K(ξ2 ∧ e2) + · · ·+K(ξ2 ∧ e2n−1) +K(ξ2 ∧ ξ1) = α+ �.

Adding first n-equations, we get

2τ (P ) +
∑

1≤i≤n<j≤2n+1

K(ei ∧ ej) = nα. (2.2)
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Then adding the last (n+ 1) equations, we have

2τ (P⊥) +
∑

1≤j≤n<i≤2n+1

K(ei ∧ ej) = (n+ 1)α+ β + � (2.3)

Then, by substracting the equation (2.2) and (2.3), we obtain

τ (P⊥)− τ (P ) = {α+ β + �}.
Therefore τ (P )+a = τ (P⊥), where a = {α+β+�}/2. Similarly, Let N ⊆ TpM
be an n-dimensional plane orthogonal to ξ2 and let {e1, e2, . . . , en} be orthonor-
mal basis of it. Since ξ2 is orthogonal to N , we can take an orthonormal
basis {en+1, en+2, . . . , e2n+1} of N⊥ orthogonal to ξ1, such that en = ξ1 and
e2n+1 = ξ2, respectively. Thus, {e1, e2, . . . , en, en+1, en+2, . . . , e2n+1} is an or-
thonormal basis of TpM . Then we can take X = Y = ei in (2.1) to have

S(ei, ei) =
2n+1∑
j=1

R(ej , ei, ei, ej) =

⎧⎪⎪⎨
⎪⎪⎩

α, 1 ≤ i ≤ n− 1
α+ β, i = n
α, n+ 1 ≤ i ≤ 2n

α+ �, i = 2n+ 1

Adding first n-equations, we get

2τ (N) +
∑

1≤i≤n<j≤2n+1

K(ei ∧ ej) = nα+ β, (2.4)

and adding the last (n+ 1) equations, we have

2τ (N⊥) +
∑

1≤j≤n<i≤2n+1

K(ei ∧ ej) = (n+ 1)α+ �. (2.5)

Then, by substracting the equation (2.4) and (2.5), we obtain

τ (N⊥)− τ (N) = {α− β + �}/2.
Therefore τ (N) + b = τ (N⊥), where b = {α − β + �}/2. Analogously, Let
R ⊆ TpM be an (n + 1)-plane orthogonal to ξ2 and let {e1, e2, . . . , en+1} be
orthonormal basis of it. Since ξ2 is orthogonal to R, we can take an orthonormal
basis {en+2, en+3, . . . , e2n, e2n+1} of R⊥ orthogonal to ξ1, such that en+1 = ξ1
and e2n+1 = ξ2. Thus, {e1, e2, . . . , en, en+1, en+2, . . . , e2n+1} is an orthonormal
basis of TpM . Then we can take X = Y = ei in (2.1) to have

S(ei, ei) =

2n+1∑
j=1

R(ej , ei, ei, ej) =

⎧⎪⎪⎨
⎪⎪⎩

α, 1 ≤ i ≤ n
α+ β, i = n+ 1
α, n+ 2 ≤ i ≤ 2n

α+ �, i = 2n+ 1

Adding the first n+ 1-equations, we get

2τ (R) +
∑

1≤i≤n+1<j≤2n+1

K(ei ∧ ej) = (n+ 1)α+ β, (2.6)
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and adding the last n equations, we have

2τ (R⊥) +
∑

1≤j≤n+1<i≤2n+1

K(ei ∧ ej) = nα+ �. (2.7)

Then, by substracting the equation (2.6) and (2.7), we obtain

τ (R⊥)− τ (R) = {�− α− β}/2.

Therefore τ (R) + c = τ (R⊥), where c = {�− α− β}/2.
Conversely, let V be an arbitrary unit vector of TpM , at p ∈M , orthogonal to

ξ1 and ξ2. We take an orthonormal basis {e1, e2, . . . , en, en+1, en+2, . . . , e2n+1}
of TpM such that V = e1, en+1 = ξ1 and e2n+1 = ξ2. We consider n-plane sec-
tionN and (n+1)-plane section R in TpM as follows N = span{e2, . . . , en, en+1}
and R = span{e1, e2, . . . , en, en+1} respectively. Then we have

N⊥ = span{e1, en+2, . . . , e2n, e2n+1} and R⊥ = span{en+2. . . . , e2n}

respectively. Now

S(V, V ) = [K(e1 ∧ e2) +K(e1 ∧ e3) + · · ·+K(e1 ∧ en+1)]

+ [K(e1 ∧ en+2) +˙̇+̇K(e1 ∧ e2n) +K(e1 ∧ e2n+1)]

= [τ (R)−
∑

2≤i<j≤n+1

K(ei ∧ ej)] + [τ (N⊥)−
∑

n+2≤i<j≤2n+1

K(ei ∧ ej)]

= τ (R)−τ (N)+τ (R⊥)−τ (N⊥) = [τ (R)−τ (N)]+[b+τ (N)−c−τ (R)] = b−c.

