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Abstract. At first, we will present the Collage Theorems for iterated multifunction systems and,
more generally, for respective continuation principles. Their application will be then discussed in
confrontation with numerical (digital) multivalued fractals generated either randomly or (on the
basis of an appropriate Shadowing Lemma) in a deterministic way. Some illustrating examples
will be given.
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1. Introduction

We begin with the extension (see [AG01]) of the well-known theorem due to
J. E. Hutchinson [Hut81] and M. F. Barnsley [Bar88] based on the well-known
Banach contraction principle.

Theorem 1 (cf. [AG01, AFGL]). Assume that (X, d) is a complete metric space
and

(1) {ϕi : X � X, i = 1, . . . , n; n ∈ N}
is a system of multivalued contractions (with nonempty compact values), i.e.

(2) dH(ϕi(x), ϕi(y)) ≤ Li d(x, y), for all x, y ∈ X, i = 1, . . . , n,

where Li ∈ [0, 1), i = 1, . . . , n.
Then there exists exactly one compact invariant subset A∗ ⊂ X of the Hutchinson-

Barnsley map

(3) F (x) :=
n⋃

i=1

ϕi(x), x ∈ X,

called the attractor (fractal) of (1) or, equivalently, exactly one fixed-point A∗ ∈
K(X) := {A ⊂ X | A is nonempty and compact} of the induced Hutchinson-Barnsley
operator

(4) F ∗(A) :=
⋃

x∈A

F (x)

(
=
⋃

x∈A

F (x)

)
, A ∈ K(X),

in the hyperspace (K(X), dH), where dH stands for the Hausdorff metric, defined
by

dH(A, B) := inf {ε > 0 | A ⊂ Oε(B) and B ⊂ Oε(A)} ,
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where Oε(C) = {x ∈ X | d(x, C) < ε}, for any nonempty, bounded, closed set C ⊂
X.

Moreover,

(5) lim
m→∞ dH(F ∗m

(A), A∗) = 0, for every A ∈ K(X),

and (Collage)

(6) dH(A, A∗) ≤ 1
1 − L

dH(A, F ∗(A)),

where (1 >)L = maxi=1,...,n Li.

There are several generalizations of this theorem for systems of (weak) contrac-
tions, where the notion of weak contractions is understood in different ways (cf.
[Pet01, Pet02, PR01, PR]), iterated multifunction systems (IMS) of nonexpansive
maps [AFGL] or IMS of compact maps [AF04, Kie02, JGP00, LM00]. Unfortu-
nately, the more generalization or different character is with loss of the constructive
part of Theorem 1.

On the other hand, for IMS of weak contractions the uniqueness can be guaran-
teed as well. Moreover, in [And] J. Andres developed now the continuation principle
for IMS of contractions (in the same paper and cf. [AFGL, AG03], continuation
principle for compact maps was developed as well). Since the Andres Theorem
is based on the Granas continuation technique, which was completed by R. Pre-
cup [Pre02] by a computational part, we can simply complete on this base Andres
Theorem as follows.

Theorem 2. Let {ϕi : [0, 1] × S � X ; i = 1, . . . , n} be a family of multivalued
(Li, Mi)-Lipschitz maps with compact values , i.e. (i = 1, . . . , n)

(7) dH(ϕi(λ, x), ϕi(λ, y)) ≤ Lid(x, y), for all λ ∈ [0, 1] and x, y ∈ S,

and

(8)
dH(ϕi(λ1, x), ϕi(λ2, x)) ≤ Mi|λ1 − λ2|, for some Mi > 0,

for all x ∈ S and λ1, λ2 ∈ [0, 1],

where Li ∈ [0, 1), Mi ∈ (0,∞), for i = 1, . . . , n, and S ⊂ X is a subset of a complete
metric space (X, d). Assume there is U ⊂ K(S) such that F ∗

λ ∈ C0(U ,K(X)) (= the
set of all contractions F ∗ : U → K(X) | Fix F ∗ ∩ ∂U = ∅), λ ∈ [0, 1].

In addition suppose that F ∗
0 has a fixed point A(0) ∈ U . Then, for each λ ∈ [0, 1],

there exists a unique fixed point A(λ) ∈ U of F ∗
λ .

Moreover, A(λ) depends continuously on λ and there exists 0 < r ≤ ∞, integers
m, n1, n2, . . . , nm−1 and numbers 0 < λ1 < λ2 < · · · < λm−1 < λm = 1 such
that for any A0 ∈ K(X) satisfying dH(A0, A(0)) ≤ r, the sequences (Aj,k)k≥0,
j = 1, 2, . . . , m,

A1,0 = A0

Aj,k+1 = F ∗
λj

(Aj,k), k = 0, 1, . . .

