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Abstract

This paper is a continuation of the paper [6]. It dealt with parameter
estimation in connecting two–stage measurements with constraints of type
I. Unlike the paper [6], the current paper is concerned with a model with
additional constraints of type II binding parameters of both stages.
The article is devoted primarily to the computational aspects of algo-

rithms published in [5] and its aim is to show the power of H∗-optimum
estimators.
The aim of the paper is to contribute to a numerical solution of the

estimation problem in the two stage model, where constraints of type II
occur in the second stage.

Key words: Two stage regression models, uncertainty of the type
A and B, BLUE, H–optimum estimators.
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1 Introduction

In mathematical models of measurements “the connectedness syndrome” is very
often encountered. This paper is concerned with a two–stage measurement with
an additional condition of type II on parameters of both stages. The value Θ̂
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Estimation in connecting measurements with constraints of type II 101

of the parameter may be known prior to the measurement, and may or may not
be changed as a result of measurement in the second stage.
In relation to the uncertainty in the estimator Θ̂ the notion of “the uncer-

tainty of type B” is introduced, compared to “the uncertainty of type A”, which
is linked to the uncertainty in measurement in the second stage. In case these
uncertainties are not neglected, certain difficulties arise.
During the search for statistical solutions of connecting measurement we

define Uβ of unbiased estimators β̃ of the parameters β in the regular model,

where we respect errors in connecting points; and class Ũβ of unbiased estima-

tors β̃ of parameter β satisfying the constraints between parameters of the first
and the second stage.
The estimators from the class Uβ need not fulfil the constraints between

parameters of the first and the second stages. There does not exist any jointly
efficient estimator in the class Uβ. Therefore we study estimators from the

class Ũβ which minimize a linear functional of the covariance matrix of the

estimator β̃.

2 Estimation in model of connecting measurements with
constraints of type II

Definition 1 The two stage model of the second stage measurement is(
Θ̂

Y − DΘ̂

)
∼n

((
Θ
Xβ

)
,

(
Σ1,1, −Σ1,1D′

−DΣ1,1, Σ2,2 + DΣ1,1D′

))
,

The parametric space of the two stage model with constraints of the type II is

Θ = {(Θ′, β′) : B∗β + C∗Θ + Gγ + a = 0}

where B∗,C∗,G are given matrices with dimensions q× k2, q × k1, q× k3 and a
is given q-dimensional vector, such thatM(C∗) ⊂ M(B∗), and r(B∗) = q < k2.
The vector Θ is the parametr of the first stage (connecting stage).
The vector β is the parametr of the second stage (connected stage).
The estimator Θ̂ of the parameter Θ is given from the first stage.
D is the incidence matrix, which identify parameters of connecting network,

that were used in the course of measurement in the second stage,
X is known matrix of the connecting network,
Θ and β are effective values of the parameter from the first and second

stage,
Σ1,1 is the covariance matrix of the estimator Θ̂, Σ2,2 is the covariance

matrix of the observation vector Y.
The notation ξ ∼n (µ,Σ2,2)means, that the n-dimensional vector parameter

ξ has the mean value equal to µ and its covariance is Σ2,2.
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From the first stage the unbiased estimator Θ̂ and its covariance matrix Σ1,1

are at our disposal only.

The aim is to determine an estimator of the parameter β on the basis of
random vector Y −DΘ̂, where Y is the observation vector of the second stage
and on the basis of the estimator Θ̂.

Lemma 1 If Θ in the model from Definition 1 is known, then the BLUE of
the parameter (β′, γ ′)′ is

ˆ̂
β =

(
I −

(
X′Σ−1

2,2X
)−1

(B∗)′
{[

B∗
(
X′Σ−1

2,2X
)−1

(B∗)′ + GG′
]−1

−
[
B∗
(
X′Σ−1

2,2X
)−1

(B∗)′ + GG′
]−1

G
{
G′
[
B∗
(
X′Σ−1

2,2X
)−1

× (B∗)′ + GG′
]−1

G
}−1

G′
[
B∗
(
X′Σ−1

2,2X
)−1

(B∗)′ + GG′
]−1

}
B∗
)

×
(
X′Σ−1

2,2X
)−1

X′Σ−1
2,2(Y − DΘ)

−
(
X′Σ−1

2,2X
)−1

(B∗)′
{[

B∗
(
X′Σ−1

2,2X
)−1

(B∗)′ + GG′
]−1

−
[
B∗
(
X′Σ−1

2,2X
)−1

(B∗)′ + GG′
]−1

G
{
G′
[
B∗
(
X′Σ−1

2,2X
)−1

(B∗)′

+ GG′
]−1

G
}−1

G′
[
B∗
(
X′Σ−1

2,2X
)−1

(B∗)′ + GG′
]−1

}
(a∗ + C∗Θ),

and

ˆ̂γ = −
{
G′[B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′]−1
G
}−1

G′

× [
B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′]−1[
B∗(X′Σ−1

2,2X)−1X′Σ−1
2,2Y + a∗ + C∗Θ

]
.