Therefore, S(V, V ) = b − c, for any unit vector V ∈ TpM , orthogonal to ξ1
and ξ2. Then we can write for any 1 ≤ i ≤ 2n + 1, S(ei, ei) = b − c, since
S(V, V ) = (b− c)g(V, V ). It follows that

S(X,X) = (b− c)g(X,X) +K1A(X)A(X)

and

S(Y, Y ) = (b− c)g(Y, Y ) +K2B(Y )B(Y ) +K3[A(Y )B(Y ) +B(Y )A(Y )]

for any X ∈ [span{ξ1}]⊥ and Y ∈ [span{ξ2}]⊥, where A, B are the dual forms
of ξ1 and ξ2 with respect to g, respectively and K1, K2, K3 are scalars, such
that K1 �= 0, K2 �= 0, K3 �= 0.
Now from the above equations, we get from symmetry that S with tensors

(b− c)g +K1(A⊗A) and (b− c) +K2(B ⊗B) +K3[(A⊗B) + (A⊗B)] must
coincide on the complement of ξ1 and ξ2, respectively, that is

S(X,Y ) = (b− c)g(X,Y )

+K1A(X)A(Y ) +K2B(X)B(Y ) +K3[A(X)B(Y ) +B(X)A(Y )],
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for any X,Y ∈ [span{ξ1, ξ2}]⊥. Since ξ1 and ξ2 are eigenvector fields of Q, we
also have S(X, ξ1) = 0 and S(Y, ξ2) = 0 for any X,Y ∈ TpM orthogonal to ξ1
and ξ2. Thus, we can extend the above equation to

S(X,Z) = (b− c)g(X,Z) +K1A(X)A(Z)

+K2B(X)B(Z) +K3[A(X)B(Z) +A(Z)B(X)], (2.8)

for any X ∈ [span{ξ1, ξ2}]⊥ and Z ∈ TpM , where K1,K2,K3 are scalars
and K1 �= 0,K2 �= 0,K3 �= 0. Now, let us consider the n-plane section P
and (n + 1)-plane section R in TpM as follows P = span{e1, e2, . . . , en} and
R = span{e1, e2, . . . , en, ξ1}. Then we have P⊥ = span{ξ1, en+2, . . . , e2n+1}
and R⊥ = span{en+2, . . . , e2n, e2n+1} respectively. Now

S(ξ1, ξ1) = [K(ξ1 ∧ e1) +K(ξ1 ∧ e2) + · · ·+K(ξ1 ∧ en)]
+ [K(ξ1 ∧ en+2) + · · ·+K(ξ1 ∧ e2n) +K(e1 ∧ e2n+1)]

= [τ (R)−
∑

1≤i<j≤n

K(ei ∧ ej)] + [τ (P⊥)−
∑

n+2≤i<j≤2n+1

K(ei ∧ ej)]

= τ (R)− τ (P )+ τ (P⊥)− τ (R⊥) = [τ (R)− τ (P )]+ [a+ τ (P )− c− τ (R)] = a− c
Therefore we can write

S(ξ1, ξ1) = (b− c)g(ξ1, ξ1) + (a− b)A(ξ1)A(ξ1). (2.9)

Analogously, let us consider the n-plane section P and N ∈ TpM as follows
P = span{e1, e2, . . . , en} and N = span{en+1, en+2, . . . , e2n} respectively. Then
we have P⊥ = span{en+1, en+2, . . . , e2n, ξ2} and N⊥ = span{e1, . . . , en, ξ2} re-
spectively. Now, we have

S(ξ2, ξ2) = [K(ξ2 ∧ e1) +K(ξ2 ∧ e2) + · · ·+K(ξ2 ∧ en)]
+ [K(ξ2 ∧ en+1) +K(ξ2 ∧ en+2) + · · ·+K(e2 ∧ e2n)]

= [τ (N⊥)−
∑

1≤i<j≤n

K(ei ∧ ej)] + [τ (P⊥)−
∑

n+1≤i<j≤2n

K(ei ∧ ej)]

= τ (N⊥)−τ (P )+τ (P⊥)−τ (N) = [τ (N)+b−τ (P )]+[a+τ (P )−τ (N)] = a+b.

