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Abstract

The aim of the paper is to show some possible statistical solutions of
the connecting measurements. The algorithms were published in [1], [2]
and [3]. The paper concentrates on numerical studies of these algorithms,
finding estimators of parameters and comparing their covariance matrices.
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1 Introduction

We study two stage linear models, where we must respect uncertainty in connect-
ing measurements and estimations of parameters for connecting measurements.
We have got estimator Θ̂ of parameter Θ in the first stage before measurements
(we measure by an instrument with known parameters). In connection with un-
certainty of estimation of parameters Θ for connected measurements we define
“uncertainty of type B” in comparison with “uncertainty of type A”, connected
with accuracy of connecting measurements.
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70 Jaroslav MAREK

We study the model where in the second stage (connecting measurements)
occurs the constraints on parameters of the first and the second stage (type I).
We need to considered these constraints during finding estimators of param-

eters from the second stage.
We define Uβ of unbiased estimators β̃ of the parameters β in the regular

model, where we respect errors in connecting points; and class Ũβ of unbiased

estimators ˜̃β of parameter β satisfying the constraints between parameters of
the first and the second stage.
The estimators from the class Uβ need not fulfil the constraints between

parameters of the first and the second stages. There does not exist any jointly
efficient estimator in the class Ũβ . Therefore we study estimators from the class
Ũβ which minimize a linear functional of the covariance matrix of the estimator˜̃
β.

2 Estimation in model of connecting measurements with
constraints of type I

Definition 2.1 The model of connecting measurement will be called random
vector Y = (Y′

1,Y
′
2), with the mean values and the covariance matrix:(

Y1

Y2

)
∼
[(

X1, 0
D, X2

)(
Θ
β

)
,

(
Σ1,1, 0
0, Σ2,2

)]
,

whereX1,D,X2 are known n1×k1, n2×k1, n2×k2 matrices, with the condition
M(D′) ⊂ M(X′

1); Θ, β are unknown k1 and k2-dimensional vectors; Σ1,1 and
Σ2,2 are known covariance matrices of vectors Y1 and Y2.

In this model the parameter Θ is estimated on the basis of the vector Y1 of
the first stage and parameter β on the basis of vectors Y2 −DΘ̂ and Θ̂. The
results of measurements from the second stage (this means Y2) we cannot use
for the change of the estimator Θ̂.
The parametric space of this model of connecting measurementsY according

Definition 2.1 is
Θ = {(Θ′, β′) : Bβ + CΘ + a = 0}

where B,C are q × k2, q × k1 matrices and where a is q-dimensional vector,
where r(B) = q < k2.
The vector Θ is the parameter of the first stage (connecting), the vector β

is the parameter of the second stage (connected). In the second stage we have
the unbiased estimator Θ̂ = (X1Σ−1

1,1X1)−1X′
1Σ

−1
1,1Y1 from the first stage and

its covariance matrix Var(Θ̂) = (X1Σ−1
1,1X1)−1.

Definition 2.2 The model in Definition 2.1 in this parametric space Θ is regu-
lar provided r(X1) = k1, r(X2) = k2, Σ1,1,Σ2,2 are positively definite matrices
and r(B) = q.
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Definition 2.3 We will consider the model of connecting measurements ac-
cording to Definition 2.1. Estimator L′Y +d of the function f(β) = f ′β, where
exists Θ where

(
Θ
β

) ∈ Θ, where f is given vector from Rk we call the best linear
unbiased estimator (i.e. the best in the sense of variance) if it is

(i) unbiased: for all (Θ′, β′) ∈ Θ is E(L′Y + d) = f ′β,
(ii) efficient: Var(L′Y + d) ≤ Var(L̃′Y + d̃), where L̃′Y + d̃ is arbitrary other
unbiased estimator of function f(β).

Lemma 2.1 The class Uβ of all linear unbiased estimators β̃ of the parameter
β based on the vectors Y2 −DΘ̂ and Θ̂ is

Uβ =
{

[X−
2 + Z(I −X2X−

2 ) + EBX−
2 ](Y2 −DΘ̂) + ECΘ̂ + Ea :

Z an arbitrary k2 × n2 matrix, E an arbitrary k2 × q matrix
X−

2 an arbitrary but fixed X−
2 ∈ X−, (−means g-inverse)

}
.

Proof [1], p. 646.

Lemma 2.2 The class Ũβ of all linear unbiased estimators
˜̃
β of the parameter

β in the model from Definition 2.1 based on vectors Y2 − DΘ̂ and Θ̂, and

satisfaying the (random) condition B˜̃β + CΘ̂ + a = 0 is

Ũβ =
{[

I−B−B
][

X−
2 + W1(I−X2X−

2 ) + W2BX−
2

]
(Y2 −DΘ̂)

+
[−B− + (I−B−B)W2

]
CΘ̂ + (I−B−B)W2a−B−a,

W1 an arbitrary k2 × n2 matrix,W2 an arbitrary k2 × q matrix
X−

2 and B− are arbitrary but fixed X−
2 ∈ X−,B− ∈ B− matrices

}
.

Proof [1], p. 647.

