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Abstract

In this paper we have studied conformal curvature tensor, conharmonic
curvature tensor, projective curvature tensor in Lorentzian α-Sasakian
manifolds admitting conformal Ricci soliton. We have found that a Weyl
conformally semi symmetric Lorentzian α-Sasakian manifold admitting
conformal Ricci soliton is η-Einstein manifold. We have also studied con-
harmonically Ricci symmetric Lorentzian α-Sasakian manifold admitting
conformal Ricci soliton. Similarly we have proved that a Lorentzian α-
Sasakian manifold M with projective curvature tensor admitting confor-
mal Ricci soliton is η-Einstein manifold. We have also established an
example of 3-dimensional Lorentzian α-Sasakian manifold.
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1 Introduction

In 1982 Hamilton [11] introduced the concept of Ricci flow and proved its exis-
tence. This concept was developed to answer Thurston’s geometric conjecture
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which says that each closed three manifold admits a geometric decomposition.
Hamilton also [12] classified all compact manifolds with positive curvature oper-
ator in dimension four. Since then, the Ricci flow has become a powerful tool for
the study of Riemannian manifolds, especially for those manifolds with positive
curvature.
The Ricci flow equation is given by

∂g

∂t
= −2S (1.1)

on a compact Riemannian manifoldM with Riemannian metric g. Ricci soliton
emerges as the limit of the solutions of Ricci flow. A solution to the Ricci flow
is called a Ricci soliton if it moves only by a one-parameter group of diffeomor-
phism and scaling. Ramesh Sharma [28] started the study of Ricci soliton in
contact manifolds and after him M. M. Tripathi [31], Bejan, Crasmareanu [4]
studied Ricci soliton in contact metric manifolds. The Ricci soliton equation is
given by

£Xg + 2S + 2λg = 0, (1.2)

where £X is the Lie derivative, S is Ricci tensor, g is Riemannian metric, X
is a vector field and λ is a scalar. The ϕ− vector fields are special type Ricci
soliton studied in [14, 15].
In 2005, A.E. Fischer [9] introduced a new concept called conformal Ricci

flow which is a variation of the classical Ricci flow equation that modifies the
unit volume constraint of that equation to a scalar curvature constraint. Since
the conformal geometry plays an important role to constrain the scalar curvature
and the equations are the vector field sum of a conformal flow equation and a
Ricci flow equation, the resulting equations are named as the conformal Ricci
flow equations. These new equations are given by

∂g

∂t
+ 2

(
S +

g

n

)
= −pg (1.3)

and R(g) = −1, where p is a scalar non-dynamical field(time dependent scalar
field), R(g) is the scalar curvature of the manifold and n is the dimension of
manifold.
In 2015, N. Basu and A. Bhattacharyya [3] introduced the notion of confor-

mal Ricci soliton and the equation is as follows

£Xg + 2S =

[
2λ−

(
p+

2

n

)]
g. (1.4)

The equation is the generalization of the Ricci soliton equation and it also
satisfies the conformal Ricci flow equation.
A Riemannian manifold is said to be locally symmetric if its curvature ten-

sor R satisfies ∇R = 0, where ∇ is Levi-Civita connection on the Riemannian
manifold. As a generalization of locally symmetric spaces, many geometers
have considered semi-symmetric spaces and their generalization. A Rieman-
nian manifold is said to be semi symmetric if its curvature tensor R satisfies
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R(X,Y ).R = 0 for all X,Y ∈ TM , where R(X,Y ) acts on R as a derivation. N.
S. Sinyukov, J. Mikeš, I. Hinterleitner and others studied geodesic mappings of
symmetric and semisymmetric spaces [29, 10, 18, 13, 19, 17, 22, 23, 24, 25, 16].
K. Sekigawa [27], Z. I. Szabo [30] studied Riemannian manifolds or hypersur-
faces of such manifold satisfying the condition R(X,Y ).R = 0 or condition
similar to it. It is easy to see that R(X,Y ).R = 0 implies R(X,Y ).C = 0.
So it is meaningful to undertake the study of manifolds satisfying such type of
conditions.

1.1 Definition of Einstein manifold

An Einstein manifold is a Riemannian or pseudo-Riemannian manifold with
Ricci tensor is proportional to the metric. IfM is the underlying n-dimensional
manifold and g is its metric tensor then the Einstein condition means that

S(X,Y ) = λg(X,Y ),

for some constant λ, where S denotes the Ricci tensor of g. Einstein manifolds
with λ = 0 are called Ricci-flat manifolds.

