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Abstract

In this paper we have studied conformal curvature tensor, conharmonic
curvature tensor, projective curvature tensor in Lorentzian a-Sasakian
manifolds admitting conformal Ricci soliton. We have found that a Weyl
conformally semi symmetric Lorentzian a-Sasakian manifold admitting
conformal Ricci soliton is 7-Einstein manifold. We have also studied con-
harmonically Ricci symmetric Lorentzian a-Sasakian manifold admitting
conformal Ricci soliton. Similarly we have proved that a Lorentzian a-
Sasakian manifold M with projective curvature tensor admitting confor-
mal Ricci soliton is n-Einstein manifold. We have also established an
example of 3-dimensional Lorentzian a-Sasakian manifold.

Key words: Conformal Ricci soliton, conformal curvature tensor,
conharmonic curvature tensor, Lorentzian a-Sasakian manifolds, pro-
jective curvature tensor.

2010 Mathematics Subject Classification: Primary 53C44; Sec-
ondary 53D10, 53C25

1 Introduction

In 1982 Hamilton [11] introduced the concept of Ricci flow and proved its exis-
tence. This concept was developed to answer Thurston’s geometric conjecture
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which says that each closed three manifold admits a geometric decomposition.
Hamilton also [12] classified all compact manifolds with positive curvature oper-
ator in dimension four. Since then, the Ricci flow has become a powerful tool for
the study of Riemannian manifolds, especially for those manifolds with positive
curvature.

The Ricci flow equation is given by

dg

ot
on a compact Riemannian manifold M with Riemannian metric g. Ricci soliton
emerges as the limit of the solutions of Ricci flow. A solution to the Ricci flow
is called a Ricci soliton if it moves only by a one-parameter group of diffeomor-
phism and scaling. Ramesh Sharma [28] started the study of Ricci soliton in
contact manifolds and after him M. M. Tripathi [31], Bejan, Crasmareanu [4]
studied Ricci soliton in contact metric manifolds. The Ricci soliton equation is
given by

—28 (1.1)

£xg+254+2\g =0, (1.2)

where £x is the Lie derivative, S is Ricci tensor, g is Riemannian metric, X
is a vector field and X is a scalar. The p— vector fields are special type Ricci
soliton studied in [14, 15].

In 2005, A.E. Fischer [9] introduced a new concept called conformal Ricci
flow which is a variation of the classical Ricci flow equation that modifies the
unit volume constraint of that equation to a scalar curvature constraint. Since
the conformal geometry plays an important role to constrain the scalar curvature
and the equations are the vector field sum of a conformal flow equation and a
Ricci flow equation, the resulting equations are named as the conformal Ricci
flow equations. These new equations are given by

9g g

9 4o (S f) = 1.3

o T2 5 P9 (1.3)
and R(g) = —1, where p is a scalar non-dynamical field(time dependent scalar

field), R(g) is the scalar curvature of the manifold and n is the dimension of
manifold.

In 2015, N. Basu and A. Bhattacharyya [3] introduced the notion of confor-
mal Ricci soliton and the equation is as follows

£xg+28 = {2)\ - (p+ ZH g. (1.4)

The equation is the generalization of the Ricci soliton equation and it also
satisfies the conformal Ricci flow equation.

A Riemannian manifold is said to be locally symmetric if its curvature ten-
sor R satisfies VR = 0, where V is Levi-Civita connection on the Riemannian
manifold. As a generalization of locally symmetric spaces, many geometers
have considered semi-symmetric spaces and their generalization. A Rieman-
nian manifold is said to be semi symmetric if its curvature tensor R satisfies
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R(X,Y).R=0forall XY € TM, where R(X,Y) acts on R as a derivation. N.
S. Sinyukov, J. Mikes, I. Hinterleitner and others studied geodesic mappings of
symmetric and semisymmetric spaces [29, 10, 18, 13, 19, 17, 22, 23, 24, 25, 16].
K. Sekigawa [27], Z. I. Szabo [30] studied Riemannian manifolds or hypersur-
faces of such manifold satisfying the condition R(X,Y).R = 0 or condition
similar to it. It is easy to see that R(X,Y).R = 0 implies R(X,Y).C = 0.
So it is meaningful to undertake the study of manifolds satisfying such type of
conditions.