Corollary 2.1 Covariance matrix of the estimator ˜̃β is
Var(̃̃β) = (I−B−B)

[
X−

2 + W1(I−X2X−
2 ) + W2BX−

2

]
Σ2,2

× [X−
2 + W1(I−X2X−

2 ) + W2BX−
2

]′
(I−B−B)′

+ {(I−B−B)[−X−
2 D−W1(I−X2X−

2 )D−W2BX−
2 D

+ W2C]−B−C}]Σ1,1(I−B−B)
× {[−X−

2 D−W1(I−X2X−
2 )D−W2BX−

2 D + W2C]−B−C}′.

Corollary 2.2 Covariance matrix of the estimator ˜̃β, for case of the model,
where X2 = I, is

Var(̃̃β) = (I−B−B)[I + W2B]Σ2,2 × [I + W2B]′(I−B−B)′

+ {(I−B−B)[−D−W2BD + W2C]−B−C}
×Σ1,1{(I−B−B)[−D−W2BD + W2C]−B−C}′.
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Theorem 2.1 In the class Uβ in Lemma 2.1 (estimators β̃ from Uβ need not to
satisfay condition Bβ̃ +CΘ̂+a = 0), there exists the jointly efficient estimator
β̂∗ of the vector β

β̂∗ =
((

X′
2, B′ )−

m(S)

)′(Y2 −DΘ̂
−CΘ̂− a

)
,

where

S =
(

S11, S12

S21, S22

)
S11 = Σ2,2 + D(X′

1Σ
−1
1,1X1)−1D′, S12 = D(X′

1Σ
−1
1,1X1)−1C′,

S21 = C(X′
1Σ

−1
1,1X1)−1D′, S22 = C(X′

1Σ
−1
1,1X1)−1C′.

Proof [1], p. 649.

Definition 2.4 The least squares estimator of the parameter β obtained under
the condition Σ1,1 = 0 (⇒ Var(Θ̂) = 0) is called the standard estimator if in
this estimator the vector Θ is substituted by Θ̂.

Theorem 2.2 The standard estimator β̂ of the parameter β in the model ac-
cording Definition 2.1 is given as

β̂ = (X′
2Σ

−1
2,2X2)−1X′

2Σ
−1
2,2(Y2 −DΘ̂)

− (X′
2Σ

−1
2,2X2)−1B′[B(X′

2Σ
−1
2,2X2)−1B′]−1

× {a + CΘ̂ + B(X′
2Σ

−1
2,2X2)−1X′

2Σ
−1
2,2(Y2 −DΘ̂)},

whereas this estimator is unbiased, it means E(β̂) = β.

Proof The best linear estimator β̂ determined by the least squares method
in the model Y ∼n (DΘ + X2β,Σ2,2) satisfying condition Bβ + CΘ + a = 0,
where the parameter Θ is known, we get by minimizing the function

φ(β) = (Y2 −DΘ −X2β)′Σ−1
2,2(Y2 −DΘ−X2β)− 2λ′[(a + CΘ) + Bβ]

= (Y2 −DΘ)′Σ−1
2,2(Y2 −DΘ)− 2β′X′

2Σ
−1
2,2(Y2 −DΘ) + β′X′

2Σ
−1
2,2X2β

− 2λ′[a + CΘ + Bβ].

We determine the derivative of the function φ(β)

∂φ(β)
∂β

= −2X2Σ−1
2,2(Y2 −DΘ) + 2X′

2Σ
−1
2,2X2β̂ − 2B′λ

and solve the system of equations

∂φ(β)
∂β

= −2X2Σ−1
2,2(Y2 −DΘ) + 2X′

2Σ
−1
2,2X2β̂ − 2B′λ = 0

Bβ + CΘ + a = 0.
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From the first equation we get β̂

β̂ = (X′
2Σ

−1
2,2X2)−1X′

2Σ
−1
2,2(Y2 −DΘ) + (X′

2Σ
−1
2,2X2)−1B′λ

and after substitution into the second equation

a + CΘ + B(X′
2Σ

−1
2,2X2)−1X2Σ−1

2,2(Y2 −DΘ) + B(X′
2Σ

−1
2,2X2)−1B′λ = 0

we determine

λ = −[B(X′
2Σ

−1
2,2X2)−1B′]−1{a + CΘ + B(X′

2Σ
−1
2,2X2)−1X′

2Σ
−1
2,2(Y2 −DΘ)}.

After substitution λ into the first equation we get

β̂ = (X′
2Σ

−1
2,2X2)−1X′

2Σ
−1
2,2(Y2 −DΘ)

− (X′
2Σ

−1
2,2X2)−1B′[B(X′

2Σ
−1
2,2X2)−1B′]−1

× {a + CΘ + B(X′
2Σ

−1
2,2X2)−1X′

2Σ
−1
2,2(Y2 −DΘ)},

β̂ = −(X′
2Σ

−1
2,2X2)−1B′[B(X′

2Σ
−1
2,2X2)−1B′]−1(a + CΘ)

+ {I− (X′
2Σ

−1
2,2X2)−1B′[B(X′

2Σ
−1
2,2X2)−1B′]−1B}

× (X′
2Σ

−1
2,2X2)−1X′

2Σ
−1
2,2(Y2 −DΘ),

β̂ = {I− (X′
2Σ

−1
2,2X2)−1B′[B(X′

2Σ
−1
2,2X2)−1B′]−1B}(X′

2Σ
−1
2,2X2)−1X′

2Σ
−1
2,2

× (Y2 −DΘ)− (X′
2Σ

−1
2,2X2)−1B′[B(X′

2Σ
−1
2,2X2)−1B′]−1}(a + CΘ).