Aj+1,0 = Aj,nj , j = 1, 2, . . . , m − 1

are well defined and satisfy

dH(Aj,k, A(λj)) ≤ Lk

1 − L
dH(Aj,0, F

∗
λj

(Aj,0)) (L := max {Li | i = 1, 2, . . . , n} , k ∈ N).
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To present the computational part of Theorem 2 in more detail, we suppose the
assumptions of the theorem to be satisfied, and a unique fixed point A(0) of F ∗

0 to
exists. We wish to obtain an approximation Ã1 of A(1) with dH(Ã1, A(1)) ≤ ε.

We start with some A0 ∈ U , which is an r-approximation of A(0) (i.e. dH(A0, A(0)) ≤
r), where

r ≤ inf {dH(A(λ), B) | B ∈ ∂U , λ ∈ [0, 1]} .

Furthermore, we find h > 0 such that for every A ∈ U and λ, µ ∈ [0, 1], |λ−µ| ≤
h,

dH(F ∗
λ (A), F ∗

µ (A)) ≤ (1 − L)r,

which guarantees
dH(A(λ), A(µ)) ≤ r.

Finally, for 0 = λ0 < λ1 < · · · < λm−1 < λm = 1 such that λj+1 − λj ≤ h,
j = 0, 1, . . .m − 1, we can compute the sequences

Aj,k, k = 0, 1, 2, . . . , nj , j = 1, 2, . . . , m,

in the following way.
For j = 1,

A1,0 := A0,

A1,1 = F ∗
λ1

(A1,0) = F ∗
λ1

(A0),

A1,2 = F ∗
λ1

(A1,1) = F ∗2
λ1

(A0),
...

A1,n1 = F ∗n1
λ1

(A0),

where

dH(A1,k, A(λ1)) ≤ Lk

1 − L
dH(A0, F

∗
λ1

(A0)) =

=
Lk

1 − L
dH(A1,0, A1,1).

It is clear that there exists n1 ∈ N such that dH(A1,n1 , A(λ1)) ≤ r.
For j = 2, . . . , m − 1, we use an analogous procedure.
For j = m,

Am,0 := Am−1,nm−1 ,

Am,1 = F ∗
λm

(Am,0),

...
Am,nm = F ∗nm

λm
(Am,0) =

= F ∗nm

λm
(F ∗nm−1

λm−1
(· · ·F ∗n1

λ1
(A0) · · · )),

where
dH(Am,nm , A(λm)) = dH(Am,nm , A(1)) ≤ ε.

Thus, Ã1 := Am,nm is an ε-approximation of A(1).
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As we can see, the computational part of Theorem 2 is based on iterations of
contractions. The remaining part of the paper is devoted to this topic with the
focus on (numerical) inaccuracy.

2. Approximation of multivalued fractals

As attractive fixed-poits of the Hutchinson-Barnsley operators of the IMS of
contractions with compact values, the multivalued fractals can be approximated
by iterates of any compact set w.r.t. the Hutchinson-Barnsley operator. Due to
the nonaccurate character of numerical calculations, the IMS of contractions with
compact values will be alternatively studied, when applying the Shadowing Lemma
in metric spaces ([Žáč92], cf. also [Bie99]).

The existence of an accurate orbit in the proximity of a pseudo-orbit is important
for validity of numerical simulations. Numerically computed orbits are in fact
pseudo-orbits and, therefore, the problem of their being in a neighbourhood of a
real orbit for a sufficiently long time arises, i.e. the question whether the numerical
calculation has a real meaning.

Hence, let (X, d) be a metric space, f : X → X be a map, and δ and ε be positive
reals.

A sequence {xk}∞k=0 ⊂ X is called a δ-pseudo-orbit of the map f if

(9) d(f(xk), xk+1) ≤ δ, k = 0, 1, 2, . . . .

We say that the δ-pseudo-orbit {xk}∞k=0 is ε-shadowed by some real orbit of f if
there exists y ∈ X such that

(10) d(fk(y), xk) ≤ ε, k = 0, 1, 2, . . . .

The shadowing property for the IMS of contractions with compact values is
stated in the following proposition (which is a weaker form of that for weak con-
tractions in [AFGL])

Proposition 1 (cf. [AFGL]). Let F ∗ : K(X) → K(X) be the Hutchinson-Barnsley
operator of the IMS {ϕi : X � X, i = 1, . . . , n} of contractions with compact
values.