Their covariance matrices and cross covariance matrix are

Var(ˆ̂β) = (X′Σ−1
2,2X)−1 − (X′Σ−1

2,2X)−1(B∗)′
[
B∗(X′Σ−1

2,2X)−1

× (B∗)′ + GG′]−1
B∗(X′Σ−1

2,2X)−1 + (X′Σ−1
2,2X)−1

× (B∗)′
[
B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′]−1

× G
{
G′[B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′]−1
G
}−1

G′

× [
B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′]−1
B∗(X′Σ−1

2,2X)−1,

cov(ˆ̂β, ˆ̂γ) = −(X′Σ−1
2,2X)−1(B∗)′

[
B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′]−1

× G
{
G′[B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′]−1
G
}−1

,

Var(ˆ̂γ) =
{
G′[B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′]−1
G
}−1

− I .

Proof [5], section 3.
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Definition 2 The estimator from Lemma 1 obtained under the conditionΣ1,1 =
0 (⇒ Var(Θ) = 0) is called the standard estimator if in this estimator the vector
Θ is substituted by Θ̂.

Remark 1 If Θ in Lemma 1 is substituted by Θ̂, the standard estimator is
obtained. Its covariance matrix is given by the following relationships.

Var(β̂) = Var[N1(Y − DΘ̂)] +Var[N2(C∗Θ̂ + a)]

+ cov[N1(Y − DΘ̂),N2(C∗Θ̂ + a)] + cov[N2(C∗Θ̂ + a),N1(Y − DΘ̂)]

= N1(Σ2,2 + DΣ1,1D′)N′
1 + N2C∗Σ1,1(C∗)′N′

2

− N1DΣ1,1(C∗)′N′
2 − N2C∗Σ1,1D′N′

1,

where

N1 =
(
I− (X′Σ−1

2,2X)−1(B∗)′
{[

B∗(X′Σ−1
2,2X)−1(B∗)′ + GG′

]−1

−
[
B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′
]−1

GG′
[
B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′
]−1

G′

×
[
B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′
]−1

(B∗)′(X′Σ−1
2,2X)−1X′Σ−1

2,2 ,

N2 = −(X′S−1X)−1(B∗)′
{[

B∗(X′Σ−1
2,2X)−1(B∗)′ + GG′

]−1

−
[
B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′
]−1

G

× {G′
[
B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′
]−1

G}−1G′

×
[
B∗(X′Σ−1

2,2X)−1(B∗)′ + GG′
]−1}

.

Theorem 1 In the model

Y − DΘ̂ ∼n (Xβ,Σ2,2 + DΣ1,1D′), a∗ + C∗Θ + B∗β + Gγ = 0,

the class of all unbiased linear estimators of
(
β
γ

)
based on the vectors Θ̂ and

Y − DΘ̂ is

Uβ,γ =

{(
β̃
γ̃

)
=
(

k1

k2

)
+
(

K1, K2

K3, K4

)(
Θ̂

Y − DΘ̂

)}
,

where (
k1

k2

)
=
(

0
−G−

)
a∗ +

(
Z1

Z3

)
(I− GG−)a∗,
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(
K1, K2

K3, K4

)
=
(

0, X−

−G−C∗, −G−B∗X−

)
+
(

Z1, Z2

Z3, Z4

)(
(I − GG−)C∗, (I − GG−)B∗X−

0, I − XX−

)
,

where Z1,Z2,Z3,Z4 are arbitrary matrices with suitable dimensions.

The covariance matrix of the estimator
(
β̃
γ̃

) ∈ Uβ,γ is

Var

(
β̃
γ̃

)
=
(

K1, K2

K3, K4

)(
Σ1,1, −Σ1,1D′

−DΣ1,1, Σ2,2 + DΣ1,1D′

)(
K1, K2

K3, K4

)′
.

Proof [5], section 3.

Lemma 2 Let in Lemma 1 Θ be substituted by Θ̂. Then such estimator (it is
usually used in practice ) belong to the class Uβ,γ .

Proof [5], section 3.