By choosing Θ̂ for Θ we get the standard estimator.
The assertion E(β̂) = β is the result from our premise E(Θ̂) = Θ and the

fact that E(Y2) = DΘ + X2β. Thus

E(β̂) = (X′
2Σ

−1
2,2X2)−1X′

2Σ
−1
2,2X2β − (X′

2Σ
−1
2,2X2)−1B′[B(X′

2Σ
−1
2,2X2)−1B′]−1

{a + CΘ + B(X′
2Σ

−1
2,2X2)−1X′

2Σ
−1
2,2X2β} = β,

because of a + CΘ + Bβ = 0. �

Theorem 2.3 If Var(Θ̂) �= 0 then the covariance matrix of the standard esti-
mator β̂ is formed by “uncertainty A” and “uncertainty B”:

Var(β̂) =Var0(β̂) +〈{I− (X′
2Σ

−1
2,2X2)−1B′[B(X′

2Σ
−1
2,2X2)−1B′]−1B}

× (X′
2Σ

−1
2,2X2)−1X′

2Σ
−1
2,2D− (X′

2Σ
−1
2,2X2)−1

×B′[B(X′
2Σ

−1
2,2X2)−1B′]−1C〉

×Var(Θ̂)

× 〈{I− (X′
2Σ

−1
2,2X2)−1B′[B(X′

2Σ
−1
2,2X2)−1B′]−1B}

× (X′
2Σ

−1
2,2X2)−1X′

2Σ
−1
2,2D− (X′

2Σ
−1
2,2X2)−1

×B′[B(X′
2Σ

−1
2,2X2)−1B′]−1C〉′

︸ ︷︷ ︸
uncertainty

︸ ︷︷ ︸
uncertainty

type A type B
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where

Var0(β̂) =
= (X′

2Σ
−1
2,2X2)−1− (X′

2Σ
−1
2,2X2)−1B′[B(X′

2Σ
−1
2,2X2)−1B′]−1B(X′

2Σ
−1
2,2X2)−1.

Proof is elementary. It is enough to determine Var0(β̂) ≡ Var0(β̂)|ΣΘ̂=0 and

Var(β̂).

Var(β̂) = Var0(β̂) +Var{〈{I− (X′
2Σ

−1
2,2X2)−1B′(B(X′

2Σ
−1
2,2X2)−1B′)−1B}

× (X′
2Σ

−1
2,2X2)−1X′

2Σ
−1
2,2D− (X′

2Σ
−1
2,2X2)−1B′

× [B(X′
2Σ

−1
2,2X2)−1B′]−1C〉Θ̂}.

�

Corollary 2.3 The standard estimator for the case of the model, where X2 = I
and D = 0 is

β̂ = [I−Σ2,2B′(BΣ2,2B′)−1B](Y2 −DΘ̂)−Σ2,2B′(BΣ2,2B′)−1(CΘ̂ + a)].

Corollary 2.4 The covariance matrix of the standard estimator for the case
of the model, where X2 = I and D = 0, is

Var(β̂) = [I−Σ2,2B′(BΣ2,2B′)−1B]Σ2,2[I−B′(BΣ2,2B′)−1BΣ2,2]

+ Σ2,2B′(BΣ2,2B′)−1CVar(Θ̂)C′(BΣ2,2B′)−1BΣ2,2,

or equivalently

Var(β̂) = Σ2,2 −Σ2,2B′(BΣ2,2B′)−1BΣ2,2 + Σ2,2B′(BΣ2,2B′)−1CΣ1,1

×C′(BΣ2,2B′)−1BΣ2,2.

Definition 2.5 Let H be a given k2 × k2 positive semidefinite matrix. The

estimator ˜̃β from the class Ũβ is H-optimal if it minimizes the function

φ(̃̃β) = Tr[HVar(̃̃β)], ˜̃
β ∈ Ũβ .

Theorem 2.4 If the estimator ˜̃β from the class Ũβ is H-optimal, then matri-
ces X−

2 ,B−,W1,W2 (− means g-inverse) in Lemma 2.2 are solutions of the
following equation

U1

(
W1, W2

)(V1, T1

V2, T2

)
=
(
P1, P2

)
,

where

U1 = [I−B′(B−)′]H[I−B−B],
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V1 = (I−X2X−
2 )[Σ2,2 + D(X′

1Σ
−1
1,1X1)−1D′](I− (X−

2 )′X′
2),

V2 = BX−
2 [Σ2,2 + D(X′

1Σ
−1
1,1X1)−1D′][I− (X−

2 )′X′
2]

−C(X′
1Σ

−1
1,1X1)−1D′[I− (X−

2 )′X′
2,

P1 = −[I−B′(B−)′]H[I−B−B]X−
2 [Σ2,2 + D(X′

1Σ
−1
1,1X1)−1D′]

× [I− (X−
2 )′X′

2]− [I−B′(B−)′]HB−C(X′
1Σ

−1
1,1X1)−1D′][I− (X−

2 )′X′
2],

T1 = [I− (X−
2 )′X′

2]{[Σ2,2 + D(X′
1Σ

−1
1,1X1)−1D′]

× (X−
2 )′B′ −D(X′

1Σ
−1
1,1X1)−1C′},

T2 = BX−
2 [Σ2,2 + D(X′

1Σ
−1
1,1X1)−1D′](X−

2 )′B′ + C(X′
1Σ

−1
1,1X1)−1C′

−C(X′
1Σ

−1
1,1X1)−1D′(X−

2 )′B′ −BX−
2 D(X′

1Σ
−1
1,1X1)−1C′,

P2 = −[I−B′(B−)′]H[I−B−B]X−
2 [Σ2,2 + D(X′

1Σ
−1
1,1X1)−1D′](X−

2 )′B′

+ [I−B′(B−)′]HB−C(X′
1Σ

−1
1,1X1)−1C′

− [I−B′(B−)′]HB−C(X′
1Σ

−1
1,1X1)−1D′(X−

2 )′B′

+ [I−B′(B−)′]H[I−B−B]X−
2 D(X′

1Σ
−1
1,1X1)−1C′.