Then, we get

S(ξ2, ξ2) = (b− c)g(ξ2, ξ2) + (a+ c)B(ξ2)B(ξ2)

+K3[A(ξ2)B(ξ2) +A(ξ2)B(ξ2)]. (2.10)

Now from (2.8), (2.9) and (2.10) we can write the Ricci tensor by

S(X, Y ) = μ1g(X, Y ) +K1A(X)A(Y ) +K2B(X)B(Y )

+K3[A(X)B(Y ) +A(Y )B(X)], (2.11)

for any X,Y ∈ TpM . From (2.11) it follows that M is a mixed generalized
quasi-Einstein manifold, where μ1, K1, K2, K3 are scalars and K1 �= 0, K2 �= 0,
K3 �= 0. Hence the theorem is proved.
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Theorem 2.2. A Riemannian manifold of dimension 2n with n ≥ 2 is mixed
generalized quasi-Einstein manifold if and only if the Ricci operator Q has eigen
vector fields ξ1 and ξ2 such that at any point p ∈ M , there exist three real
numbers a, b and c satisfying

τ (P ) + a = τ (P⊥); ξ1, ξ2 ∈ TpP
⊥,

τ (N) + b = τ (N⊥); ξ1 ∈ TpN, ξ2 ∈ TpN
⊥,

τ (R) + c = τ (R⊥); ξ1 ∈ TpR, ξ2 ∈ TpR
⊥,

for any n-plane section P , N and (n+ 1)-plane section R where P⊥, N⊥ and
R⊥ denote the orthogonal complements of P , N and R in TpM respectively and

a = {β + �}/2, b = {2α− β + �}/2, c = {�− β}/2,

where α, β, � are scalars.

Proof. Let P and R be n-plane sections and N be an (n − 1)-plane section
such that, P = span{e1, e2, . . . , en}, R = span{en+1, en+2, . . . , e2n} and N =
span{e2, e3, . . . , en} respectively. Therefore the orthogonal complements of these
sections can be written as P⊥ = span{en+1, en+2, . . . , e2n}, R⊥ = span{e1, e2,
. . . , en} and N⊥ = span{e1, en+1, . . . , e2n}.
Then rest of the proof is similar to the proof of Theorem 2.1.

3 MG(QE)n with the parallel vector field generators

Theorem 3.1. A mixed generalized quasi-Einstein manifold is generalized quasi-
Einstein manifold if either of generators is parallel vector field.

Proof. By the definition of the Riemannian curvature tensor, if ξ1 is parallel
vector field, then we find that

R(X,Y )ξ1 = ∇X∇Y ξ1 −∇Y ∇Xξ1 −∇[X,Y ]ξ1 = 0,

and consequently we get
S(X, ξ1) = 0. (3.1)

Again, put Y = ξ1 in the equation (1.2) and applying (1.3) and (1.4), we get

S(X, ξ1) = (α+ β)g(X, ξ1) + γg(X, ξ2).

So, if ξ1 is a parallel vector field, by (3.1), we get

(α+ β)g(X, ξ1) + γg(X, ξ2) = 0. (3.2)

Now, putting X = ξ2 in the equation (3.2) and using (1.3) we get γ = 0. So,
if ξ1 is parallel vector field in amixed generalized quasi-Einstein manifold, then
the manifold is generalized quasi Einstein manifold.
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Again, if ξ2 is parallel vector field, then R(X,Y )ξ2 = 0. Contracting, we get

S(Y, ξ2) = 0. (3.3)

Putting X = ξ2 in the equation (1.2) and applying (1.3), we get

S(Y, ξ2) = (α+ �)g(Y, ξ2) + γg(Y, ξ1).

If, ξ2 is a parallel vector field, by (3.3), we get

(α+ �)g(Y, ξ2) + γg(Y, ξ1) = 0. (3.4)

Putting Y = ξ1 and using (3.4), (1.3), (1.4), we get γ = 0, i.e., the manifold is
generalized quasi-Einstein manifold.