1.2 Definition of η-Einstein manifold

A trans-Sasakian manifold Mn is said to be η-Einstein manifold if its Ricci
tensor S is of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a, b are smooth functions.

2 Basic concepts of Lorentzian α-Sasakian manifolds

A differentiable manifold of dimension (2n+1) is called Lorentzian α−Sasakian
manifold [1] if it admits a (1, 1) tensor field ϕ, a vector field ξ and 1-form η and
Lorentzian metric g which satisfy on M respectively such that

ϕ2 = I + η ⊗ ξ, η(ξ) = −1, η ◦ ϕ = 0, ϕξ = 0, (2.1)

g(ϕX,ϕY ) = g(X,Y ) + η(X)η(Y ), g(X, ξ) = η(X), (2.2)

∇Xξ = αϕX, (∇Xη)Y = αg(ϕX, Y ), (2.3)

where ∇ denotes the operator of covariant differentiation with respect to the
Lorentzian metric g on M . Geometry of Sasakian spaces was studied in [21, 20,
26, 19].
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On an Lorentzian α-Sasakian manifold M the following relations hold [1]:

R(X,Y )ξ = α2[η(Y )X − η(X)Y ], (2.4)

R(ξ,X)Y = α2[g(X,Y )ξ − η(Y )X], (2.5)

S(X, ξ) = 2nα2η(X), (2.6)

Qξ = 2nα2ξ, (2.7)

S(ξ, ξ) = −2nα2, (2.8)

where α is some constant, R is the Riemannian curvature, S is the Ricci tensor
and Q is the Ricci operator given by S(X,Y ) = g(QX, Y ) for all X,Y ∈ χ(M).
Now from definition of Lie derivative we have

(£ξg)(X,Y ) = (∇ξg)(X,Y ) + g(αϕX, Y ) + g(X,αϕY )

= 2αg(ϕX, Y ), [∵ g(X,ϕY ) = g(ϕX, Y )]. (2.9)

Applying (2.9) in (1.4) we get

S(X,Y ) =
1

2

[
2λ−

(
p+

2

n

)]
g(X,Y )− αg(ϕX, Y )

= Ag(X,Y )− αg(ϕX, Y ), (2.10)

where

A =
1

2

[
2λ−

(
p+

2

n

)]
.

Since S(X,Y ) = g(QX, Y ) for the Ricci operator Q, we have

g(QX, Y ) = Ag(X,Y )− αg(ϕX, Y )

i.e.

QX = AX − αϕX, ∀Y. (2.11)

Also

S(Y, ξ) = Aη(Y ), S(ξ, ξ) = −A, Qξ = Aξ. (2.12)

If we put X = Y = ei in (2.10), where {ei} is orthonormal basis of the tangent
space TM where TM is a tangent bundle of M and summing over i, we get

R(g) = An− αg(ϕei, ei)

As R = −1, we have

−1 = An− α.(trϕ) i.e. A =
1

n
(α.(trϕ)− 1).
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2.1 Example of a 3-dimensional Lorentzian α-Sasakian man-
ifold

In this section we construct an example of a 3-dimensional Lorentzian α-Sasakian
manifold.To construct this, we consider the three dimensional manifold M =
{(x, y, z) ∈ R3 : z �= 0} where (x, y, z) are the standard coordinates in R3. The
vector fields

e1 = e−z ∂

∂x
, e2 = e−z ∂

∂y
, e3 = −e−z ∂

∂z

are linearly independent at each point of M .
Let g be the Lorentzian metric defined by

g(e1, e1) = 1, g(e2, e2) = 1, g(e3, e3) = −1,

g(e1, e2) = g(e2, e3) = g(e3, e1) = 0.

Let η be the 1-form which satisfies the relation η(e3) = −1. Let ϕ be the (1, 1)
tensor field defined by ϕ(e1) = −e1, ϕ(e2) = −e2, ϕ(e3) = 0. Then we have

ϕ2(Z) = Z + η(Z)e3,

g(ϕZ,ϕW ) = g(Z,W ) + η(Z)η(W ),

for any Z,W ∈ χ(M3). Thus for e3 = ξ, (ϕ, ξ, η, g) defines an almost contact
metric structure on M . Now, after calculating we have

[e1, e3] = −e−ze1, [e1, e2] = 0, [e2, e3] = −e−ze2.