Proof [1], p. 653.

3 Numerical studies—constraints type I

In this part we will concentrate on a numerical calculation of the estimator of
parameters. In all following examples we need to construct a condition express-
ing a relation between parameters of the first and the second stages. From this
condition we can always construct a vector function g of parameter β and Θ
where g(β, Θ) = 0. We apply the Taylor expansion at point (β0, Θ0) to this
function. So for estimators of parameters we get the condition

g(β̂, Θ̂) = g(β0, Θ0) + CδΘ̂ + Bδβ̂ = 0.

We could not change the value Θ̂ in connecting measurements, and so we
must consider

g(β̂, Θ̂) = g(β0, Θ̂) + Bδβ̂ = 0.

On basis of these accounts we get the statement

δβ̂ = [I−Σ2,2B′(BΣ2,2B′)−1B](Y2 − β0)−Σ2,2B′(BΣ2,2B′)−1g(β0, Θ̂).

Example 3.1 Let us have the elevations Θ1 and Θ2 of points A and B, their
values were estimated by values Θ̂1 and Θ̂2. The problem is how to find the
elevation of inner point P (see. Figure 1) by means of measured values Y1 and
Y2 of elevations β1 and β2 between points A and P and between points P and
B. The accuracy of estimated values Θ̂1 and Θ̂2 is characterized by standard
deviations; eventually can be determined by covariance matrix (below) and
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analogously it is valid for random variables Y1 and Y2 which characterize the
measurement of the parameters β1 and β2.
Let Θ1, Θ2 be parameters of the first stage (connecting) and β1, β2 be pa-

rameters of the second stage (connected). The estimations Θ̂1, Θ̂2 of differences
Θ1, Θ2 are given from the first stage, the measurement of values Y1, Y2 param-
eters β1, β2 are done in the second stage of measurements.

A

θ̂1Θ1

Θ2

Y1 θ̂2

B

P
Y2β2

β1

Figure 1: Model of estimation height of inner point

Let us find estimators for the values (Θ̂1, Θ̂2) = (150, 400.1) and (Y1, Y2) =
(125, 125).1 Values of variables Θ1, Θ2, β1 and β2, etc. are indicated in meters.
Values of covariance matrices are indicated in m2 (for example

√
σ2

1 =
0.04m).
We construct a model of connecting measurements in Definition 2.1.
Let Θ̂1, Θ̂2 be random variables with mean values Θ1, Θ2 and with disper-

sions τ2
1 , τ2

2 ,

Y1 =

(
Θ̂1

Θ̂2

)
∼ N2

[
X1

(
Θ1

Θ2

)
; Σ11

]
.

In our case we will consider2

Σ11 =
(

τ2
1 , 0
0, τ2

2

)
=
(

0.0009, 0.0002,
0.0002, 0.0007,

)
, X1 = I2,2.

Let Y1, Y2 be stochastically independent random variables with mean values
β1, β2 and with dispersions σ2

1 , σ
2
2 ,

Y2 =
(

Y1

Y2

)
∼ N2

[
X2

(
β1

β2

)
; Σ22

]
.

In our case we will consider

Σ22 =
(

σ2
1 , 0
0, σ2

2

)
=
(

0.0016, 0.0000,
0.0000, 0.0016,

)
, X2 = I2,2.

1When we admit that Θ̂1, Y1 and Y2 are exact values, then it should be Θ̂2 = 400m.
2Assumption X1 = I2,2 means that values Θ1, Θ2 are measured directly.
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One can observe in Figure 1 the following condition is implied for parameters
of I. stage Θ1, Θ2 and parameters of II. stage β1, β2:

β1 + β2 = Θ2 −Θ1. (c1)

In our case we can write the estimator from the class Ũβ (see Lemma 2.2)
in this form:

˜̃
β =

(
Y1

Y2

)
+
(

k
−1− k

)
(Y1 + Y2 + Θ̂2 − Θ̂1).

Thus, we have for the covariance matrix:

Var(̃̃β) =
(

s11, s12

s21, s22

)
,

where
s11 = k2(τ2

1 + τ2
2 + σ2

2) + (1 + k)2σ2
1 ,

s12 = −k(1 + k)(τ2
1 + τ2

2 )− (1 + k)2(σ2
1 − k2σ2

2),

s21 = −k(1 + k)(τ2
1 + τ2

2 )− (1 + k)2(σ2
1 − k2σ2

2),

s22 = (1 + k)2(τ2
1 + τ2

2 + σ2
1) + k2σ2.

As we can see, it is impossible to find any jointly efficient estimator. Now
we will determine numerically the standard estimator β̂ (see Corollary 2.3), and
its covariance matrix Var(β̂) (see Corollary 2.4).
At first we will construct the function g(β, Θ) = β1 + β2 + Θ1 − Θ2 from

our condition (c1). We will use the Taylor expansion at point (β0, Θ0) for this
function in the form

(B1, B2)δβ + (C1, C2)δΘ + a = 0,

where

B1 =
∂g(β0, Θ0)

∂β1
= 1, B2 =

∂g(β0, Θ0)
∂β2

= 1,

C1 =
∂g(β0, Θ0)

∂Θ1
= 1, C2 =

∂g(β0, Θ0)
∂Θ2

= −1,

a = g(β0, Θ0) =
(
β0

1 + β0
2 + θ0

1 − θ0
2

)
.