Theorem 2 The class ˜Uβ,γ of all linear unbiased estimators which in addition
satisfy the constraints

a∗ + C∗Θ̂ + B∗β̃ + Gγ̃ = 0,

is given by such a choice of the matrices Z1, . . . ,Z4, in Theorem 1, which satisfy
the following equation(

Z1, Z2

Z3, Z4

)
= (B∗,G)−[−(I − GG−),0]

(
I− GG−, 0

0, I− XX−

)
+
(

W1, W2

W3, W4

)
− (B∗,G)−(B∗,G)

(
W1, W2

W3, W4

)(
I− GG−, 0

0, I − XX−

)
,

where the matrices W1, . . . ,W4 are arbitrary.

Proof [5], section 3.

3 H∗-optimum estimator for constraints II

Definition 3 Let H∗ be a given (k + l) × (k + l) positive semidefinite matrix.
The estimator

(
β̃
γ̃

)
from Ũβ,γ is said to be H∗-optimum if it minimizes the value

Tr

[
H∗Var

(
β̃
γ̃

)]
,

(
β̃
γ̃

)
∈ Ũβ,γ .

Theorem 3 An estimator
(

β̃
γ̃

)
is H∗-optimum if the matrices W1,W2,

W3,W4 (Theorem 2) are solution of the equation{
I − (B∗,G)′

[
(B∗,G)−

]′}
H∗

[
I − (B∗,G)−(B∗,G)

]
WSTS′ =

= −
{
I − (B∗,G)′

[
(B∗,G)−

]′}
H∗(RTS′ + ASTS′),
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where

A = (B∗,G)−
[− (I − GG−,0

]( I− GG−, 0
0, I − XX−

)
,

W =
(

W1, W2

W3, W4

)
, R =

(
0, X−

−G−C∗, −G−B∗X−

)
,

S =
(

(I − GG−)C∗, (I − GG−)B∗X−

0, I − XX−

)
,

T = Var
(

Θ̂
Y − DΘ̂

)
=
(

Σ1,1, −Σ1,1D′

−DΣ1,1, Σ2,2 + DΣ1,1D′

)
.

Proof [5], section 4.

Remark 2 Since the matricesW1,W2,W3,W4 of the H∗-optimum estimator
are functions of the matrixH∗, the joint efficient estimator does not exist in the
class ˜Uβ,γ .

4 Numerical studies—constraints type II

In this part we will concentrate on a numerical calculation of the estimator of
parameters. In all following examples we need to construct a condition express-
ing a relation between parameters of the first and the second stages. From this
condition we can always construct a vector function g of parameter β and Θ
where g(β, Θ, γ) = 0. We apply the Taylor expansion at point (β0, Θ0) to this
function. So for estimators of parameters we get the condition

g(β,Θ, γ) = g(β0, Θ0, γ0) + Cδθ + Bδβ + Gδγ = 0.

Example 1 Let us consider the point A1 from the first stage with the plane
coordinates (Θ1, Θ2), that were measured as (Θ̂1, Θ̂2) = (59999.91, 41339.81).
The accuracy of measurement was given by the dispersion ω2

1 = 0.042.
In the second stage we will assume the same dispersion ω2

1 = 0.042 for
the measured coordinates (y1, y2), . . . , (y7, y8) = (54999.95, 40000.04, 49999.94,
41339.70, 54999.89, 60000.01, 65000.05, 49999.88) of the points Pi = (β2i−1, β2i)
for i = 1, 2, 3, 4.
The aim is to make the estimator of the coordinates of the points P1, P2,

P3 and P4 more accurate under the constraint that all these points together
with the point A1 are located on a circle, with a radius γ3 and a center [γ1, γ2]
unknown.
Our constraints are

(θ1 − γ1)2 + (θ2 − γ2)2 − γ2
3 = 0 ,

(β1 − γ1)2 + (β2 − γ2)2 − γ2
3 = 0 ,

(β3 − γ1)2 + (β4 − γ2)2 − γ2
3 = 0 ,

(β5 − γ1)2 + (β6 − γ2)2 − γ2
3 = 0 ,

(β7 − γ1)2 + (β8 − γ2)2 − γ2
3 = 0 .
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Figure 1: Situation (in S-JTSK)

In our linearized model we will determine numerically the estimator and the
covariance matrix according to Lemma 1:

β̂ =



54999.95
40000.14
50000.00
41339.80
54999.89
60000.11
64999.83
49999.88


and γ̂ =

 54999.84
50000.01
9999.98

 .