1.1 Definition of Einstein manifold

An Einstein manifold is a Riemannian or pseudo-Riemannian manifold with
Ricci tensor is proportional to the metric. If M is the underlying n-dimensional
manifold and g is its metric tensor then the Einstein condition means that

S(X,Y) =M(X,Y),

for some constant A, where S denotes the Ricci tensor of g. Einstein manifolds
with A = 0 are called Ricci-flat manifolds.

1.2 Definition of 7-Einstein manifold

A trans-Sasakian manifold M™ is said to be n-Einstein manifold if its Ricci
tensor S is of the form

S(X,Y) = ag(X,Y) + bn(X)n(Y),

where a, b are smooth functions.

2 Basic concepts of Lorentzian a-Sasakian manifolds

A differentiable manifold of dimension (2n+ 1) is called Lorentzian a—Sasakian
manifold [1] if it admits a (1, 1) tensor field ¢, a vector field £ and 1-form 1 and
Lorentzian metric g which satisfy on M respectively such that

P =T+n®E nE)=-1, nop=0, =0, (2.1)
9(pX, oY) = g(X,Y) +n(X)n(Y), g(X,&) =n(X), (2.2)
Vxé=apX, (Vxn)Y =ag(eX,Y), (2.3)

where V denotes the operator of covariant differentiation with respect to the
Lorentzian metric g on M. Geometry of Sasakian spaces was studied in [21, 20,
26, 19].
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On an Lorentzian a-Sasakian manifold M the following relations hold [1]:

R(X,Y)¢ = o®[n(Y)X —n(X)Y], (2.4)
R(§, X)Y = ®[g(X,Y)E —n(Y)X], (2.5)
S(X,€) = 2na’n(X), (2.6)
Q¢ = 2na’¢, (2.7)
S(¢,€) = —2na’, (2.8)

where « is some constant, R is the Riemannian curvature, S is the Ricci tensor
and @ is the Ricci operator given by S(X,Y) = g(QX,Y) for all X,Y € x(M).
Now from definition of Lie derivative we have

(£eg)(X,Y) = (Veg)(X,Y) + g(apX,Y) + g(X, apY)

2a9(pX,Y), [ 9(X,9Y) = g(pX,Y)]. (2.9)

Applying (2.9) in (1.4) we get

S(X,Y)

% [2/\ - (p+ %)] 9(X,Y) —ag(pX,Y)
Ag(X,Y) — ag(eX,Y), (2.10)

=)

Since S(X,Y) = g(QX,Y) for the Ricci operator @, we have

where

9(QX,Y) = Ag(X,Y) — ag(pX,Y)

i.e.

QX = AX —apX, VY. (2.11)

Also
S(Y,§) = An(Y), S8 =-4, Q¢=A¢ (2.12)

If we put X =Y =¢; in (2.10), where {e;} is orthonormal basis of the tangent
space T'M where T'M is a tangent bundle of M and summing over i, we get

R(g) = An — ag(pe;, e;)

As R = —1, we have

—1=An—a.(trp) ie. A= %(a.(trgp) -1).
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2.1 Example of a 3-dimensional Lorentzian a-Sasakian man-
ifold

In this section we construct an example of a 3-dimensional Lorentzian a-Sasakian
manifold.To construct this, we consider the three dimensional manifold M =
{(z,y,2) € R®: 2 # 0} where (z,v, 2) are the standard coordinates in R3. The
vector fields

9] 0 0

ox’ dy’ Dz
are linearly independent at each point of M.
Let g be the Lorentzian metric defined by

e = e €y = €3 = —¢€

gler,en) =1, glez,e2) =1, gles,e3) = —1,
g(er,e2) = g(ez,e3) = g(es, e1) = 0.
Let n be the 1-form which satisfies the relation 7(e3) = —1. Let ¢ be the (1,1)
tensor field defined by ¢(e1) = —eq, @(e2) = —ea, p(e3) = 0. Then we have
¢*(Z) = Z +n(Z)es,
9(pZ, W) = g(Z, W) +n(Z)n(W),

for any Z,W € x(M?). Thus for e3 = £, (¢,£,7,9) defines an almost contact
metric structure on M. Now, after calculating we have

le1,e3] = —e Fe1, [e1,ea] =0, [ea,e3] = —e “ea.

The Riemannian connection V of the metric is given by the Koszul’s formula
which is
29(VxY,Z) = Xg(Y.Z) + Yg(2,X) ~ Zg(X.Y)

—g(X, [YvZ])_g(Yv [X,Z])-i—g(Z, [XvY]) (2.13)

By Koszul’s formula we get

velel = 7672637 vezel = 07 v€3€1 = 07
v6162 = 07 v62€2 = _6_2637 v6362 = 07
Ve, €3 =—€ “e1, V,e3=—e “ea, Vee3=0.
From the above we have found that & = ™% and it can be easily shown that
M3(p,&,m,9) is a Lorentzian a-Sasakian manifold.