The Riemannian connection ∇ of the metric is given by the Koszul’s formula
which is

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

−g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]). (2.13)

By Koszul’s formula we get

∇e1e1 = −e−ze3, ∇e2e1 = 0, ∇e3e1 = 0,

∇e1e2 = 0, ∇e2e2 = −e−ze3, ∇e3e2 = 0,

∇e1e3 = −e−ze1, ∇e2e3 = −e−ze2, ∇e3e3 = 0.

From the above we have found that α = e−z and it can be easily shown that
M3(ϕ, ξ, η, g) is a Lorentzian α-Sasakian manifold.

3 Lorentzian α-Sasakian manifold admitting conformal
Ricci soliton and R(ξ,X).C̃ = 0

Let M be an (2n + 1) dimensional Lorentzian α-Sasakian manifold admitting
a conformal Ricci soliton (g, V, λ). The conformal curvature tensor C̃ on M is
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defined by [2]

C̃(X,Y )Z = R(X,Y )Z − 1

2n− 1
[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX

− g(X,Z)QY ] +
R

2n(n− 1)
[g(Y, Z)X − g(X,Z)Y ], (3.1)

where R is scalar curvature.
Now we prove the following theorem:

Theorem 3.1. If a Lorentzian α-Sasakian manifold admits conformal Ricci
soliton and is Weyl conformally semi summetric i.e. R(ξ,X).C̃ = 0, then the
manifold is η-Einstein manifold where C̃ is Conformal curvature tensor and
R(ξ,X) is derivation of tensor algebra of the tangent space of the manifold.

Proof. Let M be an (2n + 1) dimensional Lorentzian α-Sasakian manifold ad-
mitting a conformal Ricci soliton (g, V, λ). So we have R = −1 [9].
After putting R = −1 and Z = ξ in (3.1) we have

C̃(X,Y )ξ

= R(X,Y )ξ − 1

2n− 1
[S(Y, ξ)X − S(X, ξ)Y + g(Y, ξ)QX − g(X, ξ)QY ]

− 1

2n(n− 1)
[g(Y, ξ)X − g(X, ξ)Y ]. (3.2)

Using (2.2), (2.4), (2.11) and (2.12) in (3.2) we get

C̃(X,Y )ξ

= α2[η(Y )X − η(X)Y ]− 1

2n− 1
[Aη(Y )X −Aη(X)Y

+ η(Y )(AX − αϕX)− η(X)(AY − αϕY )]− 1

2n(n− 1)
[η(Y )X − η(X)Y ].

(3.3)

Using (3.1) and after a brief simplification we obtain

C̃(X,Y )ξ = [α2 − 2A

2n− 1
− 1

2n(n− 1)
](η(Y )X − η(X)Y ). (3.4)

Considering

B = α2 − 2A

2n− 1
− 1

2n(n− 1)
,

(3.4) becomes
C̃(X,Y )ξ = B[η(Y )X − η(X)Y ] (3.5)

and
g(C̃(X,Y )ξ, Z) = B[η(Y )g(X,Z)− η(X)g(Y, Z)],
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which implies

−η(C̃(X,Y )Z) = B[η(Y )g(X,Z)− η(X)g(Y, Z)]. (3.6)

Now we consider that the Lorentzian α-Sasakian manifold M admits conformal
Ricci soliton and is Weyl conformally semi symmetric i.e. R(ξ,X).C̃ = 0 holds
inM (the manifold is locally isometric to the hyperbolic space Hn+1(−α2) [32]),
which implies

R(ξ,X)(C̃(Y, Z)W ) − C̃(R(ξ,X)Y, Z)W − C̃(Y,R(ξ,X)Z)W

− C̃(Y, Z)R(ξ,X)W = 0, (3.7)

for all vector fields X,Y, Z,W on M .
Using (2.5) in (3.7) and putting W = ξ we get

g(X, C̃(Y, Z)ξ)ξ − η(C̃(Y, Z)ξ)X − g(X,Y )C̃(ξ, Z)ξ

+ η(Y )C̃(X,Z)ξ − g(X,Z)C̃(Y, ξ)ξ + η(Z)C̃(Y,X)ξ

− g(X, ξ)C̃(Y, Z)ξ + η(ξ)C̃(Y, Z)X = 0. (3.8)