From approximate values Θ0
1 = 150.0, Θ0

2 = 400.1, β0
1 = 125, β0

2 = 125 we
will determine a = 150.0− 400.1 + 125.0 + 125.0 = −0.1.
In our linearized model we will determine from Corollary 2.3 and Corol-

lary 2.4:

β̂ =
(

125.05
125.05

)
, Var(β̂) =

(
1.1 · 10−3 −5.0 · 10−4

−5.0 · 10−4 1.1 · 10−3

)
.
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Furthermore we will determine numerically H-optimum estimator ˜̃β for the
matrix

H1 =
(

1 0
0 1

)
according to the relationship in Lemma 2.2. We determine matrices X−

2 , B
−,

W1 and W2 from Theorem 2.4; and its covariance matrix Var(̃̃β) from the
relationship from Corollary 2.2

˜̃
β =

(
125.05
125.05

)
, Var(̃̃β) =

(
1.1 · 10−3 −5.0 · 10−4

−5.0 · 10−4 1.1 · 10−3

)
.

As we can see, the estimator ˜̃β is the same as the estimator β̂. The estimated
elevation of the point P is Θ̂1 + β̂1 = Θ̂1 + ˜̃

β1 = 150m+ 125.05 = 275.05.

In this case the estimator ˜̃β, which we got for chosen matrix H is the same as
the standard estimator β̂. Our aim was to show, that it can occur the situation
we cannot find any better estimation than the standard estimation. In other
examples we show, that generally we can find better estimator. Furthermore our
aim was to show using Taylor’s expansion, which is used in almost all non-linear
situations, according to our aspiration to demonstrate the universal approach
for numerical solutions.

Example 3.2 Let us have A and B points with their elevations Θ1 and Θ2

measured in the first stage by the values Θ̂1 and Θ̂2. The problem is to esti-
mate as exactly as possible the elevation β1 at the inner point P1 by means of
measured values Y1, Y2 and Y3 (see Figure 2).
The accuracy in determination of the values Θ̂1 and Θ̂2 of heights Θ1 and

Θ2 is characterized by the standard deviations, or by the covariance matrix (see
follow up) and analogously of measured values Y1, Y2 and Y3 of the values β1,
β2 and β3.

A

P1

P2

B

Θ̂1Θ1

Θ2 Θ̂2Y2

Y1

Y3β3

β2

β1

Figure 2: Model with two inner points
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Now let us determine the standard estimator and the H-optimum estimator
and their covariance matrices for the values (Θ̂1, Θ̂2) = (125.00, 575.09) and
(Y1, Y2, Y3) = (100.00, 150.00, 200.00).3

We will construct a model of connecting measurement according to Defini-
tion 2.1.
Let Θ̂1, Θ̂2 be random variables with mean values Θ1, Θ2 and with the dis-

persions τ2
1 , τ2

2 ,

Y1 =

(
Θ̂1

Θ̂2

)
∼ N2

[
X1

(
Θ1

Θ2

)
; Σ11

]
.

In our case we will consider

Σ11 =
(

τ2
1 , 0
0, τ2

2

)
=
(

0.0009, 0.0002,
0.0002, 0.0007,

)
, X1 = I2,2.

Let Y1, Y2, Y3 be stochastically independent random variables with mean values
β1, β2, β3 and with the dispersions σ2

1 , σ2
2 , σ

2
3 ,

Y2 =

 Y1

Y2

Y3

 ∼ N3

X2

 β1

β2

β3

 ; Σ22

 .

In our case we will consider

Σ22 =

 σ2
1 , 0 0
0, σ2

2 0
0, 0, σ2

3

 =

 0.0016, 0.0000 0.0000,
0.0000, 0.0016 0.0000,
0.0000, 0.0000 0.0016,

 , X2 = I2,2.

One can observe in Figure 2 that the following condition is implied for pa-
rameters of the first stage Θ1, Θ2 and parameters of the second stage β1, β2

and β3:
β1 + β2 + β3 = Θ2 −Θ1. (c2)

We will calculate numerically a standard estimator β̂ and H-optimum esti-

mator ˜̃β like in previous example.
First of all we will construct the function g(β, Θ) = β1+β2+β3+Θ1−Θ2 from

our condition (c2). We will construct the Taylor expansion at point (β0, Θ0) in
the form

(B1, B2, B3)δβ + (C1, C2)δΘ + a = 0,

where

B1 =
∂g(β0, Θ0)

∂β1
= 1, B2 =

∂g(β0, Θ0)
∂β2

= 1, B3 =
∂g(β0, Θ0)

∂β3
= 1,

C1 =
∂g(β0, Θ0)

∂Θ1
= 1, C2 =

∂g(β0, Θ0)
∂Θ2

= −1,

3If we admitted that the values Θ̂1, Y1, Y2 and Y3 are exact values, then it must be
Θ̂2 = 575.00m.
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a =
(
β0

1 + β0
2 + β0

3 + θ0
1 − θ0

2

)
.