3 Lorentzian o-Sasakian manifold admitting conformal
Ricci soliton and R(¢, X).C' =0

Let M be an (2n + 1) dimensional Lorentzian a-Sasakian manifold admitting
a conformal Ricci soliton (g, V, A). The conformal curvature tensor C' on M is
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defined by [2]

~ 1
X, Y)Z = R(X,Y)Z —
CX,Y)Z = RX,Y)Z - 5~

[S(Y,2)X — S(X,2)Y + g(Y, 2)QX

—9(X, 2)QY] + Y, Z)X —g(X,2)Y],  (3.1)

2 —1) 9
where R is scalar curvature.
Now we prove the following theorem:

Theorem 3.1. If a Lorentzian a-Sasakian manifold admits conformal Ricci
soliton and is Weyl conformally semi summetric i.e. R(§, X).C = 0, then the
manifold is n-FEinstein manifold where C is Conformal curvature tensor and

R(&, X) is derivation of tensor algebra of the tangent space of the manifold.

Proof. Let M be an (2n + 1) dimensional Lorentzian a-Sasakian manifold ad-
mitting a conformal Ricci soliton (g, V, A). So we have R = —1 [9].
After putting R = —1 and Z = £ in (3.1) we have

C(X,Y)¢
= R(X,Y){ - an_ T [S(Y,6)X — S(X, €)Y + ¢(Y,6)QX — g(X,£)QY]
- m[g(lﬂ HX —g9(X,9Y]. (3.2)

Using (2.2), (2.4), (2.11) and (2.12) in (3.2) we get

C(X,Y)¢
1
o1

+n(Y)(AX — apX) = n(X)(AY — apY)] -

=?(Y)X —n(X)Y] [An(Y)X — An(X)Y

(V)X —n(X)Y].

2n(n —1)
(3.3)
Using (3.1) and after a brief simplification we obtain
CEYE=[a?— 20— L)X - a(Y). (3.4)
ST m—1 2nn—1)"" K ' '
Considering
2A 1
— 2 —
B=a 2n—1 2n(n—1)’
(3.4) becomes }
C(X,Y)§ = Bn(Y)X —n(X)Y] (3.5)

and
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which implies
—n(C(X,Y)Z) = Bin(Y)g(X, Z) = n(X)g(Y, Z)]. (3.6)

Now we consider that the Lorentzian a-Sasakian manifold M admits conformal
Ricci soliton and is Weyl conformally semi symmetric i.e. R(£, X).C' = 0 holds
in M (the manifold is locally isometric to the hyperbolic space H"™!(—a?) [32]),
which implies
R(&,X)(C(Y,.Z)W) — C(R(E X)Y, Z)W — C(Y,R(§, X) Z)W

— C(Y, Z)R(&, X)W =0, (3.7)

for all vector fields X,Y, Z, W on M.
Using (2.5) in (3.7) and putting W = £ we get

g(X7 O(K Z)f)f - U(O(Y, Z)g)X - g(X’ Y)é(ga Z)f

+n(Y)O(X, 2)¢ — g(X, Z)C(Y,€)E +n(Z)C(Y, X )¢
—9(X,C(Y, Z2)¢+n(€)C(Y, Z)X =0. (3.8)

Taking inner product with £ in (3.8) and using (2.1) we obtain

—g(X,C(Y, 2)¢) — g(X,Y)n(C(€, 2)¢)
+0(Y)n(C(X, 2)€) = g(X, Z)n(C (Y, )&) + n(Z)n(C (Y, X)¢ )
—(X)n(C(Y, 2)¢) = n(C(Y, 2)X) = 0. (3.9)
Using (3.5) in (3.9) we have
—Bn(2)9(X,Y) + By(Y)g(X, Z) = n(C(Y. Z)X) = 0. (3.10)

Putting Z = £ in (3.10) and using (2.1) we get
By(X, ) + By(Yn(X) = n(C(Y,€)X) = 0, (3.11)
Now from (3.1) we can write

C(Y,6)X

—R(V.)X — —

2n—1

[S(&, X)Y = S(Y, X)§ +9(§, X)QY — g(Y, X)Q¢]