Then, for every ε > 0, there exist µ ∈ (0, ε) and δ > 0 such that every δ-pseudo-
orbit {Ak}∞k=0 is ε-shadowed by the orbit {F ∗k(C)}, where C ∈ K(X) satisfies
dH(A0, C) ≤ µ.

For numerical δ-pseudo-orbits, δ means the upper estimate of the error in each
step, and so, it is not generally arbitrarily small positive, but there exists a lower
bound δ0 > 0 for the accuracy of calculations.

Thus, the theoretical shadowing result (∀ε > 0 ∃δ > 0) needs to be modified
to the form (∀ε = ε(δ0) > 0 ∃δ > δ0 > 0), looking only for such situations where
we are able to describe the relations among ε, δ0 and δ. As pointed out in the
following Proposition 2, this is possible for contractions, where we place emphasis
on approximation of related fixed-points.

2.1. Approximation of fixed-points of contractions. Obviously, every orbit
of a contraction tends to the unique fixed-point. However, due to inaccuracy of
numerical calculations, we cannot reach this point with an arbitrary precision in a
real situation.
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Proposition 2 (cf. [AFGL]). Let {ϕi : X � X ; i = 1, . . . , n} be a system of
contractions with compact values on a complete metric space (X, d) with Lipschitz
constants Li < 1, i = 1, . . . , n, and with a multivalued fractal (fixed-point of F ∗)
A∗. Let ε > 0, δ > 0 and L := max{Li | i = 1, . . . , n} satisfy the inequality

(11) δ < ε(1 − L).

Then, for an arbitrary δ-pseudo-orbit {Ak}∞k=0 of the (Hutchinson-Barnsley opera-
tor) F ∗, we have

(12) dH(A∗, Am)) ≤ ε,

whenever

(13) (0 ≤) m ≥ ln
(

ε(1 − L) − δ

dH(A0, A1)

)
1

ln L
.

(In particular, for dH(A0, A1) ∈ [0, ε(1−L)−δ), the right hand side of the inequality
13 is negative, and so we can obtain m = 0, i.e. dH(A∗, A0) ≤ ε.)

Proof. From the definition of δ-pseudo-orbit:

dH(F ∗(Ak), Ak+1) ≤ δ, k ∈ N.

Thus

dH(F ∗(A0), A1) ≤ δ,

dH(F ∗2(A0), A2) ≤ dH(F ∗(F ∗(A0)), F ∗(A1)) + dH(F ∗(A1), A2) ≤
≤ LdH(F ∗(A0), A1) + δ ≤ Lδ + δ,

...

dH(F ∗k(A0), Ak) ≤ Lk−1δ + · · · + L2δ + Lδ + δ =
1 − Lk

1 − L
δ,

↓ k → ∞
dH(A∗, A∞) ≤ δ

1 − L
.

From the last inequality we can obtain the lower bound for ε in (12) for possible
reasonable ε-approximation of A∗ by some member of {Ak}∞k=0:

dH(A∗, A∞) ≤ δ

1 − L
≤ ε.

Inequality (13) can be obtained as follows. We want to get an ε-approximation
of A∗ by some Am ∈ {Ak}∞k=0, i.e.

dH(A∗, Am) ≤ ε,

dH(A∗, Am) ≤ dH(A∗, F ∗m(A0)) + dH(F ∗m(A0), Am) ≤
≤ Lm

1 − L
dH(A0, F

∗(A0)) +
1 − Lm

1 − L
δ ≤

≤ Lm

1 − L
(dH(A0, A1) + dH(A1, F

∗(A0))) +
1 − Lm

1 − L
δ ≤

≤ Lm

1 − L
(dH(A0, A1) + δ) +

1 − Lm

1 − L
δ =

=
LmdH(A0, A1) + δ

1 − L
≤ ε,
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and so, for dH(A0, A1) > 0,

m ≥ ln
(

ε(1 − L) − δ

dH(A0, A1)

)
1

ln L
.

In the case dH(A0, A1) = 0 we can set m := 0, because

dH(A∗, Am) ≤ δ

1 − L
≤ ε, for all m ≥ 0,

and so already A0 is ε-approximation of A∗, i.e. dH(A∗, A0) ≤ ε. �

Remark 1. It is easy to see (from the proof of Proposition 2) that every such δ-
pseudo-orbit {Ak}∞k=0 is ε-shadowed (or, more precisely, δ

1−L -shadowed) by any
orbit {F ∗(A)}, where A ∈ K(X) satisfies dH(A0, A) ≤ δ.