From the approximate values Θ0
1 = 125.00, Θ0

2 = 575.09, β0
1 = 100.00,

β0
2 = 150.00, β0

3 = 200.00 we receive a = 100.00 + 150.00 + 200.00 + 125.00−
575.09 = −0.09.
In our linearized model we will numerically determine the estimator and the

covariance matrix from the Corollary 2.3 and the Corollary 2.4:

β̂ =

 100.030
150.030
200.030

 , Var(β̂) =

 1.2 · 10−3 −4.0 · 10−4 −4.0 · 10−4

−4.0 · 10−4 1.2 · 10−3 −4.0 · 10−4

−4.0 · 10−4 −4.0 · 10−4 1.2 · 10−3

 .

After that we will numerically calculate the H-optimum estimator β̂ for the
matrix

H =

 1 0 0
0 0 0
0 0 0


according to Lemma 2.2 and its covariance matrix according to Corollary 2.2.
The matrices X−

2 , B
−,W1 andW2 we determine from the Theorem 2.4

˜̃
β =

 100.024
150.033
200.033

 , Var(̃̃β) =

 1.173 · 10−3 −4.267 · 10−4 −4.267 · 10−4

−4.167 · 10−4 1.233 · 10−3 −3.667 · 10−4

−4.267 · 10−4 −3.667 · 10−4 1.233 · 10−3

.

Next we will calculate Tr(HVar(̃̃β)) = 1.173 · 10−3.

These estimators β̂ and ˜̃β are typically different in this case.
The elevation between the points A and P1 obtained by the standard esti-

mator is β̂1 = 150.030.
The elevation between the points A and P1 obtained by the H-optimum

estimator is ˜̃β1 = 150.024.
By choosing the matrix H which minimized a dispersion in estimator of the

first component of the vector ˜̃β we got better estimator for the elavation between
the points A and P1 in comparison with the standard estimator β̂. This follows

from the fact, that for the chosen matrix H it is Tr(HVar(̃̃β)) = 1.173 · 10−3 <

1.200 · 10−3 = Var11(β̂).

Example 3.3 The aim is to find an estimator for the plane coordinates of the
points P1 and P2 in a cartesian co-ordinates from the Figure 3. We have the
measured values Θ̂1, Θ̂2 of coordinates Θ1, Θ2 of the point A, the measured val-
ues Θ̂3, Θ̂4 of coordinates Θ3, Θ4 of the point B, the measured values Y1, Y2, Y3

of lengths β1, β2 and β3 and the measured values Y4, Y5 of angles β4 and β5 (see
Figure 3).
Let Θ1, Θ2, Θ3, Θ4 be parameters of the first stage (connecting) and β1, β2,

β3, β4, β5 be parameters of the second stage (connected). The aim of the
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measurements is to determine the values β̂1, β̂2, β̂3, β̂4, β̂5, when the estima-
tors Θ̂1, Θ̂2, Θ̂3, Θ̂4 of the coordinates Θ1, Θ2, Θ3, Θ4 are given from the first
stage of measurements. The measurements Y1, Y2, Y3, Y4, Y5 of the parameters
β1, β2, β3, β4, β5 are done in the second stage of measurements.

β1 −β2 cos(β4)

β2 sin(β4)

−β3 sin(β4 + β5)

β3 cos(β4 + β5)

β2

β4

β3

β5

B = (Θ3, Θ4)

A = (Θ1, Θ2) P1

P2

P1 = (Θ1 + β1, Θ2)

P2 = (Θ1 + β1 − β2 cos β4, Θ2 + β2 sin β4)

Figure 3: Model for determining distance on encastered polygon

In our model we will determine estimators and their covariance matrices for
the result of measurements (Θ̂1, Θ̂2, Θ̂3, Θ̂4) = (0, 0, 640.1, 480.1) and the result
(Y1, Y2, Y3, Y4, Y5) = (240, 300, 340, 2.498091546, 2.70425476).
The values Θ̂1, Θ̂2, Θ̂3, Θ̂4, Y1, Y2, Y3, etc. are in meters. The values of the

angles Y4, Y5 are written in radians.
The accuracy of measurements was given by the covariance matrices. Let

Θ̂1, Θ̂2, Θ̂3, Θ̂4 be random variables with mean values Θ1, Θ2, Θ3, Θ4,

Y1 =


Θ̂1

Θ̂2

Θ̂3

Θ̂4

 ∼ N4

X1


Θ1

Θ2

Θ3

Θ4

 ;Σ1

 .

In our case we will consider

Σ1,1 =


0, 0016, 0, 0002, 0, 0004, 0, 0000
0, 0002, 0, 0016, 0, 0002, 0, 0000
0, 0004, 0, 0002, 0, 0016, 0, 0005
0, 0000, 0, 0000, 0, 0005, 0, 0016

 , X1 = I4,4.

Let Y1, Y2, Y3, Y4, Y5 be stochastically independent random variables with
mean values β1, β2, β3, β4, β5 and with dispersion σ2

1 , σ2
2 , σ

2
3 , σ2

4 , σ2
5 ,

Y2 =


Y1

Y2

Y3

Y4

Y5

 ∼ N5

X2


β1

β2

β3

β4

β5

 ;Σ2

 .
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In our case we will consider

Σ2,2 =


0.0016, 0.0000, 0.0000, 0.0000 0.0000
0.0000, 0.0016, 0.0000, 0.0000 0.0000
0.0000, 0.0000, 0.0016, 0.0000 0.0000
0.0000, 0.0000, 0.0000, ( 10

206265 )2, 0.0000
0.0000, 0.0000, 0.0000, 0.0000, ( 10

206265 )2

 , X2 = I5,5.