- m[g(@X)Y —g(Y, X)¢l. (3.12)

Taking inner product with £ and using (2.1), (2.5), (2.12) in (3.12) we get
(C(Y,€)X) = a®n(X)n(Y) + a*g(X,Y)

AXm(Y) — 5

C2n—1 S(X.Y) -

9(X,Y) = -

2n—1
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After putting (3.13) in (3.11) the equation reduces to

Bg(X,Y) + Bn(Y)n(X) — o*n(X)n(Y) — o’g(X,Y)

1
g n(X(Y) 4 5 SOGY) 4 (XY + 5 g(X,Y)
1
— (X )n(Y —g(X,Y) =0. .14
+ gt =1y + o a(XY) =0, (314
Simplifying (3.14) we have
A 1
X,Y)|B—-a?
9(x, ){ “ +2n1+2n(n1)}
2A 1 1
— 2 =
+n(X)nY) {B o+ T— + n(n = 1)} o 1S(X,Y) 0, (3.15)
which can be written in the form
S(X,Y) = pg(X,Y) + on(X)n(Y), (3.16)
where A )
_ _ 2 _ _
p=(n—1) (O‘ B 2n(n—1))
and 94 .
_ _ 2 _p_ _
o= (2n 1)(a B o 2n(n1))'

So from (3.16) we conclude that the manifold becomes n-Einstein manifold. O

4 Lorentzian o-Sasakian manifold admitting conformal

Ricci soliton and K (&, X).S =0

Let M be an (2n + 1) dimensional Lorentzian a-Sasakian manifold admitting a
conformal Ricci soliton (g, V, A). The conharmonic curvature tensor K on M is
defined by [8]

K(X,Y)Z = R(X,Y)Z — 2n1_ C[S(Y.2)X — S(X. 2)Y

+9(Y, 2)QX — g(X, 2)QY]. (4.1)

for all XY, Z € x(M), R is the curvature tensor and @ is the Ricci operator.
Now we prove the following theorem:

Theorem 4.1. If a Lorentzian a-Sasakian manifold admits conformal Ricci
soliton and the manifold is conharmonically Ricci symmetric i.e. K(£,X).S=0
then the Ricci operator Q) satisfies the quadratic equation FQ* 4+ @Q — D =0 for
all X € x(M) where F, D are constants, K 1is conharmonic curvature tensor
and S is a Ricci tensor.
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Proof. Let M be an (2n + 1) dimensional Lorentzian a-Sasakian manifold ad-
mitting a conformal Ricci soliton (g, V, ). From (4.1) we can write

K X)Y =R(EX)Y

JoISCLY)E— S(EY)X +9(X,V)QE ~ (6, V)QX].  (42)

Using (2.5), (2.12) in (4.2) we have

K(§, X)Y = o’[g(X,Y)€ — n(Y)X]

S S(XY)E— An(Y)X + Ag(X,V)E—n(Y)QX].  (43)

Similarly from (4.2) we get

K(6,X)7 = RIE,X)Z - 5 [S(X, 2)¢
~S(6.2)X + 9(X, 2)Q¢ - 9(6. 2)QX] = 0?[g(X, 2)¢ ~ n(Z)X]

S IS(X. 20— An(Z)X + Ag(X, 2)6 ~ n(2)QX]. (4.4)

Now we consider that the tensor derivative of S by K(&, X) is zero i.e.
K(£,X).S = 0. Then the Lorentzian a-Sasakian manifold admitting confor-
mal Ricci soliton is conharmonically Ricci symmetric (the manifold is locally
isometric to the hyperbolic space H" ! (—a?) [32]). It gives

S(K(¢,X)Y,Z) + S(Y,K(£,X)Z) = 0. (4.5)
Using (4.3) and (4.4) in (4.5) we get
S(a®g(X,Y)E — a®n(Y)X
S SEYE (X - e+ 2o 2)
+5(a9(X, 2)6 — Pu(Z)X — T S(X, 2)6 + 50 2)X

2n—1

9(X, 2)¢ + (%) QX,Y)=0. (4.6)

2n—1 2n —1
Putting Z = £ and using (2.1), (2.12) in (4.6) we get
A Aa? | g(X,Y) +a?S(X,Y) ! S(QX,Y)=0
ap—1 ) I Ta  TeT T
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which implies

S(QX,Y)=—-a*S(X,Y), (4.7)