Remark 2. In the real situation, (11) could be completed by the lower bound for δ:

δ0 ≤ δ < ε(1 − L).

Remark 3. As observed in [GG04], the application of the Shadowing Lemma is
limited just by the IMS of contractions.

3. Stochastic approximation

In [LM94] one can find a result, which is related to the approximation of frac-
tals of iterated function systems by random iterations of generating contractions.
We show in Proposition 3 that it is (together with Proposition 2) applicable to
multivalued fractals of certain class of iterated multifunction systems.

Proposition 3. Let

(14) {ϕi : X → K(X) | i = 1, . . . , n} ,

be an iterated multifunction system of contractions with compact values and con-
cractivity factors Li ∈ [0, 1), i = 1, . . . , n, F ∗ its Hutchinson-Barnsley operator,
and A∗ its multivalued fractal.

Let there exist an iterated function system of contractions

(15) {fi : X → X | i = 1, . . . , m} , L̂i ∈ [0, 1),

which δ1-approximates the IMS (14), i.e.

dH

(
F ∗(A), F̂ ∗(A)

)
≤ δ1, A ∈ K(X),

where F̂ ∗ is the Hutchinson-Barnsley operator of (15).
Let

p1, . . . , pN , pi > 0, i = 1, . . . , n,
∑
i∈I

pi = 1,

be a probabilistic vector and {ξk}∞k=0 a sequence of independent random variables
such that

prob(ξn = i) = pi, for i = 1, . . . , n.

For IFS with probabilities {(fi, pi), i = 1, . . . , n}, consider its orbit {xk}∞k=0 with an
initial point x0 and

xk+1 = fξk
(xk), k = 0, 1, . . . .



NUMERICAL ASPECTS OF MULTIVALUED FRACTALS 7

Then for every x0 ∈ X and ε > 0 there exist k0 = k0(ε) and j0 = j0(ε) such that

(16) prob(dH({xk, . . . , xk+j}, A∗) <
δ1

1 − L
+ ε) > 1 − ε,

for k ≥ k0, j ≥ j0, and L = max {Li | i = 1, . . . , n}.
It says the following. If we cancel the first k0 or more elements of the orbit

{xk}∞k=0, then the probability that a sufficiently long segment xk, . . . , xk+j approx-
imates A∗ with accuracy δ1

1−L + ε is greater than 1 − ε.

Proof. We denote by Â∗ the fractal of (15).
The trivial case when (14) is a system of single-valued contractions (here we can

take (15)=(14) and so δ1 = 0) is presented in [LM94].
For the case of a nontrivial (14), using Proposition 2, we can obtain the following

inequality

dH(A∗, Â∗) ≤ δ1

1 − L
,

which already gives (16). �

Our aim is to complete this result by the (numerical) inaccuracy part in the
following

Theorem 3. Let the assumptions of Proposition 3 be fulfilled.
Let {x̃k}∞k=0 be a δ2-pseudo-orbit of (15) with an initial point x̃0, i.e., for all

k ≥ 0, there exists i ∈ {1, . . . , m}, such that

(17) d(x̄k+1, fi(x̄k)) ≤ δ2.

Then for every x̃0 ∈ X and ε > 0 there exist k0 = k0(ε) and j0 = j0(ε) such that

(18) prob(dH({x̃k, . . . , x̃k+j} , A∗) <
δ1

1 − L
+

δ2

1 − L̂
+ ε) > 1 − ε,

for k ≥ k0, j ≥ j0, L = max {Li | i = 1, . . . , n} and L̂ = max
{
L̂i | i = 1, . . . , m

}
.

Proof. From the definition of δ2-pseudo-orbit {x̃k}∞k=0 of (15), it is easy to see that
we can construct, for arbitrary x0 ∈ X , d(x0, x̃0) ≤ δ2, the orbit {xk}∞k=0 of (15)
such that xk+1 = fi(xk), choosing, for every k ≥ 0, the same function as in (17).
Using Proposition 2 (and Remark 1) we can obtain the following two inequalities

d(xk, x̃k) ≤ 1 − L̂k

1 − L̂
δ2 ≤ δ2

1 − L̂
,

dH({xk}∞k=0 , {x̃k}∞k=0) ≤
δ2

1 − L̂
.

Thus, (cf. 18)

dH ({xk, . . . , xk+j} , {x̃k, . . . , x̃k+j}) ≤ δ2

1 − L̂
.