One can observe in Figure 3 the following condition is implied for the pa-
rameters of the first stage Θ1, Θ2, Θ3, Θ4 and for the parameters of the second
stage β1, β2, β3, β4, β5:

(Θ3 −Θ1)2 + (Θ4 −Θ2)2 = x2 + y2, (c3)

where

x = β1 − β2 cos(β4) + β3 cos(β4 + β5)
y = β2 sin(β4)− β3 sin(β4 + β5).

As in the previous examples we will calculate numerically the standard es-

timator β̂ and the H-optimum estimator ˜̃β.
First of all we will construct the following function from our condition (c3):

g(β, Θ) = (Θ3 −Θ1)2 + (Θ4 −Θ2)2 − (β2
1 − 2β1β2 cos(β4) + β2

2

+ 2β1β3 cos(β4 + β5)− 2β2β3 cos(β4) cos(β4 + β5) +
+ β2

3 − 2β2β3 sin(β4) sin(β4 + β5)).

We will generate the Taylor expansion at point (β0, Θ0) for the above func-
tion in the form

(B1, B2, B3, B4, B5)δβ + (C1, C2, C3, C4)δΘ + a = 0

where B1 = ∂g(β0,Θ0)
∂β1

, B2 = ∂g(β0,Θ0)
∂β2

, B3 = ∂g(β0,Θ0)
∂β3

, B4 = ∂g(β0,Θ0)
∂β4

,

B5 = ∂g(β0,Θ0)
∂β5

, C1 = ∂g(β0,Θ0)
∂Θ1

, C2 = ∂g(β0,Θ0)
∂Θ2

, C3 = ∂g(β0,Θ0)
∂Θ3

, C4 = ∂g(β0,Θ0)
∂Θ4

,

a = g(β0, Θ0).
We will determine the appropriate partial derivative and determine the

value a

B1 = −2β1,0 + 2β2,0 cos(β4,0)− 2β3,0 cos(β4,0 + β5,0),

B2 = 2β1,0 cos(β4,0)− 2β2,0 + 2β3,0 cos(β4,0) cos(β4,0 + β5,0) + 2β3,0 sin(β4,0)
× sin(β4,0 + β5,0),

B3 = −2β1,0 cos(β4,0 + β5,0) + 2β2,0 cos(β4,0) cos(β4,0 + β5,0)
− 2(β3,0) + 2β2,0 sin(β4,0) sin(β4,0 + β5,0),
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B4 = −2β1,0β2,0 sin(β4,0) + 2β1,0β3,0 sin(β4,0 + β5,0) + 2β2,0β3,0

× (− sin(β4,0) cos(β4,0 + β5,0)− cos(β4,0) sin(β4,0 + β5,0))
+ 2β2,0β3,0 (cos(β4,0) sin(β4,0 + β5,0) + sin(β4,0) cos(β4,0 + β5,0)) ,

B5 = −2β1,0β3,0 sin(β4,0 + β5,0) + 2β2,0β3,0 cos(β4,0)
× sin(β4,0 + β5,0)− 2β2,0β3,0 cos(β4,0 + β5,0),

C1 = −2(θ3,0 − θ1,0), C2 = −2(θ4,0 − θ2,0),

C3 = 2(θ3,0 − θ1,0), C4 = 2(θ4,0 − θ2,0),

a = (θ3,0 − θ1,0)
2 + (θ4,0 − θ2,0)

2 − β2
1,0 + 2β1,0β2,0 cos(β4,0)− β2

2,0

− 2β1,0β3,0 cos(β4,0 + β5,0) + 2β2,0β3,0 cos(β4,0) cos(β4,0 + β5,0)− β2
3,0

+ 2β2,0β3,0 sin(β4,0) sin(β4,0 + β5,0).

By choosing

β0 = (β1,0, β2,0, β3,0, β4,0, β5,0) = (240, 300, 340, 2.498091546, 2.70425476)

and Θ0 = (Θ1,0, Θ2,0, Θ3,0, Θ4,0) we get B1 = −1280, B2 = −1600, B3 = −1449,
B4 = −230400, B5 = −230400, C1 = −1280, C2 = −960, C3 = 1280, C4 = 960,
a = −224.02.

In our linearized model we will determine numerically the estimator and the
covariance matrix from the Corollary 2.3 and the Corollary 2.4:

β̂ =


240.044
300.056
340.050

2.49810329204
2.70426650604

 ,

Var(β̂)=


1.5129 · 10−3 −1.0888 · 10−4 −9.8631 · 10−5 −2.3032 · 10−8 −2.3032 · 10−8

−1.0888 · 10−4 1.4639 · 10−3 −1.2329 · 10−4 −2.8790 · 10−8 −2.8790 · 10−8

−9.8631 · 10−5 −1.2329 · 10−4 1.4883 · 10−3 −2.6080 · 10−8 −2.6080 · 10−8

−2.3032 · 10−8 −2.8790 · 10−8 −2.6080 · 10−8 2.3443 · 10−9 −6.0903 · 10−12

−2.3032 · 10−8 −2.8790 · 10−8 −2.6080 · 10−8 −6.0903 · 10−12 2.3443 · 10−9

.

After that we will numerically determine the H-optimum estimator β̂ for the
matrix

H =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


according to Lemma 2.2 and its covariance matrix according to Corollary 2.2.
We determine matrices X−

2 , B
−,W1 andW2 according to the Theorem 2.4 in

this way:
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U1 = −(I−B′(B−)′)H(I−B−B),
V1 = 0, V2 = 0, T1 = 0,

P1 = −(I−B′(B−)′)H(I−B−B)Σ2,2 = 0,

T2 = BΣ2,2B′ + CΣ1,1C′,
P2 = −(I−B′(B−)′)H(I−B−B)Σ2,2B′ + (I−B′(B−)′)HB−CΣ1,1C′.

