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Abstract

The aim of the paper is to show some possible statistical solutions of
the connecting measurements. The algorithms were published in [1], 2]
and [3]. The paper concentrates on numerical studies of these algorithms,
finding estimators of parameters and comparing their covariance matrices.
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1 Introduction

We study two stage linear models, where we must respect uncertainty in connect-
ing measurements and g\stimations of parameters for connecting measurements.
We have got estimator © of parameter © in the first stage before measurements
(we measure by an instrument with known parameters). In connection with un-
certainty of estimation of parameters © for connected measurements we define
“uncertainty of type B” in comparison with “uncertainty of type A”, connected
with accuracy of connecting measurements.
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70 Jaroslav MAREK

We study the model where in the second stage (connecting measurements)
occurs the constraints on parameters of the first and the second stage (type I).

We need to considered these constraints during finding estimators of param-
eters from the second stage. B

We define U3 of unbiased estimators [ of the parameters [ in the regular

model, where we respect errors in connecting points; and class U3 of unbiased

estimators 5 of parameter § satisfying the constraints between parameters of
the first and the second stage.

The estimators from the class Ug need not fulfil the constraints between
parameters of the first and the second stages. There does not exist any jointly
efficient estimator in the class Ug. Therefore we study estimators from the class

Zj{[; which minimize a linear functional of the covariance matrix of the estimator

3.

2 Estimation in model of connecting measurements with
constraints of type I

Definition 2.1 The model of connecting measurement will be called random
vector Y = (Y1,Y}), with the mean values and the covariance matrix:

Y, Xi:, 0 C) Y11, O
Y, D, X, B)\ 0, X325/’
where X, D, X5 are known nq X k1, no X k1, no X ko matrices, with the condition

M(D') € M(X)); O, are unknown k; and ko-dimensional vectors; X1 and
35,2 are known covariance matrices of vectors Y; and Y.

In this model the parameter O is estimated on the basis of the vector Y of
the first stage and parameter 0 on the basis of vectors Yo — DO and ©. The
results of measurements from the second stage (this means Y2) we cannot use
for the change of the estimator ©.

The parametric space of this model of connecting measurements Y according
Definition 2.1 is

0={©,3):B3+CO +a=0}

where B, C are ¢ x k3,q X k1 matrices and where a is g-dimensional vector,
where 7(B) = ¢ < ka.

The vector O is the parameter of the first stage (connecting), the vector
is the parameter of the second stage (connected). In the second stage we have
the unbiased estimator © = (XlEﬁXl)’1X’121—&Y1 from the first stage and

its covariance matrix Var(©) = (X1Z1Xy)~n

Definition 2.2 The model in Definition 2.1 in this parametric space O is regu-
lar provided r7(X1) = k1, r(X2) = ko, 31,1, X2 2 are positively definite matrices
and r(B) = gq.



Estimation in connecting measurements 71

Definition 2.3 We will consider the model of connecting measurements ac-
cording to Definition 2.1. Estimator L'Y +d of the function f(3) = f’3, where
exists © where (g) € O, where f is given vector from RF we call the best linear
unbiased estimator (i.e. the best in the sense of variance) if it is

(i) unbiased: for all (©',8') € © iiE(L’ii—i— d) = ]iﬁ, _
(ii) efficient: Var(L'Y 4 d) < Var(L'Y +d), where L'Y + d is arbitrary other
unbiased estimator of function f(03).

Lemma 2.1 The class Us of all linear unbiased estimators [ of the parameter
[ based on the vectors Yo — DO and O is

Us = {[X5 +Z(I - X2X5) + EBX; (Y, — DO) + ECO + Ea :
Z an arbitrary ke X no matriz, E an arbitrary ko X q¢ matrix
X5 an arbitrary but fired X5 € X~, (T means g—mverse)}.

Proof [1], p. 646.

Lemma 2.2 The class ﬁg of all linear unbiased estimatorsg of the parameter
B in the model from Definition 2.1 based on vectors Yo — DO and ©, and

satisfaying the (random) condition BG + CO+a=0is

Us = {[I-B B][X; + Wi (I-X,X;) + W>BX; (Y, — DO)
+[-B~+(I-B B)W,]CO + (I - B"B)Wsa - Ba,
W1 an arbitrary ko X ne matriz, Wo an arbitrary ks X ¢ matriz
X5 and B~ are arbitrary but fized X; € X~, B~ € B~ matrices}.

Proof [1], p. 647.

Corollary 2.1 Covariance matriz of the estimator 3 is

Var(3) = (I-B™B) [X; + Wi(I-XoX; ) + W2BX; | S0
x [X5 + Wi(I-X,X5) + W2BX; | (I- B B)
+{I-B B)[-X; D - W;(I-X,X;)D - W,BX,; D
+W,C]-B C}|Z;,(I-B B)
x {[-X;D — W;(I-X,X;)D - W,BX; D + W,C|] - B~ C}.

Corollary 2.2 Covariance matriz of the estimator B, for case of the model,
where Xo =1, is

Var(3) = (I— B™B)[I + W,B|Z,, x [I+ W,BJ'(I— B"BY/
+{I-B B)[-D - W,BD + W,C] - B C}
X 2171{(1 — B_B)[—D — WQBD + WQC] — B_C}/.
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Theorem 2.1 In the class U in Lemma 2.1 (estimators 3 from Up need not to
satisfay condition BG4+ CO+a = 0), there exists the jointly efficient estimator

B* of the vector 8

A% ’ ’\ T " Yo — Dé

5 7((X27B)m(5)) <—C@—a )
Si1, S12
S = ’
(5217 Szz)

Si1 = 322 + DX B 1Xy)'D!,  Spp = DX} (X)) 71T,
So1 = C(X{ X1 1Xy)"'D/, Sy = C(X| ¥ 1Xy)"!C".

where

Proof [1], p. 649.

Definition 2.4 The least squares estimator of the parameter § obtained under

~

the condition ¥; ;1 = 0 (= Var(©) = 0) is called the standard estimator if in
this estimator the vector © is substituted by O.

Theorem 2.2 The standard estimator B of the parameter 3 in the model ac-
cording Definition 2.1 is given as

B = (Xp3253X2) X425 3 (Y, — DO)
— (X425 5X0) "B B(X53%;53X0) B!
x {a+ CO + B(X}353X2) ' X355 (Yo — DO)},

whereas this estimator is unbiased, it means E((3) = 3.

Proof The best linear estimator [; determined by the least squares method
in the model Y ~,, (DO + X303, X5 2) satisfying condition B3 + CO + a = 0,
where the parameter O is known, we get by minimizing the function
¢(8) = (Y2 — DO — X50)' 35 5(Ya — DO — X,8) — 2X[(a+ CO) + BJ]
= (Y2 —DO)'E; (Y, — DO) — 23X, (Y, — DO) + 3'X5 5, 5 X0 8
—2)N[a+ CO +Bg.

We determine the derivative of the function ¢(03)

32_(6@ = —2X,353(Y2 — DO) + 2X5 351 X53 — 2B'A
and solve the system of equations
8‘2—(5) = —2X,3; (Y2 — DO) +2X, 35,1 X,4 — 2B'A = 0

B+ CO+a=0.
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From the first equation we get ﬁA
3= (X5253Xs) ' X455 5(Y2 — DO) + (X535 3X2) "'B/A
and after substitution into the second equation
a+CO+ B(X,%;1Xs) ' XX, 5(Y2 — DO) + B(X55;3X,) 'B'A=0
we determine
A= —[B(X,T;1X,) ' B/|a + €O + B(X}T;5X2) X} T5 3(Y, — DO)}.
After substitution A into the first equation we get
B = (X43;3X0) X435 3(Y2 — DO)
— (X335,Xs) ' B/[B(X;535,Xs) 1B}
x {a+ CO +B(X,%;3X0) ' X532, 5(Ys — DO)},
B = —(X42;3Xs) 'B/[B(X,2;3X0) "B (a + CO)
+ {1 (X535,X2) "' B/ [B(X;5;,X2) ' BB}
x (X535 5X0) ' X535, 5(Y, — DO),
B = {1 - (X}=51%) " B/ [B(X},T51X2) B B} (X325 X)X} 55}
x (Yo —DO) — (X435 3X,) 'B[B(X4X;3X2) !B ' Ha + CO).
By choosing O for © we get the standard estimator.

The assertion E(3) = (3 is the result from our premise E((:)) = O and the
fact that E(Y2) = DO + X30. Thus

E(8) = (X5%55X,) ' X535 5 X0 — (X535 5X0) ' B/ [B(X53;5 ,X0) ' B
{a+CO + B(X)3;,X0) ' X555, X0} = 4,
because of a4+ CO + BS = 0. O
Theorem 2.3 If Var((:)) # 0 then the covariance matriz of the standard esti-
mator B is formed by “uncertainty A” and “uncertainty B”:
Var(8) =Varg(5)  +({I - (X,5;5X0) ' B/[B(X53;;,X,) "B 7'B}
X (X5355X0) X3, 5D — (X585,Xs)
x B'[B(X}%;,X2) 'B/|7'C)
X Var(C:))
x ({I - (X335,X2) ' B'[B(X33;,X2) "B 7'B}
X (X5355X0) X3, 5D — (X585,X,)
x B'[B(X}%;,X2) B 7' C)/
—_——

uncertainty uncertainty
type A type B
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where

Varg(5) =
= (X5 5X0) = (X538, 5X) ' B[B(X5%;,X0) BT B(X53; 5 Xs)

Proof is elementary. It is enough to determine Varo(ﬁ) = Varo(ﬁ)|g®=0 and

Var((3).
Var(3) = Varo(f3) + Var{({I — (X,%;}X5)'B'(B(X},%;3X,) 'B')'B}
x (X5355X0) T X535 5D — (X535 5X,) ' B
x [B(X,2;3X2)"'B/|71C)0)}.
O
Corollary 2.3 The standard estimator for the case of the model, where Xo =1
and D =0 s
B =[1-3,,B'(BZ;,B) 'B|(Y; — DO) — %, ,B(BX,,B') ' (CO + a)].

Corollary 2.4 The covariance matriz of the standard estimator for the case
of the model, where Xo =1 and D =0, is

Var() = [I — 25,B' (BX25B') 'B]X25[I — B'(BX,.B') 1B, ]
+ 35,B'(BX532B') "1C Var(6)C'(BX2,B') !B, ,

or equivalently

Var(f) = g — 2 2B/ (B2 ,B') 'BXy 5 + 29 ,B (BX,,B') 1CXy
x C'(BZ2,B') 'BX, .

Deﬁnitiog 2.5 Let H be a given ko X ko positive semidefinite matrix. The

estimator B from the class Z/N{g is H-optimal if it minimizes the function

¢(§) = Tr[HVar(3)), Ee Up.

Theorem 2.4 If the estimatorﬁ from the class Zj{g is H-optimal, then matri-
ces X5, B, W1, Wy (T means g-inverse) in Lemma 2.2 are solutions of the
following equation

T
Ui (Wi, Ws) (g; T;) = (P, Py).

where

U, = [I-B/(B")|H[I- B B,
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Vi=(I—-XoX5)[Z22 + D(XSEI}XH*ID'](I - (X3)'X3),

Ve = BX; [S22 + D(X( 27 X1) ' DI - (X5)'X5]
_C(X/l 1,1X1) 1D/[ (X )Xlza
P, = —[I-B'(B7)HI-B BX; [, + D(X|Z];X,) ' D’
x I (X5)'X}] - [1- B'(B7)JHB~C(X; 37 1X:) "' D'|[I - (X)X},
T: = [I - (X5)X5){[B22 + D(X| =1 1X1) "' D]
x (X;)'B' = D(X 37, X,) "' C'},

T, = BX; [222 + DX 2 1X1) 'D'|(X5)B' + C(X 21 X;) "' C
- C(X}®=11X1)'D'(X;)B - BX; D(X| 2 1X,) ' C,

P, = —[I-B/(B” )’]H[I—B_B]X’[Ezz+D(X§Ei}X1)_1D’](X5)’B’

+[I-B/(B7)JHB C(X|2/X,)"'C’
~I-B/(B)JHBC(X, 5 1X,) ' D/(X; )'B’
+I-B' (B )HI-B" B]XQD(X’lEl_&Xl)’IC’.
Proof [1], p. 653.

3 Numerical studies—constraints type I

In this part we will concentrate on a numerical calculation of the estimator of
parameters. In all following examples we need to construct a condition express-
ing a relation between parameters of the first and the second stages. From this
condition we can always construct a vector function g of parameter 5 and ©
where g(3,0) = 0. We apply the Taylor expansion at point (5, O¢) to this
function. So for estimators of parameters we get the condition

g(3,0) = g(f0,00) + C66 + Bsj = 0.

We could not change the value © in connecting measurements, and so we
must consider

(3,0) = (6, 0) + Bij = 0.

On basis of these accounts we get the statement
63 = [I - 35,B'(BX2,B') 'B|(Ys — ) — Z9.2B'(BX2.B) g (S, C:))

Example 3.1 Let us have the elg\vations A®1 and O, of points A and B, their
values were estimated by values ©; and ©5. The problem is how to find the
elevation of inner point P (see. Figure 1) by means of measured values Y; and
Y> of elevations 31 and (2 between points A and P and between points P and
B. The accuracy of estimated values ©; and ©s is characterized by standard
deviations; eventually can be determined by covariance matrix (below) and
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analogously it is valid for random variables Y; and Y5 which characterize the
measurement of the parameters 5; and 5.

Let ©1, 04 be parameters of the first stage (connecting) and 31, 82 be pa-
rameters of the second stage (connected). The estimations ©1,0, of differences
©1, 05 are given from the first stage, the measurement of values Y7, Y> param-

eters (1, B2 are done in the second stage of measurements.

B
v e
B2 Y2
P
v
©2
B1 v, 6,
A
| VA
(SHY 01

Figure 1: Model of estimation height of inner point

Let us find estimators for the values (81, 0,) = (150,400.1) and (V3,Y3) =
(125,125).1 Values of variables ©1, 2, 3; and [, etc. are indicated in meters.
Values of covariance matrices are indicated in m? (for example \/o? =

0.04 m).
We construct a model of connecting measurements in Definition 2.1.
Let ©1, ©5 be random variables with mean values ©1, 05 and with disper-

sions 72, 72,
@1 @1
1 <®2> 2|: 1<®2>7 11:|

In our case we will consider?
2
(7, 0\ _ (0.0009, 0.0002, _
X = ( 0, 722) B (0.0002, 00007, ) XK1= D
Let Y7,Y5 be stochastically independent random variables with mean values
B1, B2 and with dispersions 0%, 02,

In our case we will consider

2
(02, 0\ _ {0.0016, 0.0000, B
Y22 = ( 0, a§> - (0.0000, 0.0016, |’ Xo=h2.

1When we admit that @1, Y1 and Y3 are exact values, then it should be @2 = 400 m.
2 Assumption X1 = I3 > means that values ©1, 02 are measured directly.
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One can observe in Figure 1 the following condition is implied for parameters
of I. stage ©1, O and parameters of II. stage 31, (Oa:

Bi+ P2 =02 — 0. (c1)

In our case we can write the estimator from the class Zj{g (see Lemma 2.2)
in this form:

= Y k ~ ~
B = (Y;) + (_1_k> (Y1 + Y2 +602 - ©).
Thus, we have for the covariance matrix:

varll) = (3092,

521, S22

where
si1 = KX +713+03)+ (1+k)%03,
siz = —k(L+k)(1f +75) — (1 + k)*(0f — k?03),
so1 = —k(1+k)(1f +75) — (1 + k)*(0F — K?03),
s = (1+k)2(7% + 72 + 0?) + K?0,.

As we can see, it is impossible to find any jointly efficient estimator. Now
we will determine numerically the standard estimator [; (see Corollary 2.3), and
its covariance matrix Var(J3) (see Corollary 2.4).

At first we will construct the function ¢g(3,0) = (1 + B2 + ©1 — ©2 from
our condition (c1). We will use the Taylor expansion at point (8%, ©°) for this

function in the form

(Bl, Bg)(sﬂ + (Cl, 02)59 +a =0,

where
d9(6°,8°) 99(8°% 0°)
By="2"0 1 B =P
' 0p: ? 92
dg(p°,0°) dg(8°,0°)
Cl 891 ) 02 892 )

a=g(3°0°%=(8)+p89+6)—69).

From approximate values ©f = 150.0,09 = 400.1, 8% = 125,89 = 125 we
will determine a = 150.0 — 400.1 4+ 125.0 + 125.0 = —0.1.
In our linearized model we will determine from Corollary 2.3 and Corol-

lary 2.4:
- (125.05 ; 1.1-1073 —5.0- 10~
b= (125.05) o Varl®) = <—5.o- 1074 1.1 10—3>'
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Furthermore we will determine numerically H-optimum estimator B for the

matrix
10
w01

according to the relationship in Lemma 2.2. We determine matrices X5, B™,

W; and Wy from Theorem 2.4; and its covariance matrix Var(3) from the
relationship from Corollary 2.2

= (125.05 = 1.1-107% —5.0- 10~
b= (125.05) o Varf) = (-5.0- 1074 1.1 10—3) '

As we can see, the estimator B is the same as the estimator 3 The estimated
elevation of the point P is ©1 + #; = ©1 +/3; = 150 m + 125.05 = 275.05.

In this case the estimator B, which we got for chosen matrix H is the same as
the standard estimator [; Our aim was to show, that it can occur the situation
we cannot find any better estimation than the standard estimation. In other
examples we show, that generally we can find better estimator. Furthermore our
aim was to show using Taylor’s expansion, which is used in almost all non-linear
situations, according to our aspiration to demonstrate the universal approach
for numerical solutions.

Example 3.2 Let us have A and B points with their elevations ©; and O
measured in the first stage by the values ©; and ©,. The problem is to esti-
mate as exactly as possible the elevation 31 at the inner point P; by means of
measured values Y7, Y2 and Y5 (see Figure 2).

The accuracy in determination of the values @)1 and ég of heights ©; and
O3 is characterized by the standard deviations, or by the covariance matrix (see
follow up) and analogously of measured values Y7, Y5 and Y3 of the values i,

B2 and B3.

B

e o o — ——

B3 Y3
K — o — — —— — P2

e, | B2 Y2 @2
Py

K — —

B1 A Y1
K —

o] &

Figure 2: Model with two inner points
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Now let us determine the standard estimator and the H-optimum estimator
and their covariance matrices for the values (©1,02) = (125.00,575.09) and
(Y1, Y2, Y3) = (100.00, 150.00, 200.00).3

We will construct a model of connecting measurement according to Defini-
tion 2.1.

Let ©1, 05 be random variables with mean values ©1, ©2 and with the dis-

persions 72, 73,
él G)1
Y, =| ~ ~ Ny | X ;211 -
1 <@2> 2|: 1<®2>7 11:|

In our case we will consider
2
(7, 0\ _ (0.0009, 0.0002, _
Y= ( 0, 722) - (0.0002, 0.0007, /)’ X1 =1z

Let Y7, Y5, Ys be stochastically independent random variables with mean values
B1, B2, 33 and with the dispersions 0%, 02, 02,

Y, B1
Yo=| Yo | ~N3 | Xo| B2 |;322
Y3 B3
In our case we will consider
Jf, 0 0 0.0016, 0.0000 0.0000,
Yoo = 0, U% 0 | = | 0.0000, 0.0016 0.0000, |, Xo =1Io.
0, 0, a§ 0.0000, 0.0000 0.0016,

One can observe in Figure 2 that the following condition is implied for pa-
rameters of the first stage ©1, O and parameters of the second stage (1, (2
and (s:

B1+ P2+ 3 =602 — O1. (c2)

We will calculate numerically a standard estimator 3 and H-optimum esti-

mator 5 like in previous example.

First of all we will construct the function g(5,©) = B1+F2+03+01—0O4 from
our condition (¢2). We will construct the Taylor expansion at point (5%, 0°) in
the form

(B1, B2, B3)03 + (C1,C2)00 +a = 0,

where
dg(B°,0°) dg(B°,0°) dg(B°,0°)
B = - 1, B = - 1, B = - 1,
' 9 2 90 ° 955
_99(8°,0%) ~0g9(p°,0%
C1= 96, U C2 = 96, b

3If we admitted that the values @1, Y1, Y2 and Y3 are exact values, then it must be
©2 = 575.00 m.



80 Jaroslav MAREK

a=(8)+pB9+p65+067 —063).

From the approximate values ©9 = 125.00, 0 = 575.09, 3y = 100.00,
B9 = 150.00, B = 200.00 we receive a = 100.00 + 150.00 + 200.00 + 125.00 —
575.09 = —0.09.

In our linearized model we will numerically determine the estimator and the
covariance matrix from the Corollary 2.3 and the Corollary 2.4:

~ /100.030 A 1.2-1073 —4.0-107* —4.0-10~*
3=1150030 |, Var(f)=[ —40-107* 1.2.1073 —4.0-10"*
200.030 —4.0-107* —4.0-10* 1.2-1073

After that we will numerically calculate the H-optimum estimator (3 for the
matrix

100
H={000
000

according to Lemma 2.2 and its covariance matrix according to Corollary 2.2.
The matrices X5, B™, W; and W3 we determine from the Theorem 2.4

- 100.024 ~ 1.173-107% —4.267-10~* —4.267-10~*
B=1150.033 |, Var@®) = | —4.167-10"* 1.233-1072 —3.667-10*
200.033 —4.267-107% —-3.667-10"* 1.233-1073

Next we will calculate Tr(H Var(3)) = 1.173- 1073,

These estimators 3 and 5 are typically different in this case.

The elevation between the points A and P; obtained by the standard esti-
mator is [31 = 150.030.

The elevation between the points A and P; obtained by the H-optimum

estimator is 3; = 150.024.
By choosing the matrix H which minimized a dispersion in estimator of the

first component of the vector B we got better estimator for the elavation between
the points A and P; in comparison with the standard estimator 3. This follows

from the fact, that for the chosen matrix H it is Tr(H Var(3)) = 1.173- 1073 <
1.200 - 1073 = Vary1 (8).

Example 3.3 The aim is to find an estimator for the plane coordinates of the
points P and P in a cartesian co-ordinates from the Figure 3. We have the
meag\ureg values ©1, O, of coordinates ©1, ©4 of the point A, the measured val-
ues O3, O4 of coordinates O3, ©4 of the point B, the measured values Y7, Y5, Y3
of lengths g1, B2 and (5 and the measured values Yy, Y5 of angles 84 and 35 (see
Figure 3).

Let ©1,04, 03,04 be parameters of the first stage (connecting) and g1, 5,
B3, B4, B5 be parameters of the second stage (connected). The aim of the
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measurements is to determine the values [31, [32, 53, 54, 55, when the estima-
tors @1,92, @3,@4 of the coordinates ©1,05,03,0, are given from the first
stage of measurements. The measurements Y7, Yo, Y3, Yy, Y5 of the parameters
081, B2, B3, B4, B5 are done in the second stage of measurements.

B =(05,0
Pi = (01 + f1,02) (©3,04)

Py = (©1 + 1 — B2 cos B4, O2 + B2 sin B4)

—B3sin(fa + Bs)

| P2
| 85 sin(B4)
|
|

A=(01,0,) B1 P, —B2cos(B4) PBscos(Ba+ Bs)

Figure 3: Model for determining distance on encastered polygon

In our model we will determine estimators and their covariance matrices for
the result of measurements (01, 02,03,04) = (0,0,640.1,480.1) and the result
(Yl,YQ,Y3,Y4,Y5) (240 300, 340, 2.498091546, 2. 70425476)

The values @1, @2, @3, @4, Y1, Y5, Y3, etc. are in meters. The values of the
angles Yy, Y5 are written in radians.

__ The accuracy of measurements was given by the covariance matrices. Let
01, O3, O3, O4 be random variables with mean values ©1, O3, O3, Oy,

Ql @1
€] O

Y, = (E)z ~ Ny | Xy @i ;20
Oy O4

In our case we will consider

0,0016, 0,0002, 0,0004, 0,0000
0,0002, 0,0016, 0,0002, 0, 0000
0,0004, 0,0002, 0,0016, 0,0005 |’
0,0000, 0,0000, 0,0005, 0,0016

i1 = Xy =1I44.

Let Y1,Y5,Y3,Y,, Y5 be stochastically independent random variables with
mean values (31, 32, 33, B4, 5 and with dispersion 0%,03,03,032, 02,

Y B1

Y, B2
Yo=| Y3 [ ~N5|X2]| 83|52

Yy Ba
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In our case we will consider

0.0016, 0.0000, 0.0000, 0.0000  0.0000
0.0000, 0.0016, 0.0000, 0.0000  0.0000

55 = | 0.0000, 0.0000, 0.0016, 0.0000  0.0000 |, Xy =I5 5.
0.0000, 0.0000, 0.0000, (5me05)%, 0.0000
0.0000, 0.0000, 0.0000, 0.0000, (355955)>

One can observe in Figure 3 the following condition is implied for the pa-
rameters of the first stage 01,02, 03,0, and for the parameters of the second

Stage 61) 525 537 64) ﬁ5:
(03— 01)% + (04 — 02)? = 2% + 7, (c3)
where

x = 1 — P2 cos(Ba) + B3 cos(Ba + B5)
y = Posin(Bs) — P sin(Bs + Fs).

As in the previous examples we will calculate numerically the standard es-

timator [3 and the H-optimum estimator B
First of all we will construct the following function from our condition (c3):

g(3,0) = (03 — 01)* + (04 — O2)* — (87 — 2152 cos(B4) + B3
+ 203103 cos(Bs + B5) — 23233 cos(f4) cos(Bs + B5) +
+ 5 — 282033 sin(B4) sin(Bs + Bs)).

We will generate the Taylor expansion at point (3%, ©°) for the above func-
tion in the form

(Bl, Bs, Bs, By, B5)56 =+ (Cl, CQ, 03, 04)5@ +a=0

dg(B°,0° dg(B°,0° dg(B°,0° dg(B°,0°
Where B1 — %’ B2 — %’ B3 = g(gﬁ; )’ B4 = g(gﬁz1 )’
_ 99(8°,0% _ 99(8°,0% _ 99(8°,0% _ 99(8°,0% _ 99(8°,0%
Bs = S, O = H55—, O = 55—, Oy = 5=, Ca = S5 —,
a=g(p°,0°).

We will determine the appropriate partial derivative and determine the
value a

By
By

—201,0 + 22,0 cos(Ba,0) — 23,0 cos(B,0 + F5.,0),

21,0 cos(Ba.0) — 2B2,0 + 23,0 cos(B4,0) cos(Ba,0 + B5,0) + 203,08in(54,0)
x sin(Ba,0 + B5.0),

B3 = —201,0c0s(84,0 + B5,0) + 2082,0 cos(B4,0) cos(Ba,0 + F5,0)

—2(B3,0) + 22,0 sin(B4,0) sin(Ba,0 + B5,0),
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By = —201,082,0 sin(Ba,0) + 261,083,0 sin(Ba,0 + F5,0) + 262,003,0
X (—sin(Ba,0) cos(Ba,0 + Bs,0) — cos(Ba0) sin(Ba0 + F5,0))
+ 202,003,0 (€os(B4,0) sin(Ba,0 + F5,0) + sin(Ba,0) cos(Ba,0 + F5.0))

Bs = —201,083,08i0(84,0 + f5,0) + 2082,003,0 c0s(S4,0)
x sin(fBa.0 + O5.0) — 2082,003,0 cos(Ba0 + B5,0),

Ci1 = —2(630—010), Co=—2(040—020),
Cs = 2(03,0 — 01,0), Cs=2(040—020),

a = (030 —010)° + (010 — 020)° — B30 + 281,082,0 cos(Ba0) — B30
— 21,083,0 c08(Ba,0 + B5,0) + 252,003,0 c0s(Ba,0) cos(Ba0 + Bs,0) — 53%70
+ 2(32,0/33,0 sin(B4,0) sin(Ba,0 + F5,0)-

By choosing
Bo = (81,0, 82,0, 03,0, Ba,0, B5,0) = (240, 300, 340, 2.498091546, 2.70425476)

and @0 = (@1707 @2707 @370, @470) we get Bl = —1280, BQ = —1600, Bg = —1449,
B4 = —230400, Bs = —230400, C; = —1280, Cy = —960, C3 = 1280, Cy = 960,
a = —224.02.

In our linearized model we will determine numerically the estimator and the
covariance matrix from the Corollary 2.3 and the Corollary 2.4:

240.044
300.056
8= 340.050 ,
2.49810329204
2.70426650604

1.5129 - 1073 —1.0888 -10~% —9.8631-10~° —2.3032-10% —2.3032-10"8
—1.0888-10"% 1.4639-10"3 —1.2329-10~* —2.8790-10~8 —2.8790 108

Var(8)=| —9.8631-1075 —1.2329-10~% 1.4883-10"3 —2.6080-10~8 —2.6080-10~8
—2.3032- 1078 —2.8790-10—8 —2.6080-10~8 2.3443-10~° —6.0903-10"12

—2.3032- 108 —2.8790 - 10~% —2.6080 -10—% —6.0903 -10~12 2.3443.10Y

After that we will numerically determine the H-optimum estimator 3 for the
matrix

10000
01000
H=]00100
00010
00001

according to Lemma 2.2 and its covariance matrix according to Corollary 2.2.
We determine matrices X5, B™, W and W3 according to the Theorem 2.4 in
this way:
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U, = ~(I-B/(B"))H(I- B B),

Vi =0, V=0, T;=0,
P, = —(I-B(B7))H(I-B B)X:> =0,
T, = BX,,B' + C%, 1 C/,

P, = —-(I-B(B"))HI-B B)X;,B'+(I-B(B"))HB CX,,C".
Then the matrices W1, Wy are solution of the equations

0, 0
Uy (W1, Wa) (0 T2> = (0,P3)

and we get
Ul(O,WQT) = (0, PQ) = U W7T =Py = W, = U;PQT;
In our case we get from Lemma 2.2:

240.025

- 300.031

3= 340.028 ,
2.49810329204
2.70426650604

1.3726 - 1073 —2.8430-10~% —2.5754-10~% —6.0048 - 10~8 —6.0048 - 10~8

~ —2.8430-10~% 1.2446-1073 —3.2193-10~* —7.5060 - 108 —7.5060 - 108
Var@) = | —2.5754-10~% —3.2193-10~* 1.3084-1073 —6.7995-10~8 —6.7995 - 10~8
—6.0048 - 10~8 —7.5060-10~8 —6.7995-10—8 1.9142-10~8 1.6791-10"8
—6.0048 - 10~8 —7.5060-10~8 —6.7995-10—8 1.6791-10—8 1.9142.10~8

By chosen matriz H minimizing data errors in the process estimation of

the UectorB we got better estimator of the parameter 3 in comparison with the
standard estimator 3. It follows from the fact that for the chosen matriz H is

Tr(H Var(3)) = 3.9256 - 1072 < 4.4651 - 10~3 = Tr(H Var(3).
Let us study the proportion accuracy of the standard estimator 3; and the

H,;-optimum estimator 51 fori=1,...,5. We will not determine the estimators

from now, but we will only study the trace of the covariance matrix Tr(H Var(3)

for comparing it with the above mentioned Tr(H Var(5).
Tr(H, Var(3)) = 1.3726 - 103

For matrix H; = A
< Tr(H; Var(B)) = 1.5129 - 1073,

we get

oo o
coooo
[eNeNeNe o]
[eNeNeNe o]
[eNeNeNeNo]

Tr(H, Var(3)) = 1.2446 - 103
< Tr(H, Var(3)) = 1.4639 - 1073,

for matrix Hy = we get

[eNeleloNo]
oo r~O
[=NeleloNo]
[=NeleleNo]
[=NeleloNoe]
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Tr(Hs Var(3)) = 1.3084 - 103

for matrix Hs = A
< Tr(Hj Var(B3)) = 1.4883 - 1073,

we get

oo oo
[=NeNeNoNo]
[Nl NoNe]
[eNeNeNeNo]
[eNeNeNoNo]

Tr(H, Var(3)) = 2.3345 - 109

for matrix Hy = A
< Tr(Hy Var(B)) = 2.3443 - 109,

we get

coooo
[eNeNeNeNoe]
[eNeNeNeNo]
o~ OOO
[eNeNeNoNo]

Tr(Hs Var(3)) = 2.3345 - 109

for matrix Hys = N
’ < Tr(H; Var(f)) = 2.3443 - 10~°.

we get

coocoo
coooo
coooo
coooo
_HOoOOoOOoOO

It is evident that Tr(H;, Var(3)) < Tr(H; Var(3)) for i = 1,...5. Now let us
study the proportion of this values for different covariance matrices X; ; and
35,2. In other numerical calculations we choose the matrix ¥; ; as the fixed
one and we change the matrix 3, » by the multiplication by the number k. The
proportions in dependence on k are shown in the following table and graph.

The proportion Tr(H; Var(g)) and Tr(H; Var(3))

k |i=1,H | i=2Hy | i=3H;|i=4H, |i=>5 Hs
400 100.00 % | 100.00 % | 100.00 % | 100.00 % 100.00%
100 100.00 % | 100.00 % | 100.00 % | 100.00 % 100.00%
64 100.00 % 99.99 % 99.99 % | 100.00 % 100.00%
50 99.99 % 99.98 % 99.99 % | 100.00 % 100.00%
25 99.97 % 99.94 % 99.96 % | 100.00 % 100.00%
16 99.92 % 99.85 % 99.89 % | 100.00 % 100.00%
9 99.77 % 99.57 % 99.68 % 99.99 % 99.99%
5 99.31 % 98.73 % 99.04 % 99.97 % 99.97%
4 98.97 % 98.12 % 98.58 % 99.96 % 99.96%
3

2

98.30 % 96.95 % 97.67 % 99.93 % 99.93%
96.68 % 94.21 % 95.51 % 99.87 % 99.87%
1 90.72 % 85.02 % 87.91 % 99.58 % 99.58%
1/2 78.72 % 68.96 % 73.65 % 98.85 % 98.85%
1/4 60.81 % 48.89 % 54.29 % 97.19 % 97.19%
1/10 35.45 % 25.69 % 29.81 % 92.23 % 92.23%
1/16 24.93 % 17.37 % 20.48 % 87.66 % 87.66%
1/25 17.24 % 11.69 % 13.93 % 81.57 % 81.57%
1/50 9.27 % 6.12 % 7.37 % 68.36 % 68.36%
1/64 7.37 % 4.83 % 5.83 % 62.67 % 62.67%
1/100 4.82 % 3.13 % 3.80 % 51.62 % 51.62%
1/400 1.24 % 0.80 % 0.97 % 20.90 % 20.90%
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Figure 4: The proportion Tr(H; Var(ﬁ)) and Tr(H; Var(ﬁ))
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