4 Examples of 3-dimensional and 4-dimensional mixed
generalized quasi-Einstein manifold

Example 4.1. Let us consider a Riemannian metric g on R3 by

ds2 = gijdx
idxj = (x3)4/3[(dx1)2 + (dx2)2)] + (dx3)2,

(i, j = 1, 2, 3) and x3 �= 0. Then the only non-vanishing components of Christofell
symbols, the curvature tensors and the Ricci tensors are

Γ1
13 = Γ2

23 =
2

3x3
, Γ3

11 = Γ3
22 = −2

3
(x3)

1
3

R1331 = R2332 = − 2

9(x3)
2
3

, R1221 =
4

9
(x3)

2
3

R11 = R22 =
2

9(x3)
2
3

, R33 = − 4

9(x3)2

Let us consider the associated scalars α, β, �, γ as follows:

α = − 4

9(x3)
2 , β =

6(x3)
4
3

9
, � =

12

9(x3)
2 , γ = − 6

9(x3)
1
3

,

and the 1-forms

Ai(x) =

{
1
x3 for i = 1, 2
0 otherwise

and Bi(x) =

{
(x3)

2
3 for i = 2

0 otherwise

Then we have

(i) R11 = αg11 + βA1A1 + �B1B1 + γ[A1B1 +A1B1]

(ii) R22 = αg22 + βA2A2 + �B2B2 + γ[A2B2 +A2B2]

(iii) R33 = αg33 + βA3A3 + �B3B3 + γ[A3B3 +A3B3]
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Since all the cases other than (i)–(iii) are trivial, we can say that

Rij = αgij + βAiAj + �BiBj + γ[AiBj +AjBi] for i, j = 1, 2, 3.

Thus if (R3, g) is a Riemannian manifold endowed with the metric given by

ds2 = gijdx
idxj = (x3)4/3[(dx1)2 + (dx2)2)] + (dx3)2,

(i, j = 1, 2, 3) and x3 �= 0, then (R3, g) is an MG(QE)3.
Next we consider the Lorentzian metric g on R3 by

ds2 = gijdx
idxj = −(x3)4/3(dx1)2 + (x3)4/3(dx2)2) + (dx3)2,

(i, j = 1, 2, 3) and x3 �= 0.

Now, by similar way, after some construction of associated scalars and associ-
ated 1-forms, we can say that the manifold is a mixed generalized quasi-Einstein
manifold. Therefore we get another example of MG(QE)3.

Example 4.2. (R3, g) is a Lorentzian manifold endowed with the metric given
by

ds2 = gijdx
idxj = −(x3)4/3(dx1)2 + (x3)4/3(dx2)2) + (dx3)2,

(i, j = 1, 2, 3) and x3 �= 0, then (R3, g) is an MG(QE)3.

Example 4.3. Let us consider a Riemannian metric g on R4 by

ds2 = gijdx
idxj = (1 + 2p)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2]

(i, j = 1, 2, 3, 4) and p = ex
1

k2 , k is constant, then the only non-vanishing com-
ponents of Christofell symbols, the curvature tensors and the Ricci tensors are

Γ1
22 = Γ1

33 = Γ1
44 = − p

1 + 2p
, Γ1

11 = Γ2
12 = Γ3

13 = Γ4
14 =

p

1 + 2p

R1221 = R1331 = R1441 =
p

1 + 2p
, R2332 = R2442 = R3443 =

p2

1 + 2p

R11 =
3p

(1 + 2p)2
, R22 = R33 = R44 =

p

(1 + 2p)

It can be easily seen that the scalar curvature r of the given manifold (R4, g) is

r =
6p(1 + p)

(1 + 2p)3
,

which is non-vanishing and non-constant.
Let us consider the associated scalars α, β, γ, δ as follows:

α =
p

(1 + 2p)2
, β =

2p

(1 + 2p)3
, γ =

p

(1 + 2p)3
, δ = − p

2(1 + 2p)2
,
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and the 1-form

Ai(x) =

{√
1 + 2p for i = 1
0 otherwise

and Bi(x) =

{√
1 + 2p for i = 1
0 otherwise

Then we have

(i) R11 = αg11 + βA1A1 + γB1B1 + δ[A1B1 + A1B1]

(ii) R22 = αg22 + βA2A2 + γB2B2 + δ[A2B2 +A2B2]

(iii) R33 = αg33 + βA3A3 + γB3B3 + δ[A3B3 +A3B3]

(iv) R44 = αg44 + βA4A4 + γB4B4 + δ[A4B4 +A4B4]

Since all the cases other than (i)–(iv) are trivial, we can say that

Rij = αgij + βAiAj + γBiBj + δ[AiBj +AjBi], for i, j = 1, 2, 3, 4.

So if (R4, g) be a Riemannian manifold endowed with the metric given by

ds2 = gijdx
idxj = (1 + 2p)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2]

(i, j = 1, 2, 3, 4) and p = ex
1

k2 , k is constant, then (R4, g) is a mixed generalized
quasi Einstein manifold with non-zero and non-constant scalar curvature.
If we consider the Lorentzian metric g on R3 by

ds2 = gijdx
idxj = −(1 + 2p)(dx1)2 + (1 + 2p)[(dx2)2 + (dx3)2 + (dx4)2]

(i, j = 1, 2, 3, 4) and p = ex
1

k2 , k is constant.