1
Eg(X,Y
9XY) + 5

2
where E = 2A — Aa?.
n—1

From (4.7) we can write

S(X,Y)=Dg(X,Y) - mS(QX, Y), (4.8)
where D = féE, which implies
QX = DX — FQ*X VY € x(M), (4.9)
where F' = m, ie.
FQ*+Q-D=0 VX. (4.10)
O

5 Lorentzian o-Sasakian manifold admitting conformal
Ricci soliton and P(¢,X).C =0

Let M be an (2n + 1) dimensional Lorentzian a-Sasakian manifold admitting a
conformal Ricci soliton (g, V, A). The Weyl projective curvature tensor P on M
is given by [2]

P(X,Y)Z =R(X,Y)Z — %[S(Y, Z)X - 8(X, 2)Y].

Now we prove the following theorem:

Theorem 5.1. If a Lorentzian a-Sasakian manifold M admits conformal Ricci
soliton and P(§, X).C' = 0 holds, then the manifold becomes n-Einstein mani-
fold, where P is projective curvature tensor and C' is conformal curvature tensor.

Proof. We know from (3.1) that

C(6,X)Y = R(&,X)Y
1
2n —1
1

- m[g(X,Y)E—g(f,Y)X], (5.1)

[S(X,Y)E =S Y)X +9(X,Y)QE — g(§,Y)QX]

since for conformal Ricci soliton the scalar curvature R = —1 [9].
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From (2.5), (2.12) and taking inner product with £ on (5.1) we have

n(C(&, X)Y) = a’g(X,Y)n(&) — o*n(Y)n(X)

SO + 5 V(X)L n(@)e(X,Y)
+ gm0 QX) = o (X Y)E) = (¥ (X)]
A ) 1
=9(X.Y) [Qn 1 “ + 2n(n — 1)}
+n(Y)n(X) [25/_1 oo’ + r(nl_ 1)}
T gnl, CS(X,Y) = Fg(X,Y) + Gn(Y)n(X) + TS(X,Y),
where
— A 2 1
T R Y D
_ 24, 1
Tt Y T o)
and
_ 1
-1
Also 3
n(C(X,Y)E) = Bln(¥)n(X) — n(X)n(Y)] =0
and
n(C(Y,€)&) = Bln(Y)n(&) — n(€)n(Y)] = 0.
Now
PEX)Y = REX)Y - [SXVE-SEVIX. ()

Using (2.5), (2.12) in (5.2) we get

P& X)Y = a[g(X, V)€~ n(¥)X] = -[S(LY)E— An(V)X] (5.

Here we consider that the tensor derivative of C' by P(€, X) is zero i.e. confor-

mally symmetric with respect to projective curvature tensor i.e. P(¢,X).C =0
holds (the manifold is locally isometric to the hyperbolic space H" ™! (—a?) [32]).
So
P&, X)C(Y, 2)W — C(P(EX)Y,Z)W — C(Y, P(£, X)Z)W
— C(Y, 2)P(¢&, X)W =0, (5.4)

for all vector fields X,Y, Z, W on M.
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Using (5.3) in (5.4) and putting W = £ we have

0’g(X, C(Y, 2)§)§ — a®n(C(Y, 2)§) X

— 5= SOXCWY Z)E)E + 2n(CY, 2)6)X — ag(X,Y)CE, 2)

FaP(Y)O(X, 2)6 + 5-S(X,V)C(E 2)6 ~ aen(VIOX, 2)¢

— (X, 2)C(Y, )€ + a*(Z)OY, X)e + 5o (X, 2)C(Y, )¢

~ Zn2)0, X)E - 29X OO, 206 + a?n(©)O(Y. 2)X
+ %S(X,S)C‘(Y, Z)¢ - %n(g)é(y, Z)X =0. (5.5)

Taking inner product with ¢ on (5.5) we get

~a?g(X, C(Y, 2)6) + 5-S(X,C(Y, 2)6) = 0. (5.6)

From (3.2) and (5.6) we have

—o?Bn(2)g(X,Y)+o*n(Y)Bg(X, Z) + %n(Z)S(X, Y)— E77(1/)5()(, Z)=0.

2n
(5.7)
Putting z = ¢ in (5.7) and using (2.1), (2.12) we obtain
B AB
a’Bg(X,Y) + Ba’n(Y)n(X) = -S(X,Y) = Z=n(Y)n(X) =0,
which implies
A
S(X.Y) = 200%9(X, Y) + 20(0® — 2 (Y In(X). (5.5)
n
So the manifold becomes n-Einstein manifold. O
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