The last inequality together with (16) in Proposition 3 gives (18). �

Now, Proposition 2 and Theorem 3 will be applied, in illustrating Examples 1
and 2, to a trivial system of one single-valued contraction and to an IMS.



8 JIŘÍ FIŠER

Example 1 (Shadowing of a single-valued contraction). Consider map (see Fig.1)

f(x) =
3
4
x, x ∈ R.

Figure 1. Map f(x) = 3
4x, digitization f̃ , and iterations w.r.t. f̃

The induced map f∗ : K(R) → K(R) takes the form

f∗(A) =
⋃

x∈A

3
4
x, A ∈ K(R).

f is obviously a contraction with constant 3
4 , and subsequently (cf. [AF04])

dH(f∗(A), f∗(B)) ≤ 3
4
dH(A, B), A, B ∈ K(R).

Thus, f∗ is a contraction with constant 3
4 , too.

Now, let {An}∞n=0 be an orbit of f∗ in K(R) with A0 ∈ K(R) and An = f∗n

(A0).
Since f∗ is a contraction in a complete metric space (K(R), dH ), An tends w.r.t.
dH to a unique fixed-point (K(R) �)A∗ = {0}.

However, in a real situation, to reach the fixed-point A∗ numerically, we are
restricted by limited accuracy and finite number of iterations. Inequality (13) in
Lemma 2 says how many iterations m are sufficient in order to approximate A∗

with given accuracy ε. Number δ relates to the accuracy of a single iteration and
dH(A0, A1) stands for the distance between the original and the first iteration,
provided (11), i.e. δ < ε(1 − L), where L is the contraction constant. L is related
to the given map, while δ depends on the technical possibilities of computation.
Inequality (11) thus relates to the highest accuracy of ε.

Since we can only compute with rational numbers with limited number of decimal
places, let us only compute, for the sake of simplicity, with no decimal place, i.e.
with step 1. Considering such a mesh on R, it can be easily checked that any subset
of R can be approximated by the subsets of the mesh with the accuracy δ = 1

2 in
the Hausdorff metric. Obviously, for our purpose, only compact subsets of R will
be taken into account.

Hence, working on such a 1
2 -mesh, every value of f∗ will be approximated with

the accuracy of δ = 1
2 . For L = 3

4 , one can make an estimate for ε in (11), namely
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1
2 < ε(1 − 3

4 ), i.e. ε > 2, which refers to the unreachable limit of 2. Since only
integer multiples of δ are meaningful for the required accuracy, let us take ε = 5 1

2 .
Denoting by f̃ the digitization of f (see Fig. 1), its first iteration, for A0 = {10},

is A1 = {8}, where dH(A0, A1) = 2.
Hence, substituting for f∗ into formula (13), we get

m ≥ ln
( 5

2 (1 − 3
4 ) − 1

2

2

)
1

ln 3
4

=̇9.6.

For m ≥ 10, we have thus guaranteed the ε-accuracy (ε = 5
2 ) to approximate

A∗ = {0}. By practical computation, we obtain orbit {An}n≥0 as follows:

A0 = {10} , A1 = {8} , . . . , A5 = {3} , A6 = {2} , Ak = A6, k ≥ 7,

where the Hausdorff distance dH(A6, A
∗) = 2 is indeed less than ε = 5

2 .
Analogously, we present the computations for A0 = [0, 10] (interval). Here,

A1 = {0, . . . , 8}, and so the estimate for m is the same, i.e. m ≥ 10. The iterations
(see Fig.1):

A0 = [0, 10], . . . , A5 = {0, . . . , 3} , A6 = {0, . . . , 2} , Ak = A6, k ≥ 7,

where the Hausdorff distance dH(A6, A
∗) is 2, too. Thus, even for a single-valued

contraction, we obtain multivalued 5
2 -approximation {0, 1, 2} of the fixed-point {0},

iterating the digitization.

Example 2 (IMS of contractions: shadowing and stochastic generating). Consider
the following iterated multifunction system on the unite square X = [0, 1]× [0, 1] ⊂
R

2:

f1

(
x

y

)
=

(
1
3 0
0 1

3

)
·
(

x

y

)
+

(
0
0

)
,

f2

(
x

y

)
=

(
1
3 0
0 1

3

)
·
(

x

y

)
+

(
2
3

0

)
,(19)

f3

(
x

y

)
=

(
1
3 0
0 1

3

)
·
(

x

y

)
+

(
0
2
3

)
,

f4

(
x

y

)
=

(
1
3 0
0 1

3

)
·
(

x

y

)
+

(
2
3
2
3

)
.