Now, by similar way after some construction of associated scalars and associ-
ated 1-forms, we can say that the manifold is a mixed generalized quasi-Einstein
manifold. Therefore we get another example of MG(QE)4.

Example 4.4. Let (R4, g) be a Lorentzian manifold endowed with the metric
given by

ds2 = gijdx
idxj = −(1 + 2p)(dx1)2 + (1 + 2p)[(dx2)2 + (dx3)2 + (dx4)2]

(i, j = 1, 2, 3, 4) and p = ex
1

k2 , k is constant. Then (R4, g) is an MG(QE)4 with
non-zero and non-constant scalar curvature.

5 Examples of warped product on mixed generalized quasi-
Einstein manifold

Example 5.1. Here we consider the Example 4.1, a 3-dimensional example
of mixed generalized quasi-Einstein manifold. Let (R3, g) be a Riemannian
manifold endowed with the metric given by

ds2 = gijdx
idxj = (x3)4/3[(dx1)2 + (dx2)2)] + (dx3)2,

where (i, j = 1, 2, 3) and x3 �= 0.
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To define warped product on MG(QE)3, we consider the warping function
f : R\0 → (0,∞) by f(x3) = (x3)

2
3 and observe that f = (x3)

2
3 > 0 is a smooth

function. The line element defined on R \{0}×R2 which is of the form B×f F ,
where B = R \ {0} is the base and F = R2 is the fibre.
Therefore the metric ds2M can be expressed as ds

2
B + f2ds2F i.e.,

ds2 = gijdx
idxj = (dx3)2 + {(x3)2/3}2[(dx1)2 + (dx2)2],

which is the example of Riemannian warped product on MG(QE)3.

Example 5.2. We consider the example 4.3, a 4-dimensional example of mixed
generalized quasi-Einstein manifold. Let (R4, g) be a Riemannian manifold
endowed with the metric given by

ds2 = gijdx
idxj = (1 + 2p)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2],

where (i, j = 1, 2, 3, 4), p = ex
1

k2 , k is constant.
To define warped product on MG(QE)4, we consider the warping function

f : R3 → (0,∞) by f(x1, x2, x3) =
√
(1 + 2p) and we observe that f > 0 is

a smooth function. The line element defined on R3 × R which is of the form
B ×f F , where B = R3 is the base and F = R is the fibre.
Therefore the metric ds2M can be expressed as ds

2
B + f2ds2F i.e.,

ds2 = gijdx
idxj = (1 + 2p)[(dx1)2 + (dx2)2 + (dx3)2] + [

√
(1 + 2p)]2(dx4)2,

which is the example of Riemannian warped product on MG(QE)4.

Finally we note that the similar metrics were obtained in [1].
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[1] Baishya, K. K., Peška, P.: On the example of almost pseudo-Z-symmetric manifolds.
Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 55, 1 (2016), 5–40.

[2] Bejan, C. L.: Characterization of quasi Einstein manifolds. An. Stiint. Univ.“Al. I. Cuza”
Iasi Mat. (N.S.) 53, suppl. 1 (2007), 67–72.

[3] Besse, A. L.: Einstein Manifolds. Springer-Verlag, New York, 1987.

[4] Bhattacharya„ A., De, T.: On mixed generalized quasi Einstein manifolds. Differ. Geom.
Dyn. Syst. 9 (2007), 40–46, (electronic).

[5] Bishop, R. L., O’Neill, B.: Geometry of slant Submanifolds. Trans. Amer. Math. Soc.
145 (1969), 1–49.

[6] Chaki, M. C.: On super quasi-Einstein manifolds. Publ. Math. Debrecen 64 (2004),
481–488.

[7] Chen, B. Y.: Some new obstructions to minimal and Lagrangian isometric immersions.
Japan. J. Math. (N.S.) 26 (2000), 105–127.



Characterization on mixed generalized quasi-Einstein manifold 155

[8] De, U. C., Ghosh, G. C.: On generalized quasi-Einstein manifolds. Kyungpook Math. J.
44 (2004), 607–615.

[9] Deszcz, R., Glogowska, M., Holtos, M., Senturk, Z.: On certain quasi-Einstein semisym-
metric hypersurfaces. Annl. Univ. Sci. Budapest. Eötvös Sect. Math 41 (1998), 151–164.
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[18] Mikeš, J.: Geodesic mappings of Einstein spaces. Math. Notes 28 (1981), 922–923.
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