After that we will numerically determine H∗–optimum estimator from The-
orem 2 and 3 for the matrix

H1
∗ =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


are β̃ =



54999.95
40000.04
49999.91
41339.65
54999.89
60000.08
64999.69
49999.88


and γ̃ =

 54999.67
50000.06
10000.02

.
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By chosen matrix H1
∗ minimizing data errors in the process estimation of

the vector β̃ we got better estimator of the parameter β in comparison with the
standard estimator β̂. It follows from the fact that for the chosen matrix H∗ is
Tr(H∗Var(β̃)) = 2.17 · 10−3 < 2.66 · 10−3 = Tr(H∗Var(β̂)).
Let us study the proportion accuracy of the standard estimator β̂ and the

Hi
∗-optimum estimator β̃ for i = 2, 3, 4. We will not determine the esti-

mators from now, but we will only study the trace of the covariance matrix
Tr(HVar(β̃)) for comparing it with the above mentioned Tr(HVar(β̂)).

We get Tr(H2
∗Var(β̃)) = 2.59 · 10−3 < Tr(H2

∗Var(β̂)) = 2.66 · 10−3 for
matrix

H2
∗ =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


,

we get Tr(H3
∗Var(β̃)) = 3.09 · 10−3 < Tr(H3

∗Var(β̂)) = 3.21 · 10−3 for matrix

H3
∗ =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


,

and we get Tr(H4
∗Var(β̃)) = 2.72 · 10−3 < Tr(H4

∗Var(β̂)) = 3.49 · 10−3 for
matrix

H4
∗ =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


.

It is evident that Tr(Hi
∗Var(β̃)) < Tr(Hi

∗Var(β̂)) for i = 1, . . . 4.
Now let us study the proportion of this values for different covariance ma-

trices Σ1,1 and Σ2,2. In other numerical calculations we choose the matrix Σ1,1

as the fixed one and we change the matrix Σ2,2 by the multiplication by the
number k.
The proportions in dependence on k are shown in the following table and

graph.
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The proportion Tr(Hi
∗Var(β̃)) and Tr(Hi

∗Var(β̂))

k i = 1, H1
∗ i = 2,H2

∗ i = 3, H3
∗ i = 4,H4

∗

100 99.99 % 100.00 % 100.00 % 99.99%
64 99.98 % 100.00 % 100.00 % 99.98%
50 99.97 % 100.00 % 100.00 % 99.97%
25 99.90 % 99.99 % 99.98 % 99.87%
16 99.77 % 99.97 % 99.96 % 99.70%
9 99.33 % 99.92 % 99.89 % 99.12%
5 98.14 % 99.78 % 99.67 % 97.57%
4 97.30 % 99.67 % 99.52 % 96.50%
3 95.74 % 99.47 % 99.22 % 94.54%
2 92.29 % 98.99 % 98.52 % 90.27%
1 81.73 % 97.24 % 96.00 % 77.81%
1/2 65.01 % 93.41 % 90.64 % 59.52%
1/4 45.48 % 86.18 % 81.00 % 39.92%
1/10 23.72 % 69.58 % 61.02 % 19.92%
1/16 16.02 % 58.29 % 48.90 % 13.26%
1/25 10.77 % 46.87 % 37.66 % 8.83%
1/50 5.64 % 30.34 % 22.98 % 4.58%
1/64 4.45 % 25.34 % 18.86 % 3.60%
1/100 2.89 % 17.79 % 12.91 % 2.33%
1/400 0.74 % 5.11 % 3.55 % 0.59%
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V
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T
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∗
V
ar

(
ˆ β
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Figure 2: The proportion Tr(Hi
∗Var(β̃)) and Tr(Hi

∗Var(β̂))
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Example 2 We have at our disposal the coordinates of the points A1, A2, A3,
A4, A5 that are given from the first stage – from the connecting measurement.
All the angles � y1 = (A2A1P1), � y2 = (A1P1P2), � y3 = (P1P2P3), � y4 =

(P2P3P4), � y5 = (P3P4A5), � y6 = (P4A5A4), � y7 = (P1A3P2) and distances
y8 = A1P1, y9 = P1P2, y10 = P2P3, y11 = P3P4, y12 = P4A5 were measured in
the second stage—in the connecting stage.
The aim is to find an estimator for the plane coordinates (β1, β2), . . . , (β7, β8)

of the points P1, P2, P3 and P4 from the second stage, in such a way so as the
distance between the points P1 and P3 would be determined as accurately as
possible.
Values of plane-coordinates and distances will be given in meters, values of

angles will be given in radians.
The accuracy of measurement is given by the dispersion or covariance ma-

trices. We suppose that the points from the first stage are determined with the
dispersion 0.062 m. Measurement of angles in the second stage was performed
with the standard deviation ωa = 10/206265. Measurement of distances in the
second stage was performed with the standard deviation ωd = 0.005 m.