Taking inner product with ξ in (3.8) and using (2.1) we obtain

− g(X, C̃(Y, Z)ξ)− g(X,Y )η(C̃(ξ, Z)ξ)

+ η(Y )η(C̃(X,Z)ξ)− g(X,Z)η(C̃(Y, ξ)ξ) + η(Z)η(C̃(Y,X)ξ)

− η(X)η(C̃(Y, Z)ξ)− η(C̃(Y, Z)X) = 0. (3.9)

Using (3.5) in (3.9) we have

−Bη(Z)g(X,Y ) +Bη(Y )g(X,Z)− η(C̃(Y, Z)X) = 0. (3.10)

Putting Z = ξ in (3.10) and using (2.1) we get

Bg(X,Y ) +Bη(Y )η(X)− η(C̃(Y, ξ)X) = 0. (3.11)

Now from (3.1) we can write

C̃(Y, ξ)X

= R(Y, ξ)X − 1

2n− 1
[S(ξ,X)Y − S(Y,X)ξ + g(ξ,X)QY − g(Y,X)Qξ]

− 1

2n(n− 1)
[g(ξ,X)Y − g(Y,X)ξ]. (3.12)

Taking inner product with ξ and using (2.1), (2.5), (2.12) in (3.12) we get

η(C̃(Y, ξ)X) = α2η(X)η(Y ) + α2g(X,Y )

− A

2n− 1
η(X)η(Y )− 1

2n− 1
S(X,Y )− A

2n− 1
η(X)η(Y )

− A

2n− 1
g(X,Y )− 1

2n(n− 1)
η(X)η(Y )− 1

2n(n− 1)
g(X,Y ). (3.13)
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After putting (3.13) in (3.11) the equation reduces to

Bg(X,Y ) +Bη(Y )η(X)− α2η(X)η(Y )− α2g(X,Y )

+
A

2n− 1
η(X)η(Y ) +

1

2n− 1
S(X,Y ) +

A

2n− 1
η(X)η(Y ) +

A

2n− 1
g(X,Y )

+
1

2n(n− 1)
η(X)η(Y ) +

1

2n(n− 1)
g(X,Y ) = 0. (3.14)

Simplifying (3.14) we have

g(X,Y )

[
B − α2 +

A

2n− 1
+

1

2n(n− 1)

]

+ η(X)η(Y )

[
B − α2 +

2A

2n− 1
+

1

2n(n− 1)

]
+

1

2n− 1
S(X,Y ) = 0, (3.15)

which can be written in the form

S(X,Y ) = ρg(X,Y ) + ση(X)η(Y ), (3.16)

where

ρ = (2n− 1)

(
α2 −B − A

2n− 1
− 1

2n(n− 1)

)
and

σ = (2n− 1)

(
α2 −B − 2A

2n− 1
− 1

2n(n− 1)

)
.

So from (3.16) we conclude that the manifold becomes η-Einstein manifold.

4 Lorentzian α-Sasakian manifold admitting conformal
Ricci soliton and K(ξ,X).S = 0

Let M be an (2n+1) dimensional Lorentzian α-Sasakian manifold admitting a
conformal Ricci soliton (g, V, λ). The conharmonic curvature tensor K on M is
defined by [8]

K(X,Y )Z = R(X,Y )Z − 1

2n− 1
[S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY ]. (4.1)

for all X,Y, Z ∈ χ(M), R is the curvature tensor and Q is the Ricci operator.
Now we prove the following theorem:

Theorem 4.1. If a Lorentzian α-Sasakian manifold admits conformal Ricci
soliton and the manifold is conharmonically Ricci symmetric i.e. K(ξ,X).S = 0
then the Ricci operator Q satisfies the quadratic equation FQ2 +Q−D = 0 for
all X ∈ χ(M) where F,D are constants, K is conharmonic curvature tensor
and S is a Ricci tensor.
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Proof. Let M be an (2n + 1) dimensional Lorentzian α-Sasakian manifold ad-
mitting a conformal Ricci soliton (g, V, λ). From (4.1) we can write