Then the matricesW1,W2 are solution of the equations

U1(W1,W2)
(

0, 0
0, T2

)
= (0,P2)

and we get

U1(0,W2T ) = (0,P2)⇒ U1W2T = P2 ⇒W2 = U−
1 P2T−

2

In our case we get from Lemma 2.2:

˜̃
β =


240.025
300.031
340.028

2.49810329204
2.70426650604

 ,

Var(̃̃β) =


1.3726 · 10−3 −2.8430 · 10−4 −2.5754 · 10−4 −6.0048 · 10−8 −6.0048 · 10−8

−2.8430 · 10−4 1.2446 · 10−3 −3.2193 · 10−4 −7.5060 · 10−8 −7.5060 · 10−8

−2.5754 · 10−4 −3.2193 · 10−4 1.3084 · 10−3 −6.7995 · 10−8 −6.7995 · 10−8

−6.0048 · 10−8 −7.5060 · 10−8 −6.7995 · 10−8 1.9142 · 10−8 1.6791 · 10−8

−6.0048 · 10−8 −7.5060 · 10−8 −6.7995 · 10−8 1.6791 · 10−8 1.9142 · 10−8

 .

By chosen matrix H minimizing data errors in the process estimation of

the vector
˜̃
β we got better estimator of the parameter β in comparison with the

standard estimator β̂. It follows from the fact that for the chosen matrix H is

Tr(HVar(̃̃β)) = 3.9256 · 10−3 < 4.4651 · 10−3 = Tr(HVar(β̂).
Let us study the proportion accuracy of the standard estimator β̂i and the

Hi-optimum estimator
˜̃
βi for i = 1, . . . , 5. We will not determine the estimators

from now, but we will only study the trace of the covariance matrix Tr(HVar(̃̃β)
for comparing it with the above mentioned Tr(HVar(β̂).

For matrix H1 =

 1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 we get Tr(H1Var(̃̃β)) = 1.3726 · 10−3

< Tr(H1Var(β̂)) = 1.5129 · 10−3,

for matrix H2 =

 0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 we get Tr(H2Var(̃̃β)) = 1.2446 · 10−3

< Tr(H2Var(β̂)) = 1.4639 · 10−3,
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for matrix H3 =

 0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 we get Tr(H3Var(̃̃β)) = 1.3084 · 10−3

< Tr(H3Var(β̂)) = 1.4883 · 10−3,

for matrix H4 =

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

 we get Tr(H4Var(̃̃β)) = 2.3345 · 10−9

< Tr(H4Var(β̂)) = 2.3443 · 10−9,

for matrix H5 =

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 we get Tr(H5Var(̃̃β)) = 2.3345 · 10−9

< Tr(H5Var(β̂)) = 2.3443 · 10−9.

It is evident that Tr(HiVar(̃̃β)) < Tr(HiVar(β̂)) for i = 1, . . . 5. Now let us
study the proportion of this values for different covariance matrices Σ1,1 and
Σ2,2. In other numerical calculations we choose the matrix Σ1,1 as the fixed
one and we change the matrix Σ2,2 by the multiplication by the number k. The
proportions in dependence on k are shown in the following table and graph.

The proportion Tr(HiVar(̃̃β)) and Tr(HiVar(β̂))

k i = 1,H1 i = 2, H2 i = 3,H3 i = 4, H4 i = 5,H5

400 100.00 % 100.00 % 100.00 % 100.00 % 100.00%

100 100.00 % 100.00 % 100.00 % 100.00 % 100.00%

64 100.00 % 99.99 % 99.99 % 100.00 % 100.00%

50 99.99 % 99.98 % 99.99 % 100.00 % 100.00%

25 99.97 % 99.94 % 99.96 % 100.00 % 100.00%

16 99.92 % 99.85 % 99.89 % 100.00 % 100.00%

9 99.77 % 99.57 % 99.68 % 99.99 % 99.99%

5 99.31 % 98.73 % 99.04 % 99.97 % 99.97%

4 98.97 % 98.12 % 98.58 % 99.96 % 99.96%

3 98.30 % 96.95 % 97.67 % 99.93 % 99.93%

2 96.68 % 94.21 % 95.51 % 99.87 % 99.87%

1 90.72 % 85.02 % 87.91 % 99.58 % 99.58%

1/2 78.72 % 68.96 % 73.65 % 98.85 % 98.85%

1/4 60.81 % 48.89 % 54.29 % 97.19 % 97.19%

1/10 35.45 % 25.69 % 29.81 % 92.23 % 92.23%

1/16 24.93 % 17.37 % 20.48 % 87.66 % 87.66%

1/25 17.24 % 11.69 % 13.93 % 81.57 % 81.57%

1/50 9.27 % 6.12 % 7.37 % 68.36 % 68.36%

1/64 7.37 % 4.83 % 5.83 % 62.67 % 62.67%

1/100 4.82 % 3.13 % 3.80 % 51.62 % 51.62%

1/400 1.24 % 0.80 % 0.97 % 20.90 % 20.90%
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Figure 4: The proportion Tr(HiVar(̃̃β)) and Tr(HiVar(β̂))
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[4] Kubáčková, L.: Foundations of Experimental Data Analysis. CRC-Press, Boca Raton–
Ann Arbor–London–Tokyo, 1992.