ϕ

(
x

y

)
= BBU,

where ϕ : X → K(X) is a constant multivalued map, which maps every point to
letters BBU, positioned in the center of X . IMS (19) consists of a multivalued
contraction and of four single-valued contractions.

In order to apply Lemma 2, we have to find the constants in inequality (13).
Following the arguments in the foregoing Example 1, we can take L = 1

3 , and
δ = 2

100 , for two decimal places computing, and for the Manhattan metric, i.e.
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Figure 2. 4
100 -approximation of fractal of IMS (19)

d((x1, x2), (y1, y2)) = |y1 − x1|+ |y2 − x2|. Then, for ε = 0.1 and A0 = {(0, 0)}, we
have

A1 =
{
BBU, (0, 0),

(
2
3
, 0
)

,

(
0,

2
3

)
,

(
2
3
,
2
3

)}
,

dH(A0, A1) =
∣∣ 2
3 − 0

∣∣+ ∣∣23 − 0
∣∣ = 4

3 , and so

m ≥ ln

(
4

100

(
1 − 1

3

)− 2
100

4
3

)
1

ln 1
3

=̇4.8.

Thus, the sufficient number of iterations is m = 5 (see Fig.2).
Furthermore, the stochastically generated fractal of IMS (19) in Fig.3 is based

on application of Theorem 3, where δ1 = δ2 = 1
100 , L = L̂ = 1

3 and δ1
1−L + δ2

1−L̂
=

2 1
100

3
2 = 3

100 . Thus, we obtain stochastical 3
2 -approximation.

Finally, we conclude these approximations by a graphically obtained multivalued
fractal in Figure 4.
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Guadeloupe, French West Indies, March 29 - April 2, 1999 (M. Lassonde, ed.), Heidel-
berg: Physica-Verlag. 1-23 , 2001.

[AG03] , Topological Fixed Point Principles for Boundary Value Problems, Serie: Topo-
logical Fixed Point Theory and Its Applications, Kluwer, Dordrecht, 2003.

[And] J. Andres, Continuation principles for fractals, Submitted.
[Bar88] M. F. Barnsley, Fractals Everywhere, Academic Press, New York, 1988.
[Ber02] Vasile Berinde, Iterative approximation of fixed points, Baia Mare: Efemeride. xii, 2002.
[Bie99] A. Bielecky, Approximation of attractors by pseudotrajectories of iterated function sys-

tems, Univ. Iagel. Acta Math. 32 (1999), 173–179.
[Eda95] A. Edalat, Dynamical systems, measures and fractals via domain theory, Inform. and

Comput. 120 (1995), no. 1, 32–48.
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[GG04] V. Glavan and V. Guţu, 2004, Lectures given at International Conference on Nonlinear

Operators, Differential Equations and Applications held in Cluj-Napoca (Romania) from
August 24 to August 27, 2004.

[Gra72] A. Granas, The Leray-Schauder index and the fixed point theory for arbitrary ANR’s,
Bull. Soc. Math. France 100 (1972), 209–228.

[Gra94] , Continuation method for contractive maps, Topol. Math. Nonlin. Anal. 3 (1994),
375–379.

[Hig96] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM Publ., Philadel-
phia, PA, 1996.

[Hut81] J. E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J. 30 (1981), 713–747.
[Jac96] J. Jachymski, Continuous dependence of attractors of iterated function systems, J. Math.

Anal. Appl. 198 (1996), 221–226.
[Jac98] , Fixed point theorems in metric and uniform spaces via the Knaster-Tarski prin-

ciple, Nonlin. Anal., T.M.A. 32 (1998), no. 2, 225–233.
[JGP00] J. Jachymski, L. Gajek, and P. Pokarowski, The Tarski-Kantorovitch principle and the

theory of iterated function systems, Bull. Austral. Math. Soc. 61 (2000), 247–261.
[Kie02] B. Kieninger, Iterated Function Systems on Compact Hausdorff Spaces, Ph.D. thesis,

Institut für Mathematik der naturwissenschaftlichen Fakultät der Universität Augsburg,
Augsburg 2002.

[LM94] A. Lasota and M. C. Mackey, Chaos, fractals and noise-stochastic aspects of dynamics,
Springer Verlag, New York, 1994.

[LM00] A. Lasota and J. Myjak, Attractors of multifunctions, Bull. Pol. Ac.: Math. 48 (2000),
no. 3, 319–334.
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