K(ξ,X)Y = R(ξ,X)Y

− 1

2n− 1
[S(X,Y )ξ − S(ξ, Y )X + g(X,Y )Qξ − g(ξ, Y )QX]. (4.2)

Using (2.5), (2.12) in (4.2) we have

K(ξ,X)Y = α2[g(X,Y )ξ − η(Y )X]

− 1

2n− 1
[S(X,Y )ξ −Aη(Y )X +Ag(X,Y )ξ − η(Y )QX]. (4.3)

Similarly from (4.2) we get

K(ξ,X)Z = R(ξ,X)Z − 1

2n− 1
[S(X,Z)ξ

− S(ξ, Z)X + g(X,Z)Qξ − g(ξ, Z)QX] = α2[g(X,Z)ξ − η(Z)X]

− 1

2n− 1
[S(X,Z)ξ −Aη(Z)X +Ag(X,Z)ξ − η(Z)QX]. (4.4)

Now we consider that the tensor derivative of S by K(ξ,X) is zero i.e.
K(ξ,X).S = 0. Then the Lorentzian α-Sasakian manifold admitting confor-
mal Ricci soliton is conharmonically Ricci symmetric (the manifold is locally
isometric to the hyperbolic space Hn+1(−α2) [32]). It gives

S(K(ξ,X)Y, Z) + S(Y,K(ξ,X)Z) = 0. (4.5)

Using (4.3) and (4.4) in (4.5) we get

S(α2g(X,Y )ξ − α2η(Y )X

− 1

2n− 1
S(X,Y )ξ +

A

2n− 1
η(Y )X − A

2n− 1
g(X,Y )ξ +

η(Y )

2n− 1
QX,Z)

+ S(α2g(X,Z)ξ − α2η(Z)X − 1

2n− 1
S(X,Z)ξ +

A

2n− 1
η(Z)X

− A

2n− 1
g(X,Z)ξ +

η(Z)

2n− 1
QX, Y ) = 0. (4.6)

Putting Z = ξ and using (2.1), (2.12) in (4.6) we get

(
A2

2n− 1
−Aα2

)
g(X,Y ) + α2S(X,Y )− 1

2n− 1
S(QX, Y ) = 0
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which implies

Eg(X,Y ) +
1

2n− 1
S(QX, Y ) = −α2S(X,Y ), (4.7)

where E = A2

2n−1 −Aα2.

From (4.7) we can write

S(X,Y ) = Dg(X,Y )− 1

α2(2n− 1)
S(QX, Y ), (4.8)

where D = − 1
α2E, which implies

QX = DX − FQ2X ∀Y ∈ χ(M), (4.9)

where F = 1
α2(2n−1) , i.e.

FQ2 +Q−D = 0 ∀X. (4.10)

5 Lorentzian α-Sasakian manifold admitting conformal
Ricci soliton and P (ξ,X).C̃ = 0

Let M be an (2n+1) dimensional Lorentzian α-Sasakian manifold admitting a
conformal Ricci soliton (g, V, λ). The Weyl projective curvature tensor P on M
is given by [2]

P (X,Y )Z = R(X,Y )Z − 1

2n
[S(Y, Z)X − S(X,Z)Y ].

Now we prove the following theorem:

Theorem 5.1. If a Lorentzian α-Sasakian manifold M admits conformal Ricci
soliton and P (ξ,X).C̃ = 0 holds, then the manifold becomes η-Einstein mani-
fold, where P is projective curvature tensor and C̃ is conformal curvature tensor.

Proof. We know from (3.1) that

C̃(ξ,X)Y = R(ξ,X)Y

− 1

2n− 1
[S(X,Y )ξ − S(ξ, Y )X + g(X,Y )Qξ − g(ξ, Y )QX]

− 1

2n(n− 1)
[g(X,Y )ξ − g(ξ, Y )X], (5.1)

since for conformal Ricci soliton the scalar curvature R = −1 [9].
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From (2.5), (2.12) and taking inner product with ξ on (5.1) we have

η(C̃(ξ,X)Y ) = α2g(X,Y )η(ξ)− α2η(Y )η(X)

− 1

2n− 1
S(X,Y )η(ξ) +

A

2n− 1
η(Y )η(X)− A

2n− 1
η(ξ)g(X,Y )

+
1

2n− 1
η(Y )η(QX)− 1

2n(n− 1)
[g(X,Y )η(ξ)− η(Y )η(X)]

= g(X,Y )

[
A

2n− 1
− α2 +

1

2n(n− 1)

]

+ η(Y )η(X)

[
2A

2n− 1
− α2 +

1

2n(n− 1)

]

+
1

2n− 1
S(X,Y ) = Fg(X,Y ) +Gη(Y )η(X) + TS(X,Y ),

where

F =
A

2n− 1
− α2 +

1

2n(n− 1)
,

G =
2A

2n− 1
− α2 +

1

2n(n− 1)

and

T =
1

2n− 1
.