A5A4

P4

P3

P2

A3

P1A1

A2

Figure 3: The aerial photograph of the Tovární Street, Olomouc

We carry out numerical studies in this example for the plane coordinates of
points Ai

Y X
A1 543330,15 1121488,64 corner of the assembly hall
A2 544347,49 1121390,53 corner of the assembly hall
A3 544246,27 1121374,30 corner of the assembly hall
A4 544187,59 1121350,71 corner of the assembly hall
A5 544101,01 1121357,58 plastic point

and for measured values from the second stage

y1 = 1.6091000, y2 = 2.7466880, y3 = 3.2469781, y4 = 3.2134906,
y5 = 2.5395759, y6 = 1.1120582, y7 = 4.4991793,
y8 = 56.515, y9 = 50.889, y10 = 43.064, y11 = 80.486, y12 = 41.524.
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Figure 4: Situation (S-JTSK)

Now we make nonlinear model of our example Y = f(Θ, β) + ε.

Y =



f1(Θ, β)
f2(Θ, β)
f3(Θ, β)
f4(Θ, β)
f5(Θ, β)
f6(Θ, β)
f7(Θ, β)
f8(Θ, β)
f9(Θ, β)
f10(Θ, β)
f11(Θ, β)
f12(Θ, β)



=



arctan( β2−θ2
β1−Θ1

) − arctan(Θ4−Θ2
Θ3−Θ1

)

π − arctan(β4−β2
β3−β1

) − arctan(Θ2−β2
Θ1−β1

)

π − arctan(β6−β4
β5−β3

) + arctan(β2−β4
β1−β3

)

π − arctan(β8−β6
β7−β5

) + arctan(β4−β6
β3−β5

)

π − arctan(Θ10−β8
Θ9−β7

) + arctan(β6−β8
β5−β7

)

− arctan(Θ8−θ10
Θ7−Θ9

) + arctan(β8−Θ10
β7−Θ9

)

π − arctan(β2−Θ6
β1−Θ5

) + arctan(β4−Θ6
β3−Θ5

)√
β1

2 − 2 β1 Θ1 + Θ1
2 + β2

2 − 2 β2 Θ2 + Θ2
2√

β3
2 − 2 β3 β1 + β1

2 + β4
2 − 2 β4 β2 + β2

2√
β5

2 − 2 β5 β3 + β3
2 + β6

2 − 2 β6 β4 + β4
2√

β7
2 − 2 β7 β5 + β5

2 + β8
2 − 2 β8 β6 + β6

2√
β7

2 − 2 β7 Θ9 + Θ9
2 + β8

2 − 2 β8 Θ10 + Θ10
2


Points from the second stage are situated on a circle—additional constraints

are
g1(Θ, β, β) = (β1 − γ1)2 + (β2 − γ2)2 − γ2

3 = 0 ,
g2(Θ, β, β) = (β3 − γ1)2 + (β4 − γ2)2 − γ2

3 = 0 ,
g3(Θ, β, β) = (β5 − γ1)2 + (β6 − γ2)2 − γ2

3 = 0 ,
g4(Θ, β, β) = (β7 − γ1)2 + (β8 − γ2)2 − γ2

3 = 0 .
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Now we need to use the Taylor expansion Y = f0 +Bδβ +DδΘ +Gδγ = 0,
where the matrices B = ∂fi(Θ

0,β0)
∂β′ , D = ∂fi(Θ

0,β0)
∂Θ′ , G = ∂gj(Θ

0,β0,γ0)
∂γ′ and

f0 = Y(Θ0, β0).
In the linearized model, we calculate the estimator β̂ and the distance esti-

mator ŷ10.

β̂ =



544274.921
1121476.680
544233.140

1121447.619
544195.417

1121426.860
544122.290

1121393.236


, ŷ10 = 43.0569.

Next by the same procedure as in the preceding example we calculate, by
Lemma 2.2 , the H∗-optimum estimator β̃. The matrix H∗ of the type

H∗ = pp′, p′ =
∂
√

(β5 − β3)2 + (β6 − β4)2

∂β′

is chosen in such a way, so that the resulting estimator would be optimal for
determining the distance between the points P2 and P3. We arrive at the esti-
mator

β̃ =



544274.916
1121476.678
544233.150

1121447.604
544195.416

1121426.854
544122.286

1121393.239


, ỹ10 = 43.0637.

Let us conclude with the comparison of the resulting estimators of distance
between P2 and P3. The mesurement distance y10 was 43.064m, the distance de-
termined by the standard estimator ŷ10 was 43.0569 m and by the H∗-optimum
estimator ỹ10 = 43.0637 m (the difference between estimators is 6.8 mm).
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