Also
η(C̃(X,Y )ξ) = B[η(Y )η(X)− η(X)η(Y )] = 0

and
η(C̃(Y, ξ)ξ) = B[η(Y )η(ξ)− η(ξ)η(Y )] = 0.

Now

P (ξ,X)Y = R(ξ,X)Y − 1

2n
[S(X,Y )ξ − S(ξ, Y )X]. (5.2)

Using (2.5), (2.12) in (5.2) we get

P (ξ,X)Y = α2[g(X,Y )ξ − η(Y )X]− 1

2n
[S(X,Y )ξ −Aη(Y )X]. (5.3)

Here we consider that the tensor derivative of C̃ by P (ξ,X) is zero i.e. confor-
mally symmetric with respect to projective curvature tensor i.e. P (ξ,X).C̃ = 0
holds (the manifold is locally isometric to the hyperbolic spaceHn+1(−α2) [32]).
So

P (ξ,X)C̃(Y, Z)W − C̃(P (ξ,X)Y, Z)W − C̃(Y, P (ξ,X)Z)W

− C̃(Y, Z)P (ξ,X)W = 0, (5.4)

for all vector fields X,Y, Z,W on M .
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Using (5.3) in (5.4) and putting W = ξ we have

α2g(X, C̃(Y, Z)ξ)ξ − α2η(C̃(Y, Z)ξ)X

− 1

2n
S(X, C̃(Y, Z)ξ)ξ +

A

2n
η(C̃(Y, Z)ξ)X − α2g(X,Y )C̃(ξ, Z)ξ

+ α2η(Y )C̃(X,Z)ξ +
1

2n
S(X,Y )C̃(ξ, Z)ξ − A

2n
η(Y )C̃(X,Z)ξ

− α2g(X,Z)C̃(Y, ξ)ξ + α2η(Z)C̃(Y,X)ξ +
1

2n
S(X,Z)C̃(Y, ξ)ξ

− A

2n
η(Z)C̃(Y,X)ξ − α2g(X, ξ)C̃(Y, Z)ξ + α2η(ξ)C̃(Y, Z)X

+
1

2n
S(X, ξ)C̃(Y, Z)ξ − A

2n
η(ξ)C̃(Y, Z)X = 0. (5.5)

Taking inner product with ξ on (5.5) we get

−α2g(X, C̃(Y, Z)ξ) +
1

2n
S(X, C̃(Y, Z)ξ) = 0. (5.6)

From (3.2) and (5.6) we have

−α2Bη(Z)g(X,Y )+α2η(Y )Bg(X,Z)+
B

2n
η(Z)S(X,Y )− B

2n
η(Y )S(X,Z) = 0.

(5.7)
Putting z = ξ in (5.7) and using (2.1), (2.12) we obtain

α2Bg(X,Y ) +Bα2η(Y )η(X)− B

2n
S(X,Y )− AB

2n
η(Y )η(X) = 0,

which implies

S(X,Y ) = 2nα2g(X,Y ) + 2n(α2 − A

2n
)η(Y )η(X). (5.8)

So the manifold becomes η-Einstein manifold.

Acknowledgement. Authors are thankful to honorable referee for valuable
suggestions to improve the paper.
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[10] Formella, S., Mikeš, J.: Geodesic mappings of Einstein spaces. Ann. Sci. Stetinenses 9
(1994), 31–40.

[11] Hamilton, R. S.: Three Manifold with positive Ricci curvature. J. Differential Geom. 17,
2 (1982), 255–306.

[12] Hamilton, R. S.: The Ricci flow on surfaces. Contemporary Mathematics 71 (1988),
237–261.
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[19] Mikeš, J. et al.: Differential Geometry of Special Mappings. Palacky Univ. Press, Olo-
mouc, 